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ABSTRACT
Alternative splicing is a widespread regulatory phenomenon that enables a single
gene to produce multiple transcripts. Among the different types of alternative
splicing, intron retention is one of the least explored despite its high prevalence
in both plants and animals. The recent discovery that the majority of splicing is
co-transcriptional has led to the finding that chromatin state affects alternative
splicing. Therefore it is plausible that transcription factors can regulate splicing
outcomes. We provide evidence for this hypothesis by studying regions of open
chromatin in retained and excised introns. Using deep learning models designed to
distinguish between regions of open chromatin in retained introns and non-retained
introns, we identified motifs enriched in IR events with significant hits to known
human transcription factors. Our model predicts that the majority of transcription
factors that affect intron retention come from the zinc finger family. We demonstrate
the validity of these predictions using ChIP-seq data for multiple zinc finger
transcription factors and find strong over-representation for their peaks in intron
retention events.
Availability: Source code available at https://github.com/fahadahaf/chromir

1. Introduction

Alternative splicing is a widespread regulated phenomenon that enables a single
gene to encode structurally and functionally different transcripts [1,2]. The primary
forms of alternative splicing are exon skipping, intron retention (IR), and alternative
3′ and 5′ splicing. While exon skipping is well studied, intron retention remains an
under-appreciated phenomenon [3]. IR is the primary form of alternative splicing in
plants [4,5], and recent studies have shown it to have a high prevalence in human [6,
7]. Many disease-causing mutations are pathogenic through their effect on splicing,
often leading to IR [6,8,9]. For example, IR is associated with genetic variants with
deleterious effect on the function of tumor suppressor genes [10].

In recent years, efforts have been made to understand the regulation of IR and
the factors that contribute to it. Braunschweig et al. [7] recently published a draft
”IR splicing code”: a predictive model that uses a total of 136 features thought to be
associated with IR in mammals. These features include base composition of an in-
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tron and its flanking exons, features that describe gene architecture, and splice site
strength. This model is limited in that it ignores sequence elements that contribute
to the regulation of IR. The discovery that splicing occurs co-transcriptionally sug-
gests that chromatin state might be relevant to alternative splicing [11,12]. Recent
work provides evidence for the regulatory contribution of chromatin state to exon
skipping [13], and our labs have provided preliminary evidence for its role in regu-
lating IR in plants [14]. Open chromatin is one of the most important signatures for
the study of chromatin structure. One of the primary tools for probing open chro-
matin is through exposure of DNA to deoxyribonuclease I (DNase I), which is an
enzyme that cleaves DNA. Regions of the genome that are sensitive to its action—
DNase I hypersensitive sites (DHSs)—have been used as an indicator of chromatin
accessibility in-vivo [15]. DHSs have been used extensively to identify several types of
regulatory elements such as promoters, enhancers, silencers, and insulators [16,17].
Furthermore, when a regulatory protein binds DNA, it protects it against the action
of DNase I [18] and leaves a footprint which can be identified using DNase I-seq
data [19,20]. When it comes to alternative splicing, Mercer et al. [13] have shown
an association between DHSs and exon-skipping, reporting that higher numbers of
DHS-containing exons are alternatively spliced. Furthermore, this study reports that
DHS exons with promoter and enhancer-like features have a higher fractional over-
lap with alternative splicing. Braunschweig et al. [7] explored the co-transcriptional
regulation of splicing, reporting higher chromatin accessibility in retained introns
and that polymerase II elongation speed affects IR and vice-versa. In another work,
it has been reported that zinc finger transcription factors (TFs) have a regulatory
role in exon skipping [21]. Recently, we studied the association between chromatin
accessibility and intron retention in plants [14]. We identified potential regulatory
elements occurring primarily in the 3’ flanking exons of IR events, several of which
significantly match plant zinc finger binding site motifs. As further motivation for
considering the role of TFs in splicing regulation, we explored the frequency of mo-
tif matches for different TF families across regions of open chromatin in the human
genome. We observe that the prevalence of motif matches in human intragenic re-
gions is comparable in number to the overall number of matches in intergenic re-
gions, even without controlling for their much greater length (see Figure 1); a similar
observation was made in plants [22]. This suggests a regulatory role of TFs beyond
the regulation of gene expression.
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Figure 1. TF binding sites across the genome. (a) The number of predicted binding sites for different TF
families in the promoter, intragenic, and intergenic regions of the human genome. These counts were obtained

by training the Basset-like network [23] and analyzing the motifs learned by the network (see supplementary
methods for more details). (b) ChIP peak counts for five human zinc finger TFs in the promoter, intragenic,

and intergenic regions of the human genome.
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Deep neural networks have become the tool of choice for exploring complex phe-
nomena such as chromatin accessibility and structure [23–26]. A remarkable advan-
tage of these models is their ability to capture the underlying patterns in large noisy
datasets directly from sequence with minimal pre-processing, learning motifs of the
regulatory proteins involved as part of the training process. Deep learning has been
used in genomics for TF binding prediction [27–29], chromatin accessibility analy-
sis [23–25], prediction of chromatin structure and its modifications [30,31], identifi-
cation of RNA-binding protein sites [32,33], and alternative splicing [34–36].

In this study we demonstrate that deep learning models can distinguish with good
accuracy regions of open chromatin associated with IR from other intragenic regions
of open chromatin. By analyzing the motifs learned by the network, we find that
specific families of TFs are associated with IR events, mostly members of the zinc
finger family of TFs; results of ChIP-seq experiments for multiple zinc finger TFs in
the K562 cell line, one of three tier 1 ENCODE cell lines, support our findings for this
association. Our work provides convincing evidence for a novel role of TFs in the
regulation of IR, proposing a direction for further research.

2. Results

2.1. DHSs associated with IR can be accurately predicted from their sequences.

In order to discover the sequence elements that regulate IR via its coupling with
chromatin state we trained and evaluated deep learning models to distinguish DHSs
associated with IR from non-IR DHSs in human and assessed and compared their
performance. IR DHSs are regions in which a DHS overlapping an IR event was
detected in at least one DNase I-seq experiment in a compendium of 164 samples de-
scribed in the Methods section. Non-IR DHSs are intronic regions exhibiting a DHS
where no IR is known to occur. Our primary focus is the purely convolutional ar-
chitecture shown in Figure 2, that has demonstrated its effectiveness for predicting
chromatin accessibility by Kelley et al. [23]. The model hyperparameters were tuned
for our problem as described in the Methods section. Using this model we obtained
accuracy of 0.54 as measured using the area under the precision-recall curve (AUC-
PRC) (see Figure 3(a)). A more sophisticated model that uses a combination of con-
volutional and recurrent layers with multi-head attention achieved the same level
of accuracy (see Supplementary Figure F2). We note that both deep-learning archi-
tectures outperformed a baseline approach that uses the gkm-SVM method [37]. This
method achieved an AUC-PRC of 0.50. For additional results, including ROC curves,
see Supplementary Figure F2.

Our results were generated using a one-hot encoding of the sequence of DHS re-
gions. We note that word2vec embeddings provided a boost in accuracy, as shown in
Supplementary Figure F2. However, this came at a cost of reduced interpretability of
the models, leading to reduced ability to infer motifs associated with the learned con-
volutional filters. Therefore we chose to focus on models that used one-hot encoding
as input.

2.2. The Zinc finger family of TFs are enriched in IR events

The filters of convolutional networks can be readily interpreted as motifs. To do so,
we implemented the strategy described elsewhere [23,27] (see Methods section for
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Fig. 3. (A) The distribution of AUCs in predicting DNA protein binding sites across 38 ChIP-seq experiments with less than 10000 peaks . (B) The distribution of AUCs in predicting DNA
protein binding sites across 45 ChIP-seq experiments with more than 10000 peaks.

Fig. 4. (A) Examples of motifs detected by initial convolutional module learned by DeepBind, DeepBind-E* and ECBLSTM models for predicting DNA binding sites for CTCF, SRF and
FOS respectively( All motifs detected can be found in supplementary data***). E-values are displayed below each motif only if it matches with the known motifs for the same Transcription
Factor. Known motifs from JASPAR database are displayed on the top of the figure. (B) The histograms show the positional counts of convolutional filters activations that are considered
for extracting motifs for predicting DNA binding sites for CTCF, SRF and FOS respectively for DeepBind and ECBLSTM model ; we count the middle positions of the sequence fragments
extracted for calculating PFM.

turned out to be different from the known protein binding sites motifs,
more exploration is still required to analyze and identify what information
each component in hybrid models is learning. We hope this work will
invoke further studies on visualizing and understanding hybrid models
learned information. Eventually, we hope DeepRAM can allow researchers
achieve excellent performance in DNA and RNA sequence analysis and
help boost their understanding of protein binding mechanism.
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Figure 2. A deep learning model for predicting whether a region of open chromatin exhibits

IR. The model receives as input the sequences of intragenic DHSs labeled as associated with IR or non-IR;

the one hot encoding is processed through three layers of convolution, followed by three fully connected layers
and the output layer that predicts a binary response that indicates whether a DHS exhibits IR or not. The

convolutional filters of the first layer are used to extract Position Weight Matrices (PWMs) that are searched

against a database of known TFs.

more details). We analyzed the motifs that were derived from the convolutional fil-
ters for both the top positive and the top negative examples and searched both sets
of motifs against the Human CIS-BP TF database [38] using the TomTom [39] tool. In
case of IR DHSs, 23 motifs had significant hits against multiple known human TFs
at a q-value < 0.01. In comparison, 25 of the non-IR motifs had significant matches.
Figure 3(c) shows the top hits reported for both IR and non-IR motifs. We observe
that most of the IR motifs have significant hits in the C2H2 zinc finger family of
TFs (C2H2 ZF). Non-IR motifs on the other hand, are predominantly matched to the
Homeodomain and Sox families of TFs (see Figure 3(b)). C2H2 ZF is the largest fam-
ily of TFs and is highly active in the promoter, intergenic, and intragenic regions of
the human genome (see Figure 1). However, it is highly significant to observe its en-
richment in IR events compared to non-IR events. Zinc finger TFs have previously
been implicated in the regulation of alternative splicing [21], particularly exon skip-
ping. Here we report a role of this family in the regulation of intron retention. In what
follows we provide additional validation for the role of zinc finger TFs in regulating
IR.

2.3. TF ChIP-seq analysis supports model predictions.

To validate our findings using experimental data, we downloaded K562 ENCODE
ChIP-seq datasets for all the zinc finger TFs identified by our model, resulting in
six datasets. Using these datasets, we tested TF binding enrichment in IR vs. non-
IR events, following a strategy similar to our previous work [14]: For each TF, we
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(a) (b)

(c)

Figure 3. Classification accuracy and motifs detected by the network. (a) Precision-Recall curves

for the two deep learning architectures and the gkm-SVM. The AUC-PRC values are also provided in the

legend. (b) The distribution of TF families enriched in IR vs non-IR events. (c) The top 3 matches for the
IR and non-IR convolutional layer filters against the CISBP database. In each match, the known TF motif is

shown in the top row and the bottom row shows the CNN filter/motif. The motifs shown above the line are
associated with IR DHSs, and those below the line are associated with non-IR DHSs.

measured the overlap of its ChIP-seq peaks with IR and non-IR events and tested its
significance using the Fisher-exact test. All the TFs demonstrated highly significant
enrichment in IR events (see Table 1), validating our in-silico findings that the C2H2
ZF family plays a role in the regulation of IR.

To obtain additional insight, we plot a score that reflects the average occupancy
of MAZ and EGR1 in retained introns and compare it with the patterns observed in
non-retained introns using the same ENCODE ChIP-seq data used above, following
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(a) EGR1 (b) MAZ

Figure 4. TF occupancy profiles across IR and non-IR events. These are shown for EGR1 (a) and

MAZ (b). Binding location in each ChIP-seq peak was determined by the best match of the PWM of the

corresponding TF, and the y-axis is the TF occupancy score as described in the Methods section.

Table 1. Enrichment of C2H2 ZF TF binding in IR vs non-IR events quantified using ChIP-seq peaks of the

corresponding TF.

TF IR TF occupancy (%) non-IR TF occupancy (%) p-value
EGR1 12.51 7.16 1.27E-45
MAZ 11.42 6.06 9.75E-51
ZBTB7A 10.6 5.52 3.15E-49
SP1 3.04 1.53 7.64E-16
SP2 1.32 0.77 7.21E-06
ZNF263 1.14 0.67 2.81E-05

a method described in the Methods section. MAZ and EGR1 were chosen as the TFs
that exhibited the most significant level of enrichment in IR events. The resulting
plot, shown in Figure 4, shows that for both TFs the occupancy is higher in the flank-
ing exons of the retained introns. In contrast, in non-IR events, both EGR1 and MAZ
are preferentially bound in the intronic regions. These TF-occupancy profiles suggest
that these TFs have a role in both IR and non-IR events, but that their mechanism of
action is different in each case. Further work is needed to test this hypothesis.

2.4. Regulatory interactions between TFs in IR events

It is well known that TFs often function in tandem with each other to regulate their
targets. To extract such regulatory interactions we have recently developed a method
called SATORI to interpret deep architectures that use attention layers and extract
statistically significant interactions between its convolutional filters [40]. SATORI
uses the so-called attention matrix, which encodes relations between parts of the
sequence; subsequent analysis of the convolutional filters that are active provides a
profile of interactions between pairs of TFs that are associated with those filters. By
comparing those profiles to those in a background set of sequences, we obtain inter-
actions that are statistically significant. Using SATORI, with the negative examples
as a background set to assess statistical significance we detected over 400 TF interac-
tions in DHSs associated with IR at a significance level of 0.05. The top 20 predictions
are shown in Figure 5, and the complete list is provided in supplementary table S2, A
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Figure 5. TF interactions. (a) The most frequent TF interactions in intron retention events. (b) The

distribution of distances between detected TF interactions. The dotted blue line represents the median distance
across all significant interactions.

majority of these interactions involve the C2H2 ZF family, which is expected in view
of C2H2 ZF TFs having the most hits from our model. To validate these interactions,
we searched for matches in annotated interactions in the TRRUSTv2 [41] database
that annotates TF regulatory roles and their interactions by text-mining the biomed-
ical literature. Of the interactions detected by our model, we found 23 overlapping
interactions in TRRUSTv2, which currently contains 8324 interactions. This is highly
significant, with a p-value equal to 0 in a hypergeometric test. We also obtained sig-
nificant overlap with protein-protein interactions from the HIPPIE database [42]: 17
of the detected interactions had support in HIPPIE, with a hypergeometric p-value
< 1e − 52. The interactions overlapping with TRRUSTv2 and HIPPIE database are
listed in Supplementary table S3 and S4, respectively. We also looked at the average
distance between motifs predicted to interact and found that TF motifs preferentially
interact in proximity, with a median distance of 120 bp, which is significantly less
than what we would expect by chance (Mann-Whitney U test, p-value = 3.65e− 13).
These results suggest that regulation of IR is orchestrated by complex interactions
among TFs, predominantly from the C2H2 ZF family.

3. Discussion

In our motif analysis we found that the C2H2 zinc finger family of TFs has a strong
association with IR events: More than 50% of all motifs associated with IR have sig-
nificant hits to C2H2 ZF TFs. This is consistent with previous work reporting that
zinc finger TFs influence exon skipping [21]. This suggests that the C2H2 ZF family
plays an important role in the regulation of alternative splicing in general.

To validate our predictions on the association of these TFs with IR, we used ChIP-
seq data for multiple zinc finger TFs: MAZ, EGR1, SP1, ZBTB7A, SP2, and ZNF263.
We observed much higher occupancy of these TFs in IR events in the K562 human
cell line, validating the model’s predictions. We also found that MAZ and EGR1 have
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specific preferences on where to bind within an IR/non-IR event: We observed that
both TFs have stronger binding preference in the flanking exons of retained introns
(see Figure 4). In contrast, in non-IR events, MAZ and EGR1 exhibit increased bind-
ing in the intronic region. This suggests a different mode of action for these TFs in IR
vs non-IR events. Robson et al. [43] have reported that MAZ4 elements that contains
four copies of the MAZ binding sequence influence alternative splicing [43]. More
recently it was demonstrated that MAZ acts in conjunction with CTCF to remodel
chromatin to affect changes in alternative splicing [44]. They have also demonstrated
that like CTCF, MAZ can slow the elongation of RNAPII and affect splicing outcome.

There are multiple potential mechanisms by which TFs can affect co-
transcriptional splicing. First, TFs are known to be critical in establishing chromatin
state, which in turn can regulate alternative splicing by a purely kinetic model of
the coupling between transcription and splicing whereby higher speeds of transcrip-
tion in regions of accessible chromatin give less time for the spliceosomal machinery
to recognize and splice those introns co-transcriptionally [11,45,46]. An alternative
explanation of this phenomenon is that accessible chromatin is a mark of binding
of TFs or other regulatory proteins that recruit splicing factors directly or indirectly
through chromatin modifications to affect the outcome of splicing [7]. Wet-lab exper-
iments are required to explore these hypotheses and provide more detailed informa-
tion on how TFs affect intron retention, and splicing more generally, in a condition-
dependent manner.

Our model of retained introns considered only chromatin accessibility. There are
other aspects of chromatin organization that can be considered: histone modifica-
tions and DNA methylation. Through their effect on chromatin organization, histone
modifications impact the speed of RNAPII elongation and thereby alternative splic-
ing [45]. Luco et al. [47] proposed the adaptor system model whereby DNA-binding
proteins recognize a histone modification and recruit a splicing regulator that affects
the splicing outcome (see also [48]). Methylation-dependent alternative splicing has
been shown to be widespread [49], and its patterns have been observed to delineate
exons and their boundaries [50,51]. Histone modifications and methylation patterns
can thus provide another layer of information relevant to the regulation of IR.

In this work we focused on the local coupling of accessible chromatin and IR. We
expect that non-local interactions through chromatin loop anchors like those that
allow enhancers to affect promoter activity [52], can affect IR; evidence for their im-
pact on exon skipping has recently been reported in human [53]. Recent work has
demonstrated the role of a specific enhancer within a chromatin loop and its role in
regulating alternative splicing [54]. Future work can incorporate them in the context
of a comprehensive model of alternative splicing.

4. Conclusions and Future Work

Using deep learning to model intragenic DHSs allowed us to explore the regulatory
elements that are predictive of IR in an unbiased fashion and identify TFs as key
contributors to the regulation of IR. Further experimental work is required in order
to validate the role of TFs in IR regulation. This will be supported by extensions
of the model that allow condition-specific prediction of the IR state of regions of
open chromatin, and create the chromatin-mediated IR code. Furthermore, the mod-
ularity of deep learning will allow the extension of the model to incorporate other
sources of data indicative of chromatin state such as histone modifications. Much
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in the same way chromatin loop anchors allow enhancers to affect the activity of
promoter regions and affect gene expression [52], there is recent evidence for their
impact on exon skipping [53]. Therefore we expect that chromatin interaction infor-
mation captured by Hi-C or Micro-C data is likely to improve the model and provide
a more holistic view of IR regulation. Such data can be incorporated in a deep learn-
ing model with modules that use graph convolution; recent work has shown the
effectiveness of this approach for modeling various aspects of chromatin state [55].

5. Methods

5.1. Data collection, processing, and representation

We use DNase I-seq data from 125 human immortalized cell-lines and tissues from
the ENCODE database [56] and 39 cell types from the Roadmap Epigenetics con-
sortium [57] as processed by [23]: every DNase I-seq peak is extended to a length
of 600bp around its midpoint and adjacent peaks are greedily merged until no two
peaks overlap by more than 200bp. For our analysis we focus on over a million DHSs
that occur within genes.

Next, we extracted IR events from the Ensembl GRCh37 (hg19) reference annota-
tions, utilizing code from SpliceGrapher [58] and iDiffIR [59]. In total, we identified
58, 305 unique IR events out of which, 15, 400 had overlapping DHSs. These consti-
tute our positive examples. We use a strict criterion requiring the DHS to overlap the
retained intron, i.e., DHSs overlapping only the flanking exons do not qualify. All
other intragenic DHSs that did not overlap an IR event are labelled as negative ex-
amples. The number of negative examples was roughly twice the size of our positive
set.

We use two methods to transform the sequences into input for the neural network:
one-hot encoding and sequence embedding. For one-hot encoding a sequence is rep-
resented as a 4 × N matrix where N is the length of the sequence. Each position
in the sequence is represented by the columns of the matrix with a non-zero value
at a position corresponding to one of the four DNA nucleotides. To represent a se-
quence using embedding we first decompose it into overlapping k-mers of length
k, and then use a word2vec model [60] to map each k-mer into an m-dimensional
vector space. This gives us an embedding matrix of dimensions (N − k + 1) × m.
This representation is designed to preserve the context of the kmers by producing
similar embedding vectors for k-mers that tend to co-occur. Recently in a TF binding
site prediction task within genomic sequences, it has been shown that in contrast to
one-hot-encoding, k-mer embedding representation of the input leads to improved
model performance [61].

5.2. Network architecture

We investigate several network architectures to predict chromatin accessibility in IR
events with the goal of understanding its chromatin-mediated regulation. The pri-
mary network element, a one-dimensional convolutional layer, scans a set of filters
against the matrix representing the input sequence. Formally, we can express the
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convolution operation as:

xi,j =

A−1∑
a=0

B−1∑
b=0

W j
a,bXi+a,b, (1)

where X is the input matrix, i is the current output index, and j is the index of the
filter. W is the weight matrix with size A × B where A is the length of the filter
(window size) and B is the number of input channels: 4 for DNA one-hot encoding,
d in case of word2vec embeddings, and number of previous layer filters in case of higher
convolutional layers. The output of a convolutional layer is produced by applying a
non-linear activation function to the result of the convolution operation. We use the
Rectified Linear Unit (ReLU) which is given by:

f(x) = max(0, x). (2)

Next, the size of the output is reduced by max-pooling where the maximum value
in a window of a pre-determined size is selected. This reduces the input size for the
next layer and also leads to invariance to small shifts in the input sequence.

Another feature that we explore in our model are recurrent layers. RNNs have an
internal state that enables them to capture distant feature interactions in the input
sequence. Specifically, we employ a bi-directional RNN with Long Short-Term Mem-
ory (LSTM) units [62]. In a bi-directional RNN, a forward and a backward layer are
used that traverse the input in both directions, improving the model’s performance.

We also incorporate a multi-head self-attention layer in our deep learning model.
Attention is a powerful feature in that it can model dependencies within the input
sequence regardless of their distances [63]. By doing so, it guides the network to
focus on relevant features within the input and ignore irrelevant information. Our
implementation uses code we have developed for the SATORI method [40].

5.3. Network training and evaluation

As mentioned in the previous section, we explore several network variants with
different layers and features. The primary architecture used for the task at hand is
shown Figure 2 (see supplementary materials for the summary of other architectures
we explored). First the data is split into training, validation, and test sets with 80%,
10%, and 10% of the total data, respectively. Next, using the training and validation
sets, we tune the network hyperparameters by employing a semi-randomized grid
search algorithm that uses a 5-fold cross validation strategy. In case of the Basset-like
model variant, we started with the hyperparaemters reported in [23] and fine-tuned
their values. The optimized hyperparameters are summarized in supplementary ta-
ble S1. To evaluate the model and the motif extraction analysis described later in this
section, we use the test set. To assess model performance, we use the area under the
ROC curve (AUC-ROC) and the area under the Precision-Recall curve (AUC-PRC).

5.4. Gapped kmer SVM

As a baseline we used the large-scale gapped kmer SVM (gkm-SVM), called the LS-
GKM [37]. This version can handle bigger datasets (50k-100k examples) and exhibits
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better scalability. We run the package with the following parameters: −m 20000 and
−T 16 which specify the size of the memory cache in MB and number of processing
threads, respectively.

5.5. Motif extraction and analysis

To interpret the deep learning models, we extracted sequence motifs using the
weights (filters) of the first convolutional layer, similar to the methodology described
by Kelley et al. [23]. We select the positive examples (DHSs overlapping IR events)
with model prediction probability greater than 0.65. This cutoff is chosen as a trade-
off between the number of qualified examples and confidence in the prediction. For
the negative examples, we used a cutoff value of less than 0.35. Next, for each fil-
ter we identify regions in the set of sequences that activated the filter with a value
greater than half of the filter’s maximum score over all sequences. The highest scor-
ing regions from all the sequences are stacked and for each filter, a position weight
matrix is calculated using the nucleotide frequency and background information. We
generate the sequence logos using the WebLogo tool [64]. The resulting PWMs are
searched against the human CIS-BP database [38] using the TomTom tool [39] with
distance metric set to Euclidean.

5.6. TF ChIP-seq analysis

We download the ChIP peaks of all the TFs that are enriched in IR events from the
ENCODE database [56]. Next, we use our previously published pipeline [14] to test
the enrichment of a given TF ChIP peaks in IR events. Briefly, we quantify the overlap
of ChIP peaks with IR events and compare them to the overlap with non-IR events.
The significance of overlap is tested using the Fisher exact test. To generate the pro-
files of TF occupancy across IR and non-IR events, we used the region of the ChIP
peak where the PWM of the corresponding TF has the highest score. PWM scoring
analysis was performed using BioPython [65].

5.7. Discovering interactions between TFs

To discover regulatory interactions between TFs we used SATORI [40], which takes
advantage of the self-attention matrix to infer possible interactions between sequence
motifs. When running SATORI, we used the default parameters with exception to the
following: --attncutoff 0.08 and --usevalidtest True. The postprocesing was
performed using Jupyter notebooks provided with SATORI.
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