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Abstract4

Microbial mats are complex ecological assemblages that are found in the Precambrian fossil5

record and in extant extreme environments. Hence, these structures are regarded as highly stable6

ecosystems. In this work, we assess the ecological stability in a modern, fluctuating, hypersaline7

pond from the Cuatro Ciénegas Basin. From the 2016 to 2019 metagenomic sampling of this8

site, we found that this microbial site is sensitive to disturbances, which leads to high taxonomic9

replacement. Additionally, the mats have shown to be functionally stable throughout time, and10

could be differentiated between dry and rainy seasonal states. We speculate that this microbial11

system could represent modern analogs of ancient microbial mats where functions were preserved12

over time, whereas composition was subject to diversification in the face of local and planetary13

perturbations.14

1 Introduction15

There is little to no doubt that life emerged early in Earth’s history, as suggested by geochemical16

signatures, biomarkers, microfossils and sedimentary structures from the early Archean (Lepot, 2020).17

Particularly, phototrophic microbial mats, alongside stromatolites, have been extensively present in18

the Archean rock record, as shown in the fossil evidence from the Dresser formation (3.48 Ga) (Noffke,19

Christian, et al., 2013), the Buck Reef Chert (3.42 Ga) (Tice and Lowe, 2004; Tice, 2009) , and the20

Moodies group (3.22 Ga) (Noffke, Eriksson, et al., 2006; Homann, Heubeck, et al., 2015; Homann,21

Sansjofre, et al., 2018). Microbial mats are also found in modern environments; they are benthic,22

stratified, and self-sustaining biological communities of thousands of phylogenetically diverse microor-23

ganisms embedded in a matrix of extracellular polymeric substances (EPS) (Prieto-Barajas et al.,24

2018). Therefore, it is straightforward to infer that microbial mats have been thriving on Earth for25

more than ∼3.5 Ga, in spite of every threat posed to life.26

Indeed, Earth’s history has been marked with gradual transitions and punctuated events that27

certainly disturbed the early biosphere. The early Sun, although 30% fainter than today, emitted high-28

frequency radiation, coronal mass ejections and solar cosmic rays by 2-3 orders of magnitude greater29

than present values (Obridko et al., 2020); geomagnetic polarity transitions would increase the solar30

wind and cosmic rays flux (Erdmann et al., 2021); asteroid impacts of bolides of 20-70 km in diameter31

struck Earth at 3.47–3.23 Ga and possibly until 3.0 Ga, way after the Late Heavy Bombardment32

(Lowe et al., 2014; Davatzes et al., 2019); surface chemistry shifted from a reduced state towards an33

oxidized world during the Grate Oxidation Event (2.43-2.22 Ga) (Gumsley, Chamberlain, et al., 2017;34

Poulton et al., 2021); global glaciation events were triggered by changes in the carbon cycle and solar35

heating (Tajika, 2007; Arnscheidt and Rothman, 2020); and large igneous provinces flooded the surface36

with effusive volcanism towards the end of the Archean and during the Phanerozoic (Mole et al., 2018;37
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Gumsley, Stamsnijder, et al., 2020). Each of these environmental pressures could potentially erradicate38

life from Earth, yet, life (as we know it) survived.39

The success of microbial mats and stromatolites as biological structures can only be understood in40

terms of ecological stability; namely, the community response to disturbances, which could be dissected41

into the degree to which a community is insensitive to perturbations (ecological resistance) and the42

rate at which a community restores to the pre-disturbed state (ecological resilience) (Shade et al.,43

2012; Song et al., 2015). Environmental disturbances can be classified into pulses and presses if the44

perturbation is a discrete, short-term event, or a continuous, long-term transition, respectively (Bender45

et al., 1984; Shade et al., 2012). Microbial community stability is a topic of interest for a wide array of46

systems and disturbances, such as dry-rewetting events (Kolda et al., 2019), differences in water level47

(Ren et al., 2019), temperature variations (Garćıa-Garćıa et al., 2019; Okonkwo et al., 2020), chemical48

stress (Jiang et al., 2020), shifting redox patterns (Pett-Ridge and Firestone, 2005), and changes in49

salinity (Berga et al., 2017). Nonetheless, microbial community stability under the scope of early life50

geobiology is rarely explored.51

In this work, we study the microbial system denominated as the Archean Domes, Cuatro Ciénegas,52

Mexico (Fig. 1). This pond is subject to extreme conditions, such as prolonged droughts, intense solar53

radiation, and major shifts in salinity and pH. Hypersaline microbial mats are among the best studied54

type of mats, and they have been widely recognized as analogs to the Archean Earth and, plausibly,55

early Mars (Wong, Smith, et al., 2015; Perl and Baxter, 2020; Saona et al., 2020). Hence, we took56

a metagenomic, uniformitarian approach to assess ecological stability and community dynamics from57

a three-year sampling to speculate the underlying processes and mechanisms that enable microbial58

communities to cope with multiple disturbances throughout Earth’s history.59

2 Materials and methods60

2.1 Study site and sample collection61

The Archean Domes (26º49’41.7”N, 102º01’28.7”W) is a seasonal, water-fluctuating pond in Rancho62

Pozas Azules from Pronatura located at the eastern side of the Cuatro Ciénegas Basin, Coahuila,63

México (Site overview in Fig. S1: Supplementary material). This site was discovered in 2016, and64

was firstly described by Medina-Chávez et al. (2019) [unpublished], and Espinosa-Asuar et al. (2021)65

[unpublished]. During the rainy season, mostly during the months of August to September, the pond66

fills with water up to ∼20 cm. Green mats emerge over the soil surface, building dome-like sedimentary67

structures up to 10-15 cm in diameter (Fig. 1b,c). From November to July, water evaporates and salt68

precipitation covers the pond completely, burying the microbial mats (Fig. 1a). Salinity is variable69

between the two states, transitioning from 52.5 PSU (as measured in the rainy season of 2016) when70

filled with water to salt saturation during the dry season. From a recent sampling in September 2021,71

we observed that green mats and gas filled structures start to quickly develop after the day of rainfall.72

Inside the domes and mats there are variable concentrations of methane (2.6-19.6 µg/L on the rainy73

season of 2016, 102-402 µg/L on the dry season of 2017) and carbon dioxide (1.08-1.40 on the dry74

season of 2017). During dry season, pH is ∼7, while on rainy season the pH rises to ∼8.5-9.5 with the75

dissolution of salts.76

We collected six samples of mats and associated sediment across a three-year period. During this77

time span, we got to collect three samples of each seasonal state: dry and rainy season. The mats78

from the dry season are from the sampling of April 2016, February 2017 and March 2019 (hereinafter79

denoted as M1 D16, M3 D17 and M5 D19, respectively). Mats from the rainy season are from the80

sampling of October 2016, October 2018 and September 2019 (hereinafter denoted as M2 R16, M4 R1881
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a)

b)

c)

d)

Fig. 1: The Archean Domes microbial system. The pond displays different features during a) dry

season (sampling of March 2019) and b) rainy season (sampling of March 2016). c) Detail of the dome

structures. d) 10X magnification of a microbial mat; functional stratification and sediment grains can

be appreciated at this scale.
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and M6 R19, respectively). Rainy season samples come directly from developing domes, whereas dry82

season samples derive from soil regions where mat was visible to the naked eye. As the rainy season83

is heavily contingent on the cyclone dynamics of the Gulf of Mexico, samples were taken at different84

times, ∼1-2 weeks after a heavy rainfall to ensure a high level of water in the pond. To prevent85

contamination, samples were collected with gloves, sterile forceps and sterile conical tubes (50 mL)86

and stored in liquid nitrogen for their preservation prior to extract the DNA. Weather parameters were87

taken from the National Meteorological Service, CONAGUA, at the EMA station No. 15DBB372 in88

Cuatro Ciénegas (27º0’7.2”N, 102º4’22.7”W). Weather data is provided in Fig. S2 and Table S1:89

Supplementary material.90

2.2 DNA purification and sequencing91

From each sample, only the mat layer (∼1 cm) was taken for DNA extraction. As the samples of92

the dry seasons contain a thick layer of salt, this layer had to be separated with a sterile scalpel to93

facilitate the extraction. We perform the extraction of total DNA from the six samples as reported94

in Purdy (2005). Purified DNA was sent to CINVESTAV-LANGEBIO for shotgun metagenomic95

sequencing. DNA libraries for Illumina paired-end sequencing were prepared for each sample without96

any amplification step. DNA from all samples was sequenced with Illumina MiSeq (2 x 300 base pair97

paired-end reads). The total number of paired-end reads per metagenome range from 4.7 to 28.0 Gbp98

per library and orientation (forward and reverse). Number of raw reads can be found in Table S2:99

Supplementary material.100

2.3 Quality control, assembly and annotation of metagenomes101

We preprocessed the raw reads with Trimmomatic v0.38 (Bolger et al., 2014) with a sliding window102

of 4, a Phred quality score of 30, minimum length of 35, and an average mean quality of 28. For103

each metagenome, reads were assembled into contigs to facilitate gene prediction. Forward and reverse104

paired reads, and individual forward and reverse with no pair, were assembled using MEGAHIT v1.1.1105

(Li, Liu, et al., 2015) with minimum contig length of 500, k-min of 27 and k-step of 10 as suggested for106

highly-diverse metagenomes (Bandla et al., 2020; Yan et al., 2021). To control for sequencing depth107

bias, we used the minimum number of reads (1,288,875 reads) to sample the metagenomic datasets at108

random to normalize coverage for comparisons. Unassembled reads were collected with BBtools (Bush-109

nell, 2020) and SAMtools v1.12 (Li, Handsaker, et al., 2009). For assembled contigs, gene prediction110

and subsequent taxonomic annotation was done with CAT v5.2 (Meijenfeldt et al., 2019). Additional111

information regarding quality control, metagenome assembly, processing of not assembled reads with112

MEGAHIT, and taxonomic annotation can be found in Table S2-S5: Supplementary material. CAT is113

a robust taxonomic annotator that integrates known software programs such as gene predictor Prodigal114

(Hyatt et al., 2010) and gene annotator DIAMOND (Buchfink et al., 2014) against the NCBI non-115

redundant database (NCBI Resource Coordinators, 2018) to give a deep gene taxonomic annotation.116

Since taxonomic annotation with CAT revolves against all kinds of predicted genes, we also used six117

ribosomal protein families (PF00177, PF00298, PF00573, PF00237, PF00163 and PF00318) to vali-118

date CAT results. We downloaded ribosomal genes’ seeds from Pfam database (Mistry et al., 2021).119

HMM profiles were built with HMMER v3.3 (Eddy, 2011), and hmmsearch was performed against120

all metagenomes (e-value 10−6). Ribosomal genes were annotated with DIAMOND, coupled with the121

NCBI non-redundant database. Overall functional profiling was done with SUPER-FOCUS (Silva122

et al., 2016) against the NCBI non-redundant database. We select resistance genes based on GO clas-123

sification and download the amino acid sequences from UniProt database. Resistance query sequences124

were aligned with BLAST against all metagenomes. Finally, We selected key energy metabolisms and125
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nutrient cycling as in Gutiérrez-Preciado et al. (2018). Protein families involved in each metabolic126

pathway were initially searched in UniProt (Bateman et al., 2021) and KEGG (Kanehisa et al., 2016)127

databases, and subsequently downloaded from Pfam. HMMER and BLAST (Altschul et al., 1990)128

analyses were performed for each protein family and for each metabolic pathway.129

2.4 Normalization, statistical analyses and data visualization130

We used R programming language (R Core Team, 2020) to run each statistical analysis, to normalize131

data and to generate figures. We list the libraries used as follows: ggplot2 v3.3.5 (Wickham, 2016)132

for overall plots, edgeR v3.34.1 for data normalization (Robinson et al., 2010), RAM v1.2.1.7 (Chen,133

Simpson, et al., 2018) for PCoA, PCA and CCA analyses, vegan v2.5-7 (Oksanen et al., 2020) for134

rarefaction curves and alpha-diversity metrics, UpSetR v1.4.0 (Lex et al., 2014) for upset plots, for dif-135

ferential expression analysis DESeq2 v1.32.0 (Love et al., 2014) and EnhancedVolcano v1.10.0 (Blighe136

et al., 2021), patchwork v1.1.1 (Pedersen, 2020) and fmsb v0.7.1 (Nakazawa, 2021) for radar charts,137

streamgraph v0.9.0 (Rudis, 2019) for streamgraphs, easyalluvial v0.3.0 (Koneswarakantha, 2021a)138

and parcats v0.0.3 (Koneswarakantha, 2021b) for alluvial plots, NetCoMi v1.0.2 for network analyses139

(Peschel et al., 2021), and umap v0.2.7.0 and dbscan v1.1-8 for clustering. Libraries BBmisc v1.11140

(Bischl et al., 2017), dplyr v1.07 (Wickham et al., 2021), tidyr v1.1.4 (Wickham, 2021) were used141

for data manipulation. Gene abundances were normalized with the Relative Log Expression (RLE)142

method. PCoA and NMDS analyses for taxonomic groups were calculated with a Bray-Curtis mea-143

sure. NetCoMi networks were built using SparCC measure, Bayesian-multiplicative replacement for144

zero handling and association threshold of 0.5. Phylum-level networks were built with the top 120145

phyla, while genus-level networks were built with all the 250 core genera.146

3 Results147

3.1 Taxonomical characterization148

We build rarefaction curves to evaluate diversity coverage for all samples. For genera richness, each149

sample reaches saturation and comparisons between them is suitable (Fig. 3S: Supplementary mate-150

rial). Open read-frames were predicted for reads, and further annotated for taxonomic classification151

with CAT. We detected 162 phyla, 2250 genera (across all samples), and more than 8,000 phylotypes152

per sample. Nevertheless, only 30-58% of the total predicted genes for each sample were classified,153

suggesting a considerable amount of potential novel taxonomic groups, which comprise the so called154

“microbial dark matter”. These potentially uncultured organisms have shown to be of importance in155

other hypersaline microbial mats (Wong, MacLeod, et al., 2020). Mean abundances per domain show156

consistent results between CAT and ribosomal gene annotation; for CAT taxonomic assignment we157

got mean abundances of: 85.24% for Bacteria, 14.43% for Archaea, and 0.3% for Eukaryota; whereas158

ribosomal gene annotation showed: 86.56% for Bacteria, 13.35% for Archaea, and 0.08% for Eukaryota.159

Regarding the taxonomic composition, at the phylum level, samples consistently displayed Pro-160

teobacteria (23.51%), Euryarchaeota (11.42%), Bacteroidetes (10.26%), Firmicutes (4.35%), Cyanobac-161

teria (3.30%), Spirochaetes (2.84%), Planctomycetes (1.99) and Chloroflexi (1.42) as the most abundant162

phyla (Fig. 2). The taxonomic annotation with ribosomal genes is also consistent with the phyla rela-163

tive abundances of CAT annotation (taxonomic profile based on ribosomal proteins is shown in Figure164

S4: Supplementary material). Taxonomic profiles seem to vary between each sample; most noticeable,165

with the increase of Euryarchaeota for the 2019 samples. Overall, the Archean Domes have a high166

diversity as seen in Chao (143-271), Shannon (2.5-3.1) and inverse Simpson (4.6-8.3) indexes.167
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Fig. 2: Taxonomic profile of the Archean Domes. Only the top abundant phyla are displayed. Not

annotated phyla were grouped into NA category.
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At the genus level, we find Coleofasciculus as the most abundant Cyanobacteria between all sam-168

ples, which is widely known as a key mat-forming genus in sandy environments (Noffke, 2010; Ramos169

et al., 2017; Prieto-Barajas et al., 2018; Cardoso et al., 2019). Other cyanobacterial genera such as170

Leptolyngbya, Halothece, and Phormidium are also abundant between samples, and have also been171

previously reported in microbial mats (Ramos et al., 2017; Sohm et al., 2020; Brenes-Guillén et al.,172

2021). Anaerobic, halophilic, sulfate-reducing members of the Deltaproteobacteria such as Desul-173

fonatronovibrio, Desulfonatronospira and Desulfovermiculus also appear in abundance in the Archean174

Domes samples.175

(Kuever, 2014). Other relevant taxonomic genera present in the samples include Halorubrum (Eur-176

yarchaeota), Halanaerobium (Firmicutes), Spirocheta (Spirochetes), Chitinispirillum (Fibrobacteres),177

and Tangfeifania (Bacteroidetes). From the 2250 total genera found in the system, only between 16-19178

for each sample belong to the abundant genera, that is, with an abundance >1%. In contrast, between179

426-619 genera have abundances <0.1%, and belong to the so called “rare biosphere”. Rare taxa180

account for the 11.2-18.9% of the whole community, whereas abundant taxa comprises the 43.3-67.6%.181

Therefore, although taxa that are abundant only consists of a few genera, these taxa often build most182

of the microbial community biomass (Fig. S5: Supplementary material). Moderately abundant taxa183

(>0.1% and <1%) sits between the abundant and rare, with a relative abundance of 19.6-37.7% in the184

samples studied.185

3.2 Functional characterization186

Coding sequences were functionally classified in order to infer potential functions. As expected, basic187

functions shared between all living beings are widely distributed among all samples, such as carbohy-188

drate (14.5%), amino acid (11.9%), protein (8.9%), DNA (5.9%), RNA (5.0%), and fatty acids and189

lipids (3.1%) metabolisms; Other processes regarding cofactor, vitamins, and pigments (10.7%), cell190

wall and capsule (4.2%), respiration (3.9%), and stress response (3.8%) are also among the top func-191

tions for all samples. Stress response genes in higher abundance might reflect that the community is192

subject to ceaseless environmental pressures (Varin et al., 2012; Le et al., 2016). Fig. 3a shows the dif-193

ference in function abundance between samples for every major process according to SUPER-FOCUS194

classification. Overall, samples appear to be similar among them, despite some functions with differ-195

ential distribution among the samples, such as amino acid, fatty acids and lipids, central, secondary,196

and RNA metabolisms.197

We inspect the function of the stress response genes present at the Archean Domes. Based on198

GO classification, we identify resistance genes related to pH, alkaline, acidic, salt, dormancy, and199

endosporulation conditions. Alkaline and salt resistance genes were the most abundant, with a mean200

proportion of 56.5% and 31.5%, respectively (Fig. S6: Supplementary material). This behavior201

is expected, since salt and pH fluctuate considerably between seasons, and might exert a selection202

pressure on the organisms thriving on this site.203

Pfam protein groups were used to infer energy metabolisms and nutrient cycling within the mat204

samples. Based on normalized abundance, Wood-Ljungdahl pathway rules carbon metabolism among205

the mat, followed by the Calvin cycle. These results are consistent with other microbial mats previously206

described, and Wood-Ljungdahl dominance has been regarded as a result of energy limitation, since207

this mechanism of carbon fixation is inefficient compared to other pathways (Gutiérrez-Preciado et al.,208

2018; Wong, White, et al., 2018; Kurth et al., 2021). Anoxygenic photosynthesis genes dominate over209

those specific to oxygenic photosynthesis, while sulfur oxidation and nitrogen fixation are potentially210

the main processes for sulfur and nitrogen metabolisms. Dissimilatory sulfate reduction is portrayed as211

a process with low gene abundances, despite the highly abundant sulfate reducing bacteria previously212

described; as such, metabolism inference based on gene abundances should be taken cautiously. Further213
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reconstruction of full pathways would provide more accuracy in the relative abundances.214

3.3 Community dynamics through time and seasonal comparison215

On account of the morphological changes of the pond in response to environmental perturbations, we216

conduct statistical analyses to evaluate if samples have higher resemblance to those collected in the217

same seasonal state. Chao, Shannon, and inverse Simpson indexes were calculated for each sample to218

evaluate alpha diversity, and no statistical significance was found between seasons (Wilcoxon Rank Sum219

test: Chao1 p=0.4, Shannon p=1, Inverse Simpson p=0.8). Moreover, principal coordinates analysis220

(PCoA) and non-metric multidimensional scaling (NMDS) at the genus and order level showed no221

seasonal aggregation of samples (Fig. S7: Supplementary material). Finally, Canonical correspondance222

analysis (CCA) was performed with the environmental variables provided by the EMA meteorological223

station (Fig. S8: Supplementary material). From this analysis, roughly, 2017-2018 samples were224

driven by precipitation, whereas 2019 samples were driven by wind speed and humidity. This could be225

non-conclusive due to the low sample number. Nonetheless, two groups seem to have formed: one less226

closer to each other from samples of 2016 - 2018, and other more closely arranged which comprises the227

samples from 2019. This result is expected, as taxonomic profiles from the dry and rainy seasons of 2019228

showed similar compositions (Fig. 2), particularly, the increase in the Archaea relative abundances.229

Co-occurrance networks were built to inspect general properties at the phylum level (Table S7230

and Fig S9: Supplementary material). Both seasons mainly show two clusters which might be asso-231

ciated to groups of highly interacting organisms or functional guilds with niche overlapping to some232

degree. During the rainy season, several phyla from both groups transition to build a third cluster.233

Hence, it is possible that phyla interact differently between themselves depending on environmental234

conditions. Network metrics have been used to evaluate resilience and resistance within microbial235

communities. For instance, our networks shows a positive edge of 49.017 and 48.77 during the dry and236

rainy seasons, respectively. A high positive/negative ratio in microbial networks, such as those found237

in these networks, has been interpreted to aid in community stability, by avoiding feedback loops in238

taxa with overlapping niches (Hernandez et al., 2021). Furthermore, modularity has been considered as239

a measure of community stability, diminishing the propagation of perturbations through the network240

(Hernandez et al., 2021). The Archean Domes microbial mats seem to change in modularity between241

the dry season (0.01) and rainy season (0.07) states; lower modularity during the dry season might242

reflect the exposure and vulnerability of the system relative to when the mats are wet. The small243

sample size might induce spurious correlations in the microbial networks, and further samplings for244

the following seasons will support this analysis.245

Seasonal patterns in community composition are not straightforward to follow, and evaluating the246

community dynamics through the years might provide a plausible underlying explanation for this. Fig.247

4a show the community composition changes through the years. As briefly stated previously, one of the248

most noticeable changes through the years was a rise of Archaea (from 1-4% to 33%) in the samples of249

2019. Consequently, Bacteria reduced their abundance up to ∼65%, a third less from previous years.250

The virus followed the same tendency as the archaea druing 2019, in a subtle rise of abundance (0.08-251

0.2% to 0.4%). The Eukaryota had an apparent seasonal pattern in the first two years (2016-2018),252

continuing with a steady state in 2019. Since the increased abundance of Archaea was considerable,253

the dynamic between 2016-2018 is visually lost. Taking into account only the abundance shift between254

2016-2018, all domains presented a possible seasonal pattern, where archaeas, eukaryotes and viruses255

rose proportionally in the rainy season compared to the dry one. To explore which organisms may256

drive these seasonal patterns, we examined phylum and genus proportion across time. Phyla with a257

prominent shift were Spirochaetes, Proteobacteria, Cyanobacteria, Cloroflexi, Bacteroidetes, and the258

Euryarchaeota. Euryarchaeota became one of the main abundant groups in the communities of 2019259
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(from 2% to 28%). In contrast, Cyanobacteria, Chloroflexi and Bacteroidetes showed a diminished260

abudnance during the same year. Spirochaetes had a rise in October 2016 to end in a constant261

frequency in the following samples.262

At the genus level, the taxonomic replacement is even more noticeable (Fig. 4b). For each sampling,263

we could observe two main phenomena: i) some genera are present in every sample (core genera), while264

ii) most genera are new additions or become undetected between each sample. As a matter of fact,265

taxonomic replacement becomes increasingly complex with each new sample, which reflects how the266

community has changed since the first sampling in April 2016. We delve deeper into core dynamics267

in the following section. We were interested to evaluate which taxa are key in driving the community268

to new compositional states, based on the differential abundances between samples. Coupling UMAP,269

a nonlinear dimensionality reduction method, with HDBSCAN, Hierarchical Density-Based Spatial270

Clustering of Applications with Noise), we find groups that might be leading the community dynamics271

(Fig. 4c). First, the main cluster contains most of the genera, with the inclusion of all the abundant272

taxa (1734 genera in class 4). In contrast, four small groups with fewer genera in each one (22, 116, 200,273

and 182 genera in classes 0,1,2, and 3, respectively. Group composition is supplied as Supplementary274

material in a csv file). These groups are made up entirely of genera belonging to the rare biosphere,275

and shifts in their abundance seem to be major ecological drivers in the ecosystem. This result further276

support the relevance of the rare biosphere in microbial communities, as they could XXX (Jousset277

et al., 2017).278

We assess if functional categories differentiate communities between seasons. Normalized abun-279

dances for general functions (system 1 level based on SUPER-FOCUS classification) showed that dry280

and rainy function abundance is essentially the same, with slight differences in abundance (Fig. 5a).281

This behavior is expected, as major functions, with fundamental roles in every microbe, are always282

present for the survival of the community. As described previously, most genes are associated to283

carbohydrate, amino acids, and protein, metabolisms as well as processes cofactors, vitamins, and pig-284

ments. Nevertheless, PCoA for these data with a Bray-Curtis measure do arrange them into seasonal285

groups, although ordination is sparse (Fig. 5b). Further sampling will support the predictability of286

this clustering method.287

We modify a differential expression analysis to adapt it to our metagenomic using the classification288

defined by SUPER-FOCUS. Although none of the metabolic subsystems had a significant difference289

between seasons (p > 0.5), there were some processes that had a higher or lower abundance as seen290

by their fold change (Log2 Fold Change>abs[2.5], Fig. S10: Supplementary material). In the dry291

season, there were three slightly more abundant functions: the pentose phosphate pathway of plants,292

the alpha-acetolactate operon, and the biotin biosynthesis. From the pentose phosphate pathway,293

we had the glucose 6 phosphate dehydrogenase, the key enzyme of the Oxidative Pentose Phosphate294

Pathway (OPPP), which is related to the response of short- or long-term exposure to drought stress295

in plants (Landi et al., 2016). The alpha-acetolactate operon has been described as a component in296

the mixed acid fermentation, done by some bacteria such as Bacillus subtilis, to produce acetoin in297

the absence of nitrate (Härtig and Jahn, 2012); this could be associated to a shortage of nutrients in298

the dry season. Lastly, biotin biosynthesis is an important process, since biotin is a key cofactor in299

the fatty acids and amino acid metabolisms, as well as in the replenishment of the tricarboxylic acid300

cycle (Salaemae et al., 2016). For the rainy season, some functions with a higher fold change were:301

the acyl homoserine lactone (AHL) inducer, which is involved in primary quorum sensing signals by302

Gram-negative bacteria (Parsek et al., 1999); the phage carbon metabolism Auxiliary metabolic genes303

(AMGs), which consist of phage strategies for resource management during host infection (Thompson304

et al., 2011; Warwick-Dugdale et al., 2019); some archaeal hydrogenases, involved in carbon fixation305

(Hedderich, 2004); prenylated indole alkaloids production from actinomycetes, which have multiple306
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biological functions such as antifungal and antibacterial activity (Netz and Opatz, 2015); and lastly,307

chlorophyll degradation related genes. Some of these functions could be directly associated with the308

presence of the green, cyanobacterial built, layer seen in the rainy seasons, such as in the phage-309

cyanobacterial AMGs (Thompson et al., 2011), the quorum sensing for biofilm formation (Herrera and310

Echeverri, 2021), and the chlorophyll degradation.311

Moreover, we were wondering how functions have changed over time and if there is a group of312

functions that leads global patterns in the community. According to k-means and hierarchical clus-313

tering, two main groups of functions were predicted. PCA analysis showed how these functions are314

projected, where high abundant functions are sparsely distributed in the plot, and most functions with315

low abundance functions were tightly clustered together (Fig. 5c). Each function’s class is provided316

in the Supplementary material. Comparing function abundance across samples suggest that functions317

are more similar between adjacent samples (Fig. 5d). In consequence, the correlation cloud appears318

to be scattering when samples are more distant in time. For instance, sample M1 D16 showed higher319

correlation with sample M2 R16 than with the last sample from 2019 (M6 R19). This result further320

suggest that functions are changing between samples, and that cumulative changes in functions differ321

drastically from the initial function state. As previously stated, further sampling may reinforce this322

hypothesis.323

3.4 The core community324

Taxonomic composition and functions change through time to some extent, as described in the previ-325

ous section. Still, there is a core community shared between all samples and seasons. The (global) core326

community consists of 250 genera out of the 2250 total genera across the samples, just about ∼11% of327

the total diversity found in the Archean Domes (Fig. 6a). These genera can be portrayed as microbes328

with high physiological plasticity, able to cope with both dry and rainy season environmental conditions329

(Pett-Ridge and Firestone, 2005). Seasonal cores were identified, that is, genera that only appeared in330

rainy or in dry season exclusively. Unlike the core community, seasonal cores were particularly small,331

with just 1 and 10 genera for dry and rainy seasons, accordingly. Every genus in the seasonal cores have332

a low abundance (<0.01%), and belong to the rare biosphere during each season. The organisms found333

only in rainy samples comprise several Alphaproteobacteria (Croceicoccus, Shimia, Rhodoplanes, and334

Polymorphum), Gammaproteobacteria (Teredinibacter and Allochromatium), Bacteroidetes (Ohtaek-335

wangia), Cyanobacteria (Geminocystis), one Euryarchaeota (Methanosalsum) and a novel genus of336

Planctomycetes (Candidatus Jettenia) previously described in an anammox bioreactor (Mardanov et337

al., 2019). Among the genera present only in rainy season, it is noticeable the presence of the pho-338

totrophs Allochromatium (purple sulfur bacteria), Rhodoplanes (photoheterotroph) and Geminocystis339

(Cyanobacteria) (Imhoff, 2014; Marcondes de Souza et al., 2014). Recently, a Croceicoccus species has340

been found to be capable to produce AHL (Huang et al., 2015), which could be consistent with the341

slight increase in the AHL inducer genes during the rainy season. Teredinibacter have nitrogen fixation342

capabilities (Distel et al., 2002), while Methanosalum is a methylotrophic methanogen (Oren, 2014),343

which might aid in nutrient cycling during the rainy season. In contrast, the dry season core only344

contained the Maledivibacter genus, a member of the Clostridiales, Firmicutes. This genus produces345

hydrogen sulfide and ammonia under obligately halophilic conditions (Li, Zeng, et al., 2016). In fact,346

all the genera found in the seasonal cores are halophilic to some extent.347

We further analyzed the taxonomical structure and functions of the global core community. The348

core community consists of 250 genera, where most of them belong to the Proteobacteria (102), Bac-349

teroidetes (43), Firmicutes (28), Euryarchaeota (12), Actinobacteria (11), and Cyanobacteria (10)350

(Fig. S11: Supplementary material). Although these genera appear in every sample, their relative351

abundances fluctuate drastically between samples (Fig. S12: Supplementary material). For instance,352
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Fig. 6: The core community at the Archean Domes microbial system. a) Upset plot showing the

number of shared genera between different sample intersections. Global core showed 250 genera, while

rainy core and dry core showed 10 and 1 genera, respectively. b) Co-occurrence networks for core

genera during the dry and rainy seasons, where color indicates different clusters. Green and red edges

represent positive and negative relationships, respectively. Hub taxa are shown with labels
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Coleofasciculus transitioned from one of the genera with the highest abundance (10.2%) in 2017 to353

belong to the rare biosphere (0.06%) during the dry season of 2019. Most of the genera belonging to354

the core belong to the rare biosphere, although all the abundant genera belong to the core as well. Core355

functions relative abundances, on the other hand, appear highly conserved between samples (Fig. S11:356

Supplementary material), with processes such as carbohydrate, amino acid, protein, RNA, and DNA357

metabolisms being the most abundant ones. This result is consistent with the abundances of functions358

for the whole microbial system. PCoA ordination method suggest a seasonal pattern of functions, as359

the dry season samples of 2019 and 2016 were grouped in one cluster, while the rainy season samples of360

2016 and 2018 were close to each other in another group. the dry season sample of 2017 and the rainy361

season sample from 2019 does not cluster to any of the aforementioned groups, and more samples will362

determine if these groups do preserve a seasonal pattern or not.363

Core co-occurrence networks at the genus level also provide insights into the global core dynamics364

for both the dry and rainy seasons (Fig. 6). To begin with, there are 7 shared clusters of genera365

in both, dry and rainy seasons. Consistent with the networks built at the phylum level, the rainy366

season network for the 250 core genera displayed the addition of a new cluster that was not previously367

present in the dry season network. Additionally, many of the present genera relocate to different368

clusters between the dry and rainy seasons. This behavior could reflect how the core taxa differentially369

interact with each other in response to the environmental pressure. Even though these taxa are present370

in the whole community, regardless of the season, it is natural to infer that interactions within this371

core community are the ones that changes through the seasons. For both networks, global metrics were372

calculated, and once again, modularity and positive/negative ratio show consistency with the whole-373

community phylum networks (Table S7: Supplementary material); dry and rainy seasons displayed374

relatively high modularity values (0.17 and 0.22, respectively), and the slightly lower value during375

the dry season could reflect a drop in community stability during this state. Positive edges in both376

networks account for the ∼41%, which result in high positive/negative ratios that further suggest a377

resistant and resilient community (Hernandez et al., 2021). Finally, hub taxa were predicted for each378

network, and among them, Coleofasciculus, Chitinispirillum, Desulfonatronovibrio, Desulfovermiculus,379

Halanaerobium, Halomonas, Halorhabdus, and Halorubrum are shared hubs between the seasons. Two380

hub groups appear during the dry season, whereas during the rainy season, every hub genus belong381

to the same cluster. It seems that some hub taxa (including Desulfonatronovibrio, Coleofasciculus,382

Halanaerobium, and Chitinispirillum) are also involved in the differential interactions between seasons.383

Given that sample size is small, detailed interaction analysis should be taken with caution. Thus, we384

retain ourselves to just an exploratory, non-conclusive, global analysis of these networks.385

4 Discussion386

Our metagenomic profiling from 2016 to 2019 at the Archean Domes aided us in the understanding387

of how microbial communities at this site are able to cope to environmental pressures during the dry388

and rainy seasons. Extended drought during roughly 9 months each year could be classified as a389

press disturbance, whereas daily temperature shifts amidst the desert could be interpreted as a pulse390

perturbation. Hence, the Archean Domes could be regarded as a multi-perturbation system.391

Ecological resistance has been classically associated with the species/genera richness, where an392

increase or decrease in biodiversity could point to a decrease in compositional stability (Pennekamp393

et al., 2018). Nonetheless, there were none statistically significant differences for alpha diversity394

between the communities of the dry and rainy seasons. Moreover, we could infer that the community’s395

composition is heavily affected by each seasonal shift, pointing towards a sensitive, non-resistant,396

microbial community (Baho et al., 2012). Although community composition is constantly subject to397
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taxonomic replacement, functions are mostly conserved, even though adjacent samples have shown398

more similarity in terms of function. Since functions are mostly preserved throughout the seasons,399

the highly diverse community might harbor a high degree of functionally redundant taxa (Allison and400

Martiny, 2008). This grants the community a robust capability to withstand taxonomic replacement,401

the product of a non-resistant community in terms of composition. Co-occurrence networks for the402

global (phylum level) and core (genus level) microbial networks show consistent results, as modularity403

and positive/negative ratio points towards a functionally stable community; in this sense, modules404

in these networks might reliably represent functional guilds or niche overlapping (Röttjers and Faust,405

2018; Hernandez et al., 2021).406

On the other hand, ecological resilience is not straightforward to assess in this system, as press407

disturbances are continuous and seasonal. Rather, inferences on ecological resilience could be evaluated408

under the assumption of many stable states in which a community may thrive. PCoA plots could409

be visualized as stability landscapes, where each snapshot of the community’s composition/function410

could be envisioned as a ball and where the different alternative stable states represent basins in the411

landscape. If resistance and resilience is high, a disturbance would not modify the current stable state412

of the community. On the contrary, if overall stability is low, and the disturbance powerful enough,413

the community will leave its current stable state to fall into an alternative stable state (Botton et al.,414

2006; Shade et al., 2012). PCoA plot for taxonomic composition (Fig. S7: Supplementary material),415

could be interpreted as the community transitioning towards different compositional states from 2016416

until 2018, but in the 2019 samples the community remained in the same compositional state. Looking417

at the PCoA plot for functions (Fig. 5) we could see that seasonal “valleys” of alternative equilibrium418

are formed, whereas PCoA for the core functions, the community do return to the same seasonal stable419

state despite the press disturbance.420

Community stability in this site has different components that contribute to the whole microbial421

resistance and resilience, at least functionally speaking. First, at the individual level, we found abun-422

dant genes related to salt and alkaline stress response which could confer physiological plasticity to423

the global core community, as these genera thrived despite the seasonal conditions. Mixotrophy is well424

represented in microbial communities and could further explain the individual functional plasticity425

between seasons (Eiler, 2006). At the population level, disturbances are well known to foster diversifi-426

cation, as these perturbations bring the community under selection pressures (Rainey and Travisano,427

1998; Galand et al., 2016). The high diversity found in this pond might be the outcome of the mul-428

tiple selection pressures acting on the microbial populations, providing an evolutionary adaptation;429

diversity overall at the community level promote functional resistance, since functional redundancy is430

expected in a genetically diverse community (Shade et al., 2012). For example, the Archean Domes431

microbial mats possess several carbon and energy metabolisms which could enhance the robustness432

of primary production and nutrient cycling. Finally, differential growth rates among the community433

members influence the overall composition, yet, we have seen that the microbial rare biosphere might434

play a key role in driving the community to new stable compositional states. Indeed, the rare biosphere435

drastically influence the taxonomic replacement in other systems (Jousset et al., 2017; Pascoal et al.,436

2021).437

As stated previously, the Archean Domes microbial system is constantly subject to environmental438

stress, which could be arguably compared to those experienced by the Shark Bay microbial mats,439

a recognized terrestrial analog (Wong, White, et al., 2018; Campbell et al., 2020). Therefore, the440

Archean Domes site is potentially a promising analog for early Earth, and (plausibly) early Mars, just441

as other potential analogs found in the Cuatro Ciénegas Basin (López-Lozano et al., 2012; Moreno-442

Letelier et al., 2012; Souza et al., 2012). That being said, what can we learn of early life from these443

extant microbial communities?444
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Local and planetary disturbances throughout Earth’s history can be interpreted as environmental445

pulses or presses that perturbed the biosphere. Within this framework, microbial mats were biologi-446

cal structures that survived the onset of these threatening phenomena. Communities were probably447

compositionally sensitive, as shown by the microbial mats in this study and other microbial commu-448

nities studied elsewhere (Allison and Martiny, 2008; Shade et al., 2012). While lineage extinction is449

expected as an effect of disturbances (Konhauser et al., 2015; Hodgskiss et al., 2019), multiple diver-450

sification events have been associated to post-disturbance episodes, such as genetic innovations driven451

by ocean-atmosphere oxygenation and changes in ocean chemistry (David and Alm, 2010; Chen, Sun,452

et al., 2020), or new clade emergence after major glaciation events (Chumakov, 2010). Therefore, Low453

compositionally resistant communities coupled with high mutation rates and further diversification454

within microbial mats could greatly influence the ceaseless search for alternative stable states in the455

stability landscapes. As major disturbances could completely modify the stability landscape (Shade456

et al., 2012), original compositional states could be never reached again, once the community is dis-457

turbed. Hence, it is plausible that modern composition of microbial mats (at least at the genus level)458

is substantially different from those during the Archean or Proterozoic Earth, and records of past459

compositional states might be unachievable.460

As opposed to the continuous taxonomic replacement experienced in these systems, functional461

capability must have been a conservative feature for microbial mats throughout geologic time, as both462

resistance and resilience in functions were found for this analog site. Indeed, the fossil record show463

that modern metabolic capabilities could be traced back to past microbial mats and stromatolites464

(Buick, 1992; Bosak et al., 2009; Schopf, 2011; Lepot, 2020). This functional processes might be465

highly conserved across the community’s core, where functional redundancy is expected. Most modern466

microbial mat development is highly reliant on phototrophic cyanobacteria (Noffke, 2010; Prieto-467

Barajas et al., 2018), which lead us to wonder if microbial communities behaved similarly prior to468

the emergence of oxygenic photosynthesis. In this study, we find functional guilds that are stable469

to environmental perturbations, in which oxygenic photosynthesis is part of a local electron transfer470

circuit that includes energy and carbon metabolisms (Jelen et al., 2016). Closed electron transport471

circuits existed prior to the emergence of oxygenic photosynthesis, as depicted in Moore et al. (2017),472

where aerobic metabolisms emerged at a later stage in biological evolution. In this sense, microbial473

mats without oxygenic photosynthesis could rely on other metabolic processes to cycle nutrients and474

energy and become highly stable structures to functional changes. Future studies on modern microbial475

mats in hydrothermal vents (Rassa et al., 2009; Miranda et al., 2016) and phototrophic, anoxygenic476

sites (Visscher et al., 2020) would provide insights into this hypothesis.477

Reconstructing past microbial ecologies, including their ecological stability, might provide valuable478

insights into the coevolution of the biosphere-geosphere. This knowledge has the potential to be479

applied to forecast microbial response under contemporary disturbances of global climate change,480

(Reinold et al., 2019), as well as potential modelling for microbial systems beyond Earth’s limits,481

where perturbations might be even more harsh than those experienced by terrestrial life.482
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Bourillot, Malcolm R. Walter, Brendan P. Burns, Manuel Contreras, and Christophe Dupraz (2020).951

“Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean”. In:952

Communications Earth & Environment 2020 1:1 1.1, pp. 1–10. issn: 2662-4435. doi: 10.1038/953

s43247-020-00025-2. url: https://www.nature.com/articles/s43247-020-00025-2.954

Warwick-Dugdale, Joanna, Holger H. Buchholz, Michael J. Allen, and Ben Temperton (2019). “Host-955

hijacking and planktonic piracy: how phages command the microbial high seas”. In: Virology Jour-956

nal 2019 16:1 16.1, pp. 1–13. issn: 1743-422X. doi: 10.1186/S12985-019-1120-1. url: https:957

//virologyj.biomedcentral.com/articles/10.1186/s12985-019-1120-1.958

Wickham, Hadley (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.959

isbn: 978-3-319-24277-4. url: https://ggplot2.tidyverse.org.960

— (2021). tidyr: Tidy Messy Data. url: https://CRAN.R-project.org/package=tidyr.961

Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller (2021). dplyr: A Grammar of962

Data Manipulation. url: https://CRAN.R-project.org/package=dplyr.963

Wong, Hon Lun, Fraser I. MacLeod, Richard Allen White, Pieter T. Visscher, and Brendan P. Burns964

(2020). “Microbial dark matter filling the niche in hypersaline microbial mats”. In: Microbiome965

2020 8:1 8.1, pp. 1–14. issn: 2049-2618. doi: 10.1186/S40168- 020- 00910- 0. url: https:966

//microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00910-0.967

Wong, Hon Lun, Daniela Lee Smith, Pieter T. Visscher, and Brendan P. Burns (2015). “Niche dif-968

ferentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats”. In: Sci-969

entific Reports 2015 5:1 5.1, pp. 1–17. issn: 2045-2322. doi: 10.1038/srep15607. url: https:970

//www.nature.com/articles/srep15607.971

Wong, Hon Lun, Richard Allen White, Pieter T. Visscher, James C. Charlesworth, Xabier Vázquez-972

Campos, and Brendan P. Burns (2018). “Disentangling the drivers of functional complexity at973

the metagenomic level in Shark Bay microbial mat microbiomes”. In: The ISME Journal 2018974

12:11 12.11, pp. 2619–2639. issn: 1751-7370. doi: 10.1038/s41396-018-0208-8. url: https:975

//www.nature.com/articles/s41396-018-0208-8.976

Yan, Hui, Lei Zhu, Yingjun Wang, Sen Zhang, Pei Liu, Tina T. X. Dong, Qinan Wu, and Jin-Ao Duan977

(2021). “Comparative metagenomics analysis of the rhizosphere microbiota influence on Radix978

Angelica sinensis in different growth soil environments in China”. In: Food Science and Technol-979

ogy. issn: 0101-2061. doi: 10.1590/FST.65120. url: http://www.scielo.br/j/cta/a/980

yzqmHYfCzjWwwPXtwjTT7Th/?lang=en.981

28

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.11.18.469043doi: bioRxiv preprint 

https://doi.org/10.1038/s43247-020-00025-2
https://doi.org/10.1038/s43247-020-00025-2
https://doi.org/10.1038/s43247-020-00025-2
https://www.nature.com/articles/s43247-020-00025-2
https://doi.org/10.1186/S12985-019-1120-1
https://virologyj.biomedcentral.com/articles/10.1186/s12985-019-1120-1
https://virologyj.biomedcentral.com/articles/10.1186/s12985-019-1120-1
https://virologyj.biomedcentral.com/articles/10.1186/s12985-019-1120-1
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1186/S40168-020-00910-0
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00910-0
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00910-0
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00910-0
https://doi.org/10.1038/srep15607
https://www.nature.com/articles/srep15607
https://www.nature.com/articles/srep15607
https://www.nature.com/articles/srep15607
https://doi.org/10.1038/s41396-018-0208-8
https://www.nature.com/articles/s41396-018-0208-8
https://www.nature.com/articles/s41396-018-0208-8
https://www.nature.com/articles/s41396-018-0208-8
https://doi.org/10.1590/FST.65120
http://www.scielo.br/j/cta/a/yzqmHYfCzjWwwPXtwjTT7Th/?lang=en
http://www.scielo.br/j/cta/a/yzqmHYfCzjWwwPXtwjTT7Th/?lang=en
http://www.scielo.br/j/cta/a/yzqmHYfCzjWwwPXtwjTT7Th/?lang=en
https://doi.org/10.1101/2021.11.18.469043
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Materials and methods
	Study site and sample collection
	DNA purification and sequencing
	Quality control, assembly and annotation of metagenomes
	Normalization, statistical analyses and data visualization

	Results
	Taxonomical characterization
	Functional characterization
	Community dynamics through time and seasonal comparison
	The core community

	Discussion

