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Abstract 
Most variants in most genes across most organisms have an unknown impact on the function of 
the corresponding gene. This gap in knowledge is especially acute in cancer, where clinical 
sequencing of tumors now routinely reveals patient-specific variants whose functional impact on 
the corresponding gene is unknown, impeding clinical utility. Transcriptional profiling was able to 
systematically distinguish these variants of unknown significance (VUS) as impactful vs. neutral 
in an approach called expression-based variant-impact phenotyping (eVIP). We profiled a set of 
lung adenocarcinoma-associated somatic variants using Cell Painting, a morphological profiling 
assay that captures features of cells based on microscopy using six stains of cell and organelle 
components. Using deep-learning-extracted features from each cell’s image, we found that cell 
morphological profiling (cmVIP) can predict variants’ functional impact and, particularly at the 
single-cell level, reveals biological insights into variants which can be explored in our public 
online portal. Given its low cost, convenient implementation, and single-cell resolution, cmVIP 
profiling therefore seems promising as an avenue for using non-gene-specific assays to 
systematically assess the impact of variants, including disease-associated alleles, on gene 
function. 

Introduction 
Lung cancer is the leading cause of cancer-related mortality and presents high mutation rates 
4,5. New variants are found every year in clinical studies, most of them Variants of Unknown 
Significance (VUS). Although custom-tailored assays might be created to assess the function of 
each gene in the presence or absence of each variant, this is exceptionally time-consuming. It is 
only practical for a small number of known oncogenes and tumor suppressors and is impossible 
for genes whose function is unknown. This limits an expansion of precision medicine, where 
cancer patients are tested to identify their specific mutations and ultimately receive targeted 
treatments. 
 
High-dimensional profiling assays have been proposed as an accelerant for determining the 
significance of VUS: by measuring many phenotypic properties of cells exposed to each variant 
in each gene of interest, the strategy is to capture many genes’ functions in a single assay and 
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therefore assess many variants’ impact. This strategy was successfully demonstrated using 
high-throughput transcriptional profiling in an approach called expression-based variant impact 
phenotyping (eVIP)6,7, where the transcriptional profiles of overexpressed reference genes (wild-
type) are systematically compared to their variants (mutants) to assess impact. In this case, a 
bead-based, high-throughput transcriptional profiling method called L1000 was used 8,9. 
 
We hypothesized that another profiling readout, image-based profiling, could also be used for 
variant impact phenotyping. Image-based profiling has proven powerful in more than a dozen 
applications in biological research and drug discovery 10. We sought to develop cell morphology-
based Variant Impact Phenotyping (cmVIP) as a way to inexpensively assess the functional 
impact of coding variants for many genes using the same, systematic assay. If scaled up, a 
catalog might be created of all possible variants in a given oncogene or tumor suppressor to 
help guide clinicians. 
 
Here, we present a systematic study of the ability of image-based profiling to characterize lung 
cancer variants. We conducted a high-throughput Cell Painting 11 experiment using gene 
overexpression in A549 cells to investigate the extent to which cell morphology can reveal 
sufficient phenotypic differences between reference genes and alleles. We developed deep 
learning-based computational methods to transform images of cells into high-dimensional 
phenotypic profiles and used them to quantify the impact of variants. In addition, we compare 
the performance of image-based profiling with respect to gene expression profiling to capture 
phenotypic changes induced by variants and to predict their functional impact. 

Results 

1. Cell Painting captures a diversity of gene and allele phenotypes 
We tested 375 overexpression perturbations (50 reference genes and 325 variants) in A549 
cells using the Cell Painting assay in 384 well plates with 8 replicates each (Methods). The 
overexpression construct set was previously created to test the expression-based variant impact 
phenotyping (eVIP) method 6 and contains variants previously identified by exome sequencing 
primary lung adenocarcinomas 1 as well as their reference genes. They include many known 
impactful variants as well as many variants of unknown significance (VUS). As negative 
controls, we used wells with untreated cells that we call EMPTY controls. 
 
We found that the Cell Painting assay can detect phenotypic signals for the majority of alleles 
(83.2%); this is an important first step in determining the impact of variants. We evaluated this 
as follows: after acquiring Cell Painting images for each sample (Figure 1B), we transformed 
them into replicate-level allele profiles using a deep learning-based workflow 12,13 (Figure 1A, 
see also Methods). We evaluated the quality of profiles using the percent replicating score 14, 
measured as the percentage of perturbations whose replicates consistently have higher 
similarity (reproducible signal) than random sets of perturbations; in this case 83.2% (Figure 
1C). 
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Figure 1. Cell morphology captures phenotypic variation of lung cancer alleles. A) Workflow to 
create image-based profiles by transforming Cell Painting images into quantitative, multivariate 
representations of the state of cells impacted by each perturbation (whether a reference gene or variant 
overexpressed in the cells). B) Example Cell Painting images in three experimental conditions: empty 
controls, BRAF reference gene overexpression, and BRAF V600E allele overexpression. The images are 
random crops of 200x200 pixels from a field of view (1080x1080), and each channel has been 
independently rescaled to fit the visible intensity range. C) Distribution of true replicates vs a null 
distribution of randomized replicates in this experiment, resulting in 83.2% of all perturbations having high 
self-correlation. Note that the null threshold (above which significant correlations are detected) is 0.44 in 
the Pearson correlation scale of [-1,1]. D) List of genes included in our study; some genes whose variants 
are grouped in the dendrogram are outlined. For each gene, we tested several variants. E) Correlation 
matrix between all pairs of perturbations (reference and variant overexpression) sorted according to the 
hierarchical clustering of the rows and columns. F) Dendrogram depicting groups found by the 
hierarchical clustering in the correlation matrix. The type bar coloring refers to whether the perturbation is 
a reference sequence or variant. The gene bar is colored according to the color code in D. G) UMAP plots 
of reference genes’ and variants’ perturbation-level profiles (combining data from all replicate wells). 
Clusters of reference genes and their variants are observed and four examples are zoomed in (Full-scale 
figures available at http://broad.io/cmvip/umap.html). 

 

2. Variant phenotypes cluster consistently with the corresponding 
reference gene’s phenotype 
Having determined that most reference genes and their variants’ overexpression produced a 
replicable profile, we next sought to assess the structure of the relationships (similarities) among 
those profiles. Cell Painting has been shown to recapitulate genetic pathway relationships 
between reference genes in overexpression perturbation experiments 15; here, we tested a high 
number of alleles per gene. After aggregating replicate-level profiles into perturbation-level 
profiles to obtain a high-dimensional representation of each gene and allele in our experiment, 
we clustered them.  
 
The correlation matrix (Figure 1E) displays a large set of genes and alleles that have highly 
similar phenotypic characteristics, which indicates that within this dataset most cancer variants 
share the same major phenotype. Cell Painting profiles are still able to capture subtle and 
meaningful variations between alleles as reflected in the continuous groups of reference genes 
and their corresponding variants in the hierarchical clustering (Figure 1F, color bar marked 
“gene”) and in the UMAP data visualization 16 (Figure 1G).  
 
Because the profiles of most variants tend to cluster together within each gene, as observed in 
the hierarchical clustering of the correlation matrix (Figure 1F), we conclude that the phenotypic 
variations of alleles remain closely related to the reference gene and rarely result in a major 
phenotypic disruption that places them in a different cluster. This type of closely related variation 
is consistent with previous studies in morphological and transcriptional profiling 14,17, which 
report that the major factor of variation detected by profiling platforms is first associated with cell 
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lines, then with groups of perturbations that share similar mechanisms, and finally with specific 
effects of each perturbation. 
 
Interestingly, for a subset of alleles with functional annotation, Cell Painting profiles cluster the 
data in two major parts in the correlation matrix (Supplementary Figure 1): one part is enriched 
with variants from known oncogenes such as BRAF, EGFR, KRAS, and CTNNB1, and the other 
part is enriched with variants from known tumor suppressor genes, including FBXW7, KEAP1, 
and STK11. This result confirms that morphology captures relevant cellular changes associated 
with known cancer biology. 

3. Cell morphology-based variant impact phenotyping (cmVIP) 
correctly classifies benchmark alleles 
We next tested whether the detected differences in morphology can predict each variant’s 
impact on gene function. Using the decision tree from prior expression-based variant impact 
profiling (eVIP) 6,7, we tested for significant differences in the similarity between cell 
morphological profiles of reference genes and their variants (Methods). We call this extension of 
VIP cell morphology-based VIP (cmVIP), which interprets replicate correlations among alleles 
as probability distributions that can be compared using statistical tests (Figure 2A, Methods). 
 
We found that cmVIP correctly classified 100% of the set of 20 well-characterized alleles 
(Supplementary Table 1) that Berger et al. previously used in evaluating eVIP. This set of 20 
alleles has been previously characterized using functional assays. We also predicted the 
directionality of the alleles in this benchmark set and found that cmVIP correctly classifies 16 out 
of the 20 alleles in one of two groups: change of function (COF) or gain of function (GOF) 
variant vs loss of function (LOF) variant (Supplementary Table 1). 
 
Finally, we also estimated the false positive rate of cmVIP with mock alleles using a set of high-
replicate controls. We collected 64 replicates for each of these control alleles (known to have 
high phenotypic activity), and then we sampled random groups of 8 replicates without 
replacement to simulate reference genes and variant pairs. Next, we run the cmVIP analysis to 
determine if this mock pair has an impact, and we expected a negative answer as a result. We 
ran this simulation 1,000 times and found that cmVIP falsely calls the mock alleles impactful 
6.75% of the time on average (Supplementary Table 2), close to the false discovery rate of 5% 
at which the testing procedure is controlled. These results suggest that Cell Painting can reliably 
predict the impact status of variants of unknown significance.  
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Figure 2. Morphology-based variant impact phenotyping (cmVIP) and resulting predictions in a 
diverse set of genes and alleles. A) Decision tree of the VIP algorithm 6,7, which we adopt for classifying 
variants by their Cell Painting profiles as gain of function (GOF), loss of function (LOF), change of 
function (COF) and neutral (NT) mutations. B) Example predictions by cmVIP on four alleles, one of each 
type. The correlation matrices at the top show how similar the replicates of each pair are (reference gene 
self-correlation, reference-variant cross-correlation, and variant self-correlation). The correlation matrix 
colors represent the correlation values in the same color scale as in D. The box plots below the matrices 
show the distribution of median values of the matrices’ rows (self-correlation) and columns (cross-
correlation). C) Sparkler plots display the magnitude and directionality of predictions for all alleles in a 
gene set. The x-axis represents the negative log p-value of the impact test (the larger the more impactful), 
and the y-axis represents the log p-value of the directionality test polarized by the result of the strength 
test. All alleles for these genes are displayed, but only a few are annotated to aid visualization. All the 
plots and annotations can be queried at full scale in the interactive website: http://broad.io/cmvip D) 
Correlation matrices for the groups of alleles presented in C.  
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4. The impact of variants of unknown significance can be 
predicted at high-throughput with Cell Painting 
We next explored the full set of genes and alleles. cmVIP found 258 alleles (79.3%) to be 
impactful; from these 158 alleles (48.6%) were classified as GOF or COF variants, and 100 as 
LOF variants (30.7%). We show examples (Figure 2B) and provide an online resource to 
explore all genes and their variants (http://broad.io/cmvip). 
 
Similar to eVIP 6,7, the cmVIP decision tree (Figure 2A) starts by looking at the correlation 
matrices of reference gene replicates (REF self-correlation) and variant replicates (VAR self-
correlation) as probability distributions. Given that the image-based profiling workflow involves 
control-based normalization (Methods), we expect self-correlation matrices (correlation values 
between true replicates) to have high signal when the underlying phenotype is different from 
negative controls. This interpretation applies to reference gene and variant self-correlation 
matrices (REF_REF and VAR_VAR in Figure 2B). Finally, the reference gene vs variant cross-
correlation matrix (REF_VAR) reveals how similar is the variant in question to its corresponding 
reference gene. 
 
cmVIP interprets statistically significant changes in these three distributions of similarities 
among replicates in a biologically meaningful way. For instance, CTNNB1 has a relatively low 
signal in its reference form (REF_REF median signal strength = 0.30, Figure 2B), meaning 
overexpressing it in cells changes their morphology only marginally. A gain-of-function (GOF) 
variant in this gene (e.g. CTNNB1 S37C in Figure 2B), by contrast, yields a relatively stronger 
signal (VAR_VAR median signal strength = 0.50, Figure 2B) and is different from the reference 
(REF_VAR median signal strength = 0.25). Loss-of-function (LOF) variants, on the other hand, 
are usually characterized by alleles with a weak phenotype, relative to a reference that has a 
strong phenotype (e.g. KEAP1 G333C, Figure 2B). Change-of-function variants show strong 
phenotypes for the reference gene and variants, and they differ from each other (e.g. KRAS 
G12V, Figure 2B). Finally, neutral mutations show high similarity between the reference gene 
and variant, indicating no detectable phenotypic change (e.g. FBXW7 P620R, Figure 2B).  
 
The statistical tests of cmVIP provide p-values for such differences, which can be visualized to 
compare the impact and directionality of a group of variants using sparkler plots (Figure 2C). 
These show, for example, that the KEAP1 and STK11 alleles tested in our study mainly present 
a LOF or COF variant pattern; BRAF alleles have a GOF behavior, while CTNNB1 and EGFR 
alleles present a diverse range of GOF, COF, and LOF variants. 

5. Cell Painting reveals allele heterogeneity at single-cell 
resolution 
Image-based profiling inherently offers single-cell resolution while being the lowest cost even 
among bulk profiling methods. We investigated whether single-cell morphological profiling might 
provide insights into the heterogeneity of allele subpopulations or other phenotypic mechanisms 
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that cannot be observed using bulk-level data 18. We extract single cells from Cell Painting 
images using the seeded-watershed segmentation algorithm and then compute deep learning 
feature embeddings for each one individually (Methods). The feature representation of single 
cells has been transformed using a spherizing transformation with respect to a set of 1.5 million 
negative control cells to minimize the impact of technical variation across batches. 
 
We found that single-cell data visualizations for each allele allow qualitatively observing cell 
heterogeneity and the relationship among cells overexpressing a particular allele relative to its 
reference gene counterpart. For example, the two BRAF alleles in Figure 3 (V600E and W450L) 
were classified as impactful GOF variants using the cmVIP algorithm: both showed a strong 
phenotype in the variant replicate correlation matrices compared to the reference gene, whose 
replicate correlation was weak (Figure 3A,D). When looking at single cells in reduced-
dimensional space (Figure 3B,C), we observe that each alleles’ phenotypes move to different 
regions of the phenotypic space compared to the reference gene. These two different regions 
are not exclusive of these two alleles; they are also occupied by other BRAF variants (W450L is 
similar to H574N and D594H, while V600E is similar to L485S, K601N, and H574Q; interactive 
website http://broad.io/cmvip/variants/BRAF_p.W450L/). This suggests different mechanisms 
between the two groups of alleles; in fact, it is well-known that V600E and other constitutively 
activating alleles have different behavior than W450L and other variants of the same gene 19–21. 
 
We quantify and summarize these variations in single-cell states using graph analysis and 
nearest neighbors (Methods), which can be observed in the Venn diagrams (Figure 4E,F) that 
summarize single-cell counts that have shared phenotypes (Methods). UMAP plots that allow 
single cell visualizations, as well as the corresponding Venn diagrams are available for all the 
variants in our study at http://broad.io/cmvip. 
 
 

 
Figure 3. Single-cell heterogeneity of variants. Different mutations of the same gene result in different 
phenotypes. A,D) Correlation matrices and box/dot plots of bulk-level profiles for the corresponding 
alleles, as in Figure 2. These matrices are used to obtain the impact and directionality predictions with 
cmVIP. B,C) UMAP visualizations of three populations of cells, the empty control population (in blue), the 
reference gene population (in green), and the variant population (in orange). Each point in the plots is a 
single cell extracted from the Cell Painting images using segmentation. The UMAP embedding for all 
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panels is computed using a fixed sampling of negative control wells. Arrows indicate the shift in 
phenotypic space from the reference gene population to the variant population. Note that variants of the 
same gene move in different directions. E,F) Venn diagrams of the overlap among the reference gene, 
variant and control populations of cells. These counts are obtained using graph analysis in the original 
feature space (Methods). 

 
 

6. Cell Painting phenotypic variations are highly correlated with 
gene expression variations 
A subset of 160 alleles that we profiled for this study was previously profiled using 
transcriptional profiling with the L1000 platform. Given the pairs of profiles for the same 
perturbations, we investigated the extent to which phenotypic variation captured with Cell 
Painting profiles corresponds with L1000 variation. Although they are not identical, we found 
high correlation between both platforms in this subset of alleles by conducting two different 
correlation analyses (Figure 4). 
 
First, when measuring the phenotype replicability of alleles, we found a high correlation between 
the signal of Cell Painting profiles and the signal of L1000 profiles (Figure 4A). Phenotype 
replicability is defined as the median replicate correlation among true replicates of the same 
allele; high correlation values indicate that the underlying condition is detectable by the profiling 
platforms and reproducible among replicates, i.e. when an allele has a high signal in L1000 it is 
likely to be detected with high signal in Cell Painting as well. 
 
Second, we projected perturbation-level profiles of both platforms to the same latent space 
using canonical correlation analysis (CCA), which finds directions of maximal correlation 
between two paired multidimensional datasets. We found high agreement between profiles from 
both platforms when projected into the first two CCA components (Figure 4B,C). This alignment 
confirms that the relative similarities and differences observed between allele phenotypes in our 
study can be reproduced with different assays under different experimental settings, increasing 
the confidence that the signal captured by both platforms is reliable and biologically meaningful. 
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Figure 4. Correlation between Cell Painting profiles and L1000 profiles for a common subset of 160 
variants. A) Signal replicability, defined as the median pairwise correlation between replicates of the same 
allele, was calculated for each variant in the common subset in both profiling platforms. The x-axis 
corresponds to the signal strength in L1000 and the y-axis represents the signal strength in Cell Painting. 
The Spearman correlation coefficient is 0.69.  B) Canonical correlation analysis (CCA) in the 
multidimensional feature space for both profiling platforms at the perturbation level. CCA obtains a 
common latent space by finding the directions of maximal correlation between two multivariate datasets, 
allowing us to project data points from Cell Painting and L1000 in the same subspace. The axes in this 
plot are the first and second CCA directions. Points in blue are morphology profiles and points in green 
are gene expression profiles. The red lines connect two points of different modalities that represent the 
same gene or allele. C) Same representation of Cell Painting profiles (morphology) and L1000 profiles 
(gene expression) in CCA space as in B, but using independent plots for each platform.  

 
 

7. Cell Painting predictions are consistent with transcriptional 
profiling predictions 
We next explored how well cmVIP’s predictions matched known observations about cancer 
genes and alleles. Beyond the 20 benchmark genes tested above (Supplementary Table 1), 140 
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additional alleles in our study were previously characterized using transcriptional profiling via 
expression-based variant impact phenotyping (eVIP) 6. 
 
We found that eVIP and cmVIP platforms agree on the predicted impact for 123 of the 160 
alleles (76.8%) (Figure 5A). From those concordant predictions, 102 alleles were found to be 
impactful while 21 were found to be neutral. This level of agreement increases the confidence 
that both phenotypic profiling platforms are consistently quantifying relevant cancer biology in 
the underlying experiment, and also confirm that the VIP strategy generalizes well to diverse 
phenotypic readouts. 
 
Next, we evaluated the agreement between both platforms in the predicted directionality of 
impactful alleles, and we found consistency in 21 LOF variants, 29 GOF variants, and 7 COF 
variants (Figure 4B). A common disagreement appears with alleles that are called GOF by one 
platform and COF by the other (23 variants). Other disagreements are observed between LOF 
vs NT (17 variants), and COF vs NT (10 variants), which happen when one platform has higher 
phenotype strength for those alleles than the other, i.e., one platform detects the phenotype and 
the other does not. A few unexpected disagreements also appeared in 5 cases with LOF vs 
GOF directionality classifications: IDH2 K130del (CP:GOF / L1000:LOF), IDH2 S249G (CP:GOF 
/ L1000:LOF), PIK3CA E600K (CP:GOF / L1000:LOF), RIT1 R122L (CP:LOF / L1000:GOF), 
and CTNNB1 V600G (CP:LOF / L1000:GOF). These may either represent occasional technical 
errors, or cases where the function of the WT or variants allele is undetectable by one platform 
versus the other. 
 
Finally, we looked at the functional classification of genes for a few alleles in the common set 
(Figure 5C). Our set of 160 alleles in common between both platforms has not been completely 
characterized as to their GOF, LOF, COF, NT status, but many of their genes are classified as 
tumor suppressors or oncogenes. One would expect that alleles found in tumor suppressors are 
more likely to be LOF than GOF/COF whereas alleles found in oncogenes are more likely to be 
GOF/COF than LOF. We found that both cmVIP and eVIP make predictions consistent with 
these expected trends (Figure 5C).  
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Figure 5. Comparison of VIP predictions using Cell Painting (morphological profiling) and L1000 
(transcriptional profiling). Both platforms use the same underlying statistical tests of the VIP algorithm. A) 
Impact test results. The x-axis presents the negative log p-value obtained by eVIP (L1000), and the y axis 
represents the negative log p-value obtained by cmVIP. The dotted lines represent the significant 
threshold considered in this study (0.05). Each point is one allele and its color indicates the prediction 
agreement between the two platforms: green is impactful by both platforms, gray is neutral by both 
platforms, pink is impactful by Cell Painting only, and blue is impactful by L1000 only. B) Directionality test 
results. The x-axis indicates the polarized log p-value obtained by L1000, and the same for Cell Painting 
in the y axis. Each point is one allele with the inner circle colored according to the predictions obtained by 
each platform. C) Distribution of cmVIP and eVIP predictions in known oncogenes, known tumor 
suppressor genes (TSGs), or genes of unknown function. The distribution of oncogenes is enriched with 
GOF/COF calls in both platforms, and similarly, the distribution of tumor suppressor genes is enriched 
with LOF calls. 

 
 

Discussion 
Here we demonstrate that images of cells overexpressing given cancer-associated variants can 
be used to predict their impact on a diverse array of genes’ functions at high-throughput using 
the cmVIP strategy. The signal obtained from image-based profiling was sensitive to 
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morphological variations of lung cancer variants in this experiment and was useful to 
characterize and make predictions for 325 alleles. The accuracy appears comparable to that of 
transcriptional profiling, and the two platforms’ predictions are generally concordant. Resolving 
the impact of variants at high throughput has the potential to accelerate precision oncology 22,23. 
 
Unbiased cell morphological profiling based on the Cell Painting assay has been shown to be a 
powerful approach for drug discovery and functional genomics 10,24. Our work expands the 
application of image-based profiling with Cell Painting to cancer variant phenotyping, indicating 
that it might be scaled up to much larger collections of variants efficiently and cost-effectively. 
The approach may be extended from somatic variations found in cancer to investigate the 
impact of germ-line variations of unknown significance in humans. Exploring a variety of cell 
lines and examining their concordance for variant impact prediction would be particularly 
interesting. 
 
Image-based profiling provides single-cell resolution to investigate cellular heterogeneity across 
perturbations. We observed single-cell phenotypic differences between variants of the same 
gene, which could provide insights into functional differences of alleles. The richness of single-
cell variation and the ease of implementation suggests that phenotypic studies could be 
performed using image-based profiling with fewer technical replicates while maintaining the 
ability to detect meaningful morphological variations. We leave it to future research to further 
investigate particular cases where single cells reveal interesting heterogeneity patterns to 
uncover novel cancer biology, as well as potential confounders therein. 
 
In this work, we also used novel computational methods based on deep learning models to 
transform images of cells into quantitative phenotypic profiles, an approach just starting to be 
used in the field 25. The sensitivity of image-based profiling can be further increased with the 
advent of more powerful machine learning algorithms that extract precise patterns from images 
using computer vision. Our methods are open source and can be adopted for similar 
applications in the future, and we also expect contributions from the imaging community to 
develop new techniques that harness the morphology of cells for studying cellular biology.  
 
Future studies might aim to integrate imaging and mRNA data types (if both are available) to 
explore whether their predictive power increases when combined. Our results indicate that 
morphology and gene expression, as captured by the Cell Painting and L1000 assays, measure 
highly correlated phenotypic variation, which mutually confirms their ability to detect meaningful 
biological events. This suggests the possibility to model their correspondences using 
computational approaches to translate one data type from the other or to understand their 
causal relationships. Our dataset has been simultaneously used in a study to identify which 
gene expression variations correspond with which morphology variations, and vice versa 26. 
While this has been explored at the bulk level, our results and previous work based on 
scRNAseq 18 indicate that this type of analysis could be extended to understand multi-omics 
connections at the single-cell level. 
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We publicly provide all data used and created in this study, including the raw images and the 
computed profiles (Methods). Further, we provide a public portal where researchers can explore 
genes and alleles of interest to see the distribution of signal strength, impact and directionality 
predictions, VIP calls, and UMAP plots of genes and alleles (http://broad.io/cmvip/). 
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Methods 

Profiling cancer variants with Cell Painting 
Cells were grown, stained, fixed, and imaged as described in our protocol 11. Briefly, A549 cells 
are grown in 384-well format and infected  with lentiviral ORF constructs which induce over-
expression of various ORFs and alleles therein. After 96 hours, MitoTracker stain was added to 
live cells to label the mitochondria. Cells were then fixed, fixed with formaldehyde, 
permeabilized with Triton X-100, and stained with the remaining dyes to identify the nucleus 
(Hoechst), nucleoli and cytoplasmic RNA (SYTO 14), endoplasmic reticulum (concanavalin A), 
Golgi and plasma membrane (wheat germ agglutinin), and the actin cytoskeleton (phalloidin). 
Plates were imaged using an ImageXpress Micro XLS automated microscope (Molecular 
Devices). We captured images from nine fields of view (sites) per well in five fluorescent 
channels each using a 20× lens. Separate, grayscale image files for each channel were then 
stored in 16-bit TIFF format. All raw image data are publicly available at the Cell Painting Image 
Collection (https://registry.opendata.aws/cell-painting-image-collection/). 
 
The alleles in the ORF library represent a subset of those identified in an analysis of 412 
primary lung adenocarcinomas that were previously sequenced 9,25, which detected 518 
unique missense and in-frame insertions or deletions in the 50 genes prioritized in this study 26. 
In all, ORF constructs for 325 variants (and reference versions) of these 50 genes were 
successfully generated and assayed. An additional 88 constructs are included in the dataset, 
representing TP53 alleles that inadvertently had double mutations. A comprehensive description 
of the process for selecting the constructs that were analyzed is presented in Supplementary 
Figure 2. The additional alleles have been included in the dataset for completeness. Eight 
replicates were assayed for two of the plates of constructs; a third plate–comprising multiple 
replicate wells of a small number of “control” alleles–was assayed in two replicates. 
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Cell line 
A549 cells (adenocarcinomic human alveolar basal epithelial cells), RRID:CVCL_0023, were 
obtained from ATCC; they were not additionally authenticated prior to this experiment. The cell 
line tested negative for mycoplasma prior to this experiment. 

Mutated cDNA Library 
The cDNA library is identical to that described in 6: wild-type ORF constructs were obtained from 
the human ORFeome library version 5.1 (http://horfdb.dfci.harvard.edu) and used as templates 
for site-directed mutagenesis to generate mutated cDNAs in the pDONR223 Gateway entry 
vector. All constructs used in downstream analyses were validated by Sanger sequencing to 
include the intended mutation and no other identified sequence differences relative to the wild-
type construct. After sequence verification, mutated ORFs were shuttled into the pLX317 
lentiviral expression vector by LR recombination.  

Image analysis 

Illumination correction 
TIFF images were corrected for non-homogeneous illumination variation across the image field 
using a retrospective approach 27. Briefly, the method computes illumination correction functions 
by averaging all images of the same channel in a multi-well plate, followed by a median filter. 
Images in the plate are corrected by dividing their intensity values by the corresponding 
illumination correction function. For visualization purposes (e.g. example images reported in 
Figure 1), we rescale intensity values to fit the range of 255 grayscale values separately for 
each channel. 

Segmentation 
Single cell identification was performed using CellProfiler 28,29 with the Identify Primary (nuclei) 
and Secondary (cell bodies) objects functionality. This approach runs thresholding and seeded 
watershed to identify the structures of interest. The single cell analysis presented in this work 
was conducted by recording the center of the nucleus of each cell and then cropping a fixed-
size region around these coordinates (see feature extraction below). Cell masks were not used 
to isolate cells from the background. 

Feature extraction 
Feature extraction computes a numerical representation of the image content. Standard 
approaches use handcrafted descriptors such as texture or shape features 28. Although widely 
used to quantify cellular morphology, they still require careful hyperparameter tuning to get high-
quality representations, and, due to the high variability in the acquisition process, different 
datasets require custom adjustment. In contrast, representation and deep learning methods aim 
to automatically find transformations that yield a compact and meaningful representation based 
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solely on image pixels. Previous empirical exploration showed promising results using deep 
learning models trained in the natural images and then using them to extract features from 
cellular images 12. Motivated by this and the success of transfer learning in computer vision 
applications, we use a pre-trained EfficientNet neural network 30 to obtain embeddings for Cell 
Painting images. 
 
First, we compute a feature vector that represents the content for each segmented cell. 
Bounding boxes are centered around the center of segmented cells and cropped to 128x128 
pixels, and re-scaled to 224x224 pixels to match the expected input of EfficientNet B0. We 
process each of the five Cell Painting channels independently as if they were separate RGB 
images by replicating their grayscale values in three channels and then running them through 
the EfficientNet. We keep the feature vectors of the second-to-last layer, which produces a 
1,280 dimensional representation for one image, and then concatenate the five vectors (one per 
channel), generating 6,400 features to represent a single-cell profile. This process was 
executed using the DeepProfiler open source tool (https://github.com/cytomining/DeepProfiler). 

Image-based profiling 
In general, we followed the image-based profiling best practices defined by the community for 
transforming images into quantitative readouts 31. More specifically, in order to get perturbation-
level (or bulk-level) profiles, we first aggregate single-cell profiles into replicate-level (or well-
level) profiles by computing their mean, and then aggregate replicate-level profiles by computing 
their median. In our study, we conducted a multi-level analysis of image-based profiles including 
perturbation-level profiles to verify associations among alleles and with gene expression data; 
replicate-level profiles to make impact and directionality predictions using the cmVIP algorithm; 
and single-cell level profiles to explore phenotype heterogeneity. 

Data normalization and batch correction 
As is the case in many biological experiments, imaging assays may also be prone to nuisance 
variation due to technical artifacts. We used negative control spherizing to correct for batch 
effect biases, which has shown to be effective in other studies 13,14,32. The spherizing transform 
used in this work makes the assumption that negative controls sampled from different batches 
ought to be similar to each other in the biological sense, and any deviations from this normal 
looking phenotype is rather technical. Therefore, by finding a new embedding space where 
controls have roughly the same amount of variation in every dimension, the patterns of interest 
naturally emerge while batch effects are minimized. This is the same principle used in the 
Typical Variation Normalization (TVN) transform 13. 
 
Spherizing is achieved by computing a singular value decomposition of the covariance matrix of 
control profiles and then scaling all the directions of the orthogonal basis by the inverse of the 
corresponding eigenvalues  33. The rescaled dimensions define a new representation space 
where large variations (usually associated with nuisance variations) are reduced, and rare 
variations (usually phenotypic variations) are amplified. We calculated the transformation matrix 
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using control samples at the replicate-level, and used it to project all other perturbation profiles 
in our experiment into the corrected feature space. The spherizing transform has a 
regularization parameter for safely inverting the eigenvalues of the covariance matrix, which 
was set to 0.01 in our analysis. 

Cell morphology-based Variant Impact Phenotyping (cmVIP) 
Our procedure closely follows the eVIP algorithm 6,7. For any given variant and its corresponding 
reference gene, cmVIP estimates the impact and directionality of the variant based on three 
correlation sets: 1) variant self-correlation: median correlation values in the rows of the replicate 
correlation matrix of the variant, 2) reference gene self-correlation: median correlation values in 
the rows of the replicate correlation matrix of the reference gene, and 3) reference-variant cross 
correlation: median correlation values in the rows and columns of the correlation matrix between 
variant and reference gene replicates. 
 
cmVIP follows the rule-based decision tree depicted in Figure 2A. The first stage determines if 
there is a statistically significant difference between any of the three correlation sets using the 
Kruskal-Wallis test, which is a non-parametric test. If the test rejects the null hypothesis, i.e. 
there is a difference, then the variant is considered to be impactful, otherwise, the variant is 
considered to be neutral. 
 
For impactful variants, cmVIP determines its functional directionality by running a Wilcoxon 
statistical test on variant self-correlations vs reference gene self-correlations. If the test rejects 
the null hypothesis, i.e. there is a difference between variant and reference gene, then their 
medians are directly compared. If the median of the variant is higher than the reference one, we 
predict it is a gain-of-function variant, otherwise, we call it a loss-of-function variant. In case that 
the Wilcoxon test fails to reject the null hypothesis, i.e. there is no difference between variant 
and reference, we predict it is a change-of-function variant. 
 
The Benjamini-Hochberg multiple-hypothesis correction procedure is used to control the false 
discovery rate (FDR) of each step to be less than 5%. 

Single-cell analysis 
We used single-cell profiles to explore phenotypic differences between variants of the same 
reference gene. The first step before using single-cell profiles for quantitative analysis was to 
spherize the control distribution at the single-cell level (see Data normalization and batch 
correction for more details). To accomplish this, we used approximately 1.5 million single-cell 
profiles taken from all the 320 control wells in our experiment to compute the spherizing 
transform. Then, we projected all other single cells coming from overexpression perturbations in 
the corrected space. The regularization parameter used for spherizing single cells was set to 
0.01 (same as in the aggregated profiles case). 
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Corrected single-cell profiles were then used to compute visualizations using the UMAP 
projection one gene at a time, including the reference gene and all its available variants. We 
observed that, when coloring single cells in this UMAP visualization with plate identifiers, the 
different replicates are well mixed and integrated (random coloring patterns, see 
http://broad.io/cmvip for examples). By computing visualizations for all alleles of the same gene 
at the same time, we can also qualitatively assess the relative differences among their 
phenotypes. We used the UMAP algorithm default parameters in their Python implementation in 
all cases to reveal the structure of the feature space in the most unbiased way possible. 
 
Beyond qualitative single-cell analysis using UMAP visualizations, we used graph analysis 
based on nearest neighbors to objectively quantify the overlap between populations of cells in 
the original feature space. In this analysis, we first created a five-nearest neighbor graph using a 
sample of 15,000 single cells coming from three populations (5,000 from each): reference gene, 
variant and negative controls. The sample from each population comes from a mix of all 
replicates. In this graph, we proceed to classify the phenotype of single cells in one of seven 
categories: 1) pure reference gene phenotype, 2) pure variant phenotype, or 3) pure control 
phenotype, if all the five nearest neighbors are from one of these three populations. 4) Shared 
reference-variant phenotype, 5) shared reference-control phenotype, or 6) shared variant-
control phenotype, if the five nearest neighbors are a mix of these two populations. Finally, 7) 
combined phenotype, if the five nearest neighbors are a mix of the three populations. The 
classification of single cells in these seven categories is used to create the Venn diagrams of 
single cell phenotypic overlap presented in Figure 3 and in the interactive website 
http://broad.io/cmvip.  
 

Data and code availability 
We make the data used in this project publicly available. The raw images can be downloaded 
from the AWS Open Data - Cell Painting Image Collection (https://registry.opendata.aws/cell-
painting-image-collection/ in the following path: cytodata/datasets/LUAD-BBBC043-
Caicedo/). CellProfiler was used to prepare and segment cells. The code used to process raw 
images and obtain deep learning features, which is based on TensorFlow 34, is available at 
https://github.com/cytomining/DeepProfiler/.  
After obtaining image-based profiles, all our analysis was developed using the data science 
Python ecosystem, including NumPy 35, SciPy 36, Pandas, and JupyterLab, among others. All 
our scripts and notebooks are available at https://github.com/broadinstitute/luad-cell-painting. 
Finally, an interactive website with the aggregated data, predictions for all alleles, and full 
resolution figures presented in this manuscript is available at http://broad.io/cmvip. 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.18.469171doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.18.469171
http://creativecommons.org/licenses/by/4.0/


Supplementary material 
 

 
Supplementary Figure 1. Correlation matrix of Cell Painting profiles for a subset of alleles with 
functional annotation. After ordering rows and columns according to the hierarchical clustering, 
the matrix can be divided in two parts: one enriched with oncogenes and the second enriched 
with tumor suppressor genes. Enrichment here is defined as the proportion of alleles in one 
functional category that are present in the group with respect to all alleles of that category. 
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Supplementary Figure 2. Disaggregation of the metadata in the raw dataset. The  
x_mutation_status column tags the content of each assay. It contains 594 unique values (a), 
589 (b) correspond to alleles, EMPTY (c) corresponds to the control tag, and ctl_vectors (d) are 
not considered in this analysis. Out of the 589, 430 (e) are VARIANTS and 159 (f) are 
REFERENCE alleles. We discarded 19 variants (g) without reference, and 86 TP53 Variants (h) 
resulting in the 325 alleles(i). We also discarded 74 references that do not match with any 
variant (j), ending up with 50 (k) REFERENCE alleles. The enclosed subset represents the data 
used in this study. 
 

 
Supplementary Table 1. Benchmark classification results. 
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Supplementary Table 2. Results of the false-positive analysis with mock alleles. 
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