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Abstract

Two key problems that span biological and industrial neural network
research are how networks can be trained to generalize well and to mini-
mize destructive interference between tasks. Both hinge on credit assign-
ment, the targeting of specific network weights for change. In artificial
networks, credit assignment is typically governed by gradient descent.
Biological learning is thus often analyzed as a means to approximate gra-
dients. We take the complementary perspective that biological learning
rules likely confer advantages when they aren’t gradient approximations.
Further, we hypothesized that noise correlations, often considered detri-
mental, could usefully shape this learning. Indeed, we show that noise
and three-factor plasticity interact to compute directional derivatives of
reward, which can improve generalization, robustness to interference, and
multi-task learning. This interaction also provides a method for rout-
ing learning quasi-independently of activity and connectivity, and demon-
strates how biologically inspired inductive biases can be fruitfully embed-
ded in learning algorithms.
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1 Introduction

The success of gradient descent (GD) in neural network training has made it
a standard across research settings. Much work has accordingly asked how bi-
ological learning might either approximate GD or recapitulate it’s properties
(e.g. Williams 1992; O’Reilly 1996; Xie and Seung 2004; Fiete and Seung 2006;
Guerguiev et al. 2017; Zenke and Ganguli 2018; Bellec et al. 2019; Moldwin
et al. 2021). Approximating gradients may not always enable the most desir-
able forms of plasticity however, and systematic differences between biological
learning rules and gradients may perform important functions (e.g., O’reilly
2001, Vasilaki et al. 2009). It is thus also plausible that incorporating aspects of
biological learning into artificial neural networks will both improve network per-
formance and advance our understanding of neural computation (e.g. Schrimpf
et al. 2018; Linsley et al. 2020; Jaskir and Michael J. Frank 2021).

One setting where we might expect biological rules to outperform gradient
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descent is multi-task learning; GD often produces contradictory weight changes
between tasks, which can result in the reduction of performance on one while
learning another (McCloskey and Cohen 1989; Ratcliff 1990; Flesch, Balaguer,
et al. 2018). By contrast, animals frequently learn without losing their previous
knowledge or ability. Standard workarounds for this problem with gradients in-
clude interleaving training of different tasks or applying regularizing procedures
to weight changes. Examples of the latter include inducing sparsity (Srivas-
tava et al. 2014), freezing previous learning (Kirkpatrick et al. 2017) or shaping
gradients through initial connectivity (Flesch, Juechems, et al. 2021). In com-
putational neuroscience, however, multi-task learning is often addressed with
specialized architecture, by mimicking hippocampal pattern separation (Mc-
clelland et al. 1995) or by gating activity in the prefrontal cortex, for example
(Rougier et al. 2005; Collins and Michael J. Frank 2013).

Such considerations prompted us to analyze biological learning rules un-
der conditions in which they would not approximate gradients. We considered
reward-modulated Hebbian learning rules, specifically, for several reasons. First,
they are known to perform GD in particular circumstances (Williams 1992; Fiete
and Seung 2006; Fremaux et al. 2010; Frémaux, Sprekeler, et al. 2013; Frémaux
and Gerstner 2016). Next, they fall into a class of empirically well established
forms of plasticity (Bi and Poo 1998; Dan and Poo 2004; Seol et al. 2007; Ruan
et al. 2014; ). Third, when implemented in neural networks, such rules can re-
capitulate empirical data linking physiology to behavioral learning (Michael J.
Frank 2005; Franklin and Michael J Frank 2015; Gurney et al. 2015). Finally,
because Hebbian rules are activity-dependent, they are tied to another realm
of ongoing investigation, that of so-called noise-correlations (Gawne and Rich-
mond 1993; Shadlen and Newsome 1994; Zohary et al. 1994; Averbeck et al.
2006; Adam Kohn et al. 2016). As we show below, these observations can be
unified, expanded upon, and applied to control basic properties of credit as-
signment, whereby noise correlations route and shape learning signals. This, in
turn, can allow networks to avoid interference between learning episodes and to
render representations more or less mutually available for learning.

Specifically, our results are as follows: (i) We provide a mathematical expan-
sion of reward-modulated Hebbian plasticity, allowing us to decompose learn-
ing into gradient-like and unsupervised weight updates. (ii) We show how the
gradient-like terms can be interpreted as directional derivatives of the network
loss, indicating that network noise correlations can construct gradient projec-
tions. We then develop measures of task interference and a classification of
interference categories, which we use to produce a generative model of tasks
with avoidable interference. We show that directional derivative weight up-
dates (stemming from reward-modulated plasticity with adapting noise) can
solve these tasks more efficiently than (vanilla) gradient descent. (iii) As an-
other application, we ask how information encoded in existing network weights
via prior learning might be used constructively in new tasks. We find that feed-
forward noise can be used to prioritize worthwhile search dimensions in a net-
work’s weight space, mitigating the tendency of gradients to de-specialize repre-
sentations. (iv) Finally, we show that statistically dependent noise correlations
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can modularize and gate learning signals, which allows for credit-assignment
restrictions within and between feature groups. This ”eligibility through depen-
dence” mechanism can enhance learning according to priors about relevance,
and provides a means of encoding equivalent biases in gradient algorithms.

2 Results

2.1 Three factor rules compute directional derivatives

We consider feed-forward networks xr = WrWh1
...Whn

Wix, where the W vari-
ables encode synaptic connectivity between layers. Here Wr corresponds to
the ”readout” from a final cortical layer, and the Wh∗ correspond to ”hidden
layers”. Thus we are considering linear rate-coded point-neuron models with-
out recurrence. Linearity provides tractability, a means to develop intuitions,
and a locally valid description of nonlinear cases (e.g. Saxe et al. 2014). We
consider task dependent readouts, which occur when processing is state- (e.g.
motivation or attention) dependent. This makes the collection of networks a
nonlinear system. Each multi-layer network is equivalent to a 3 layer network
xr = WrWhWix, where Wr, Wh, and Wi are relabeled to denote products of
the original factors. We label this way because we will take derivatives with
respect to Wh to compute a gradient of reward, and we presented the expanded
form to emphasize that the choice of particular hidden layer is arbitrary.

For each stimulus, activity is applied trial-wise by x(t) = µ(t) + ξ(t) at the
input. Here µ is a constant, ξ is mean zero noise, and t is the trial number,
which we suppress below. Neurons in other layers j receive additional noise, and
each layer is described by this equation (see figure 1A). The learning problem
is to match readout activity to some target by to modifying the weights Wh.
We consider reward r to be the negative mean squared error of an output, and
we let δr denote the target prediction error used to compute this. That is,
δr = µ∗

r − µr, given the target activity µ∗
r . Subscripts (including r) denote

the layers variables are associated with. The gradient of expected reward with
respect to hidden weights (derived in an appendix) is then:

∂⟨r⟩
∂Wh

= 2WT
r δrµ

T
i − 2WT

r ⟨ξrξTi ⟩ (1)

We compare the properties of weight updates given by this gradient to those
driven by reward-modulated Hebbian plasticity:

∆Wh = α(r − ⟨r⟩)(xh − ch⟨xh⟩)(xi − ci⟨xi⟩)T (2)

The first term of the Hebbian equation applies reward modulation, and the
others comprise the Hebbian product of pre- and post-synaptic activity. These
latter terms are computed relative to stimulus-specific homeostatic set-points
proportional to their average expected firing rates. The ch and cI parameters
control set-points use, and α is a learning rate. Such rules enjoy broad em-
pirical support as models of synaptic learning; examples include dopaminergic
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modulation of spike-time-dependent plasticity (Shen et al. 2008; Ruan et al.
2014; Frémaux and Gerstner 2016) and plasticity in basal ganglia models of
behavioral reinforcement learning (Michael J. Frank 2005; Gurney et al. 2015;
Franklin and Michael J Frank 2015).

Prior work has shown (2) is equivalent in expectation to (1) under specific
conditions (Williams 1992), whereas the general case of (3) was not considered.
We are interested in this general case, and we show below how the resulting
updates function analytically. In later sections, we demonstrate the implications
of our results via simulation. Additional details on our calculations can generally
be found in our supplements.

Expanding (2) into terms, taking an expectation over trials, and defining
β = 1− c for compactness allows us to write ⟨∆Wh⟩ as a sum over products:

⟨∆Wh⟩ = α
∑
jk

⟨ajbk⟩ (3)

The terms aj and bk come from two sets, and the sum ranges over all pairs:

aj ∈ {2δTr ξr, −ξ2r , ⟨ξ2r ⟩}
bk ∈ {βhβiµhµ

T
i , βhµhξ

T
i , βiξhµ

T
i , ξhξ

T
i }

These equations generate a number of interesting algorithms as special cases.
For example, if we take βh = 0, βi = 1, and specify that the noise is Gaussian,
then the sum is comprised of terms {a1, a2, a3}×{b3, b4}, which simplify to give:

⟨∆Wh⟩ = 2α⟨δTr ξrξhµT
i ⟩ − 2α⟨ξ2r ⟩⟨ξhξTi ⟩ (4)

This equation has a similar structure to (1), where the first term contains the
output prediction error δr and the average input µT

i , and the second is deter-
mined by noise alone. It simplifies to the first term there when higher order
noise components are neglected, input and endogenous output noise are zero,
and the noise is full rank, isotropic, and uncorrelated. This special case was
shown by other means in Williams 1992.

The noted special case follows a gradient because noise performs a sampling-
based exploration of possible weight changes. Updates orthogonal to the gradi-
ent then cancel one another. This observation leads us to consider how struc-
tured noise can focus weight updates along useful dimensions. To do so, we
decompose each layer’s noise into components originating there (λn) and those
originating in preceding layers (ϕnk):

ξn = λn +
∑
k

ϕnk

The weight update (3) then includes a term ⟨a1(λh)b3(λh)⟩ = ⟨δTr ϕrhλhµ
T
i ⟩,

where we have further split the aj and bk according noise origin. If λh is isotropic
in the subspace it spans, this term implements gradient descent in the subspace
of the network weights given by {shµT

i |sh ∈ Range(Σλh
)}. That is, when λh
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is not full rank noise, but does have equal variance in its nonzero dimensions,
this term implements a projection of the gradient onto the noise subspace. The
projective effect is graded if we relax the isotropic assumption; non-isotropic
noise interpolates between sampling within a subspace and full-rank sampling,
and is graded according to the eigenvalues of the noise covariance (figure 1C).
Importantly, the term in question can comprise the majority of the weight up-
date if we choose β and λ terms appropriately. We show below that this can be
used to orthogonalize learning across tasks and avoid interference.

For concreteness, we refer the reader to figure 1, illustrating how terms we
discuss are related. We define d to be the column-vector component of the
Hebbian update (i.e. ⟨δTr ϕrhλh⟩), which is (geometrically) a combination of
the gradient g and the noise covariance matrix Σh. The direction d points is
determined by taking g and ”squeezing” it according to the covariance matrix,
focusing updates on dimensions spanned by the noise. As shown in an appendix,
for a network to effectively learn via these restricted Hebbian updates, it must
be possible to move along d to the solution manifold of the task, S. If noise
covariance lies in the kernel of some other task’s readout, K(W 2

r ), then we avoid
interference with that task. If networks retain knowledge of earlier tasks or have
foreknowledge of later ones, noise variance can be shrunk along their gradients.
This is reminiscent of Sanger’s classic Hebbian work (Sanger 1989) in the sense
that both orthogonalize a statistic of activity (average vs variance) in a way
that’s plausibly accomplished by inhibitory circuits.

While we’ve focused on the column spaces of synaptic weight matrices so far,
similar arguments apply to sampling the input components of the weight update
via the term ⟨a1b2⟩ = ⟨δTr ϕriµhλ

T
i ⟩. Moreover, we can obtain projected-gradient

algorithms with varying input and output filters via the term ⟨δTr ϕriλhλ
T
i ⟩.

In the latter, non-independence of noise across layers can isolate components
of inputs and hidden representations that should be mutually ”available” for
learning. Top-down activation via prefrontal cortex could be used to do so, for
example, focusing learning on specific representations’ features (e.g., Michael J.
Frank and Badre 2012; Niv et al. 2015; Stalnaker et al. 2016). Such features
could be chosen to minimize interference between multiple modalities in asso-
ciative cortex, even as full stimulus information is transmitted in firing rates.
Before addressing these cases, we return to the simple learning rule with βh = 0,
βi = 1, for which the input filters µT of the weight updates are independent
of noise. These provide the flexibility to avoid certain types of interference in
multi-task learning.

2.2 Interference arises from rank-one relationships

Interference is a property of sets of tasks whereby changing performance on one
task leads to changing performance on another (McCloskey and Cohen 1989).
To systematically evaluate the impact of weight updates on multi-task learning,
we chose to quantify the interference introduced by plasticity on several scales.
Thus we define ”microscopic interference” to occur when the same individual
weights are updated in response to multiple inputs. Changes can be of equal
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Figure 1: Noise covariance squeezes gradients along particular dimensions. (A)
Network configuration. The networks we consider are composed of input, hid-
den, and readout layers. The x terms denote layer activities, the terms λi, ξh,
and ξr are noise, and mean stimulus responses are denoted by µ terms. Layer
activation is linearly transferred via weights Wh and W i

r . (B) Contour plot of an
example weight update scenario. A gradient of reward with respect to network
weights, g, is contrasted with a directional derivative of reward, d. The gradient
points directly to the problem’s solution manifold S, but updates along d can
also be used to push weights to S. The update direction depends on the co-
variance Σh of the noise λh. The update based on g would be used by gradient
descent, whereas the update based on d is used by our reward-modulated Heb-
bian rules. (C) Elaboration on noise. When the covariance Σh is isotropic, the
modulated Hebbian algorithms estimate gradients. When it is rank-deficient,
updates are projections of the gradient onto the subspaces containing noise.
Anisotropic noise interpolates these cases. When the noise covariance is rela-
tively large in a subspace which doesn’t impact another task (the kernel of the
readout matrix for that task, K(W i

r)), interference between tasks is diminished.
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sign (constructive) or antagonistic (destructive). We define ”macroscopic inter-
ference” to occur when the directions of two sets of weight updates, considered
as vectors, make an angle different from 90 degrees. Macroscopic destructive
interference occurs when this angle is obtuse and macroscopic constructive in-
terference occurs when it is acute. We track interference in our simulations
below, along with response errors, which are cumulative indicators thereof.

To formalize interference, we need to elaborate our notion of a task. We
define a task T i to be a set of inputs Xi and associated target outputs X∗i,
along with a readout prescription W i

r . That is, as a tuple (Xi, Xi∗,W i
r). For

more considerations regarding tasks, see our supplements on interference and
solution manifolds. We define a macroscopic interference matrix M as:

M ≡ [Mjk] ≡ [(Uj , Uk)F ] = [vec(Uj)
Tvec(Uk)] (5)

The notation (·, ·)F denotes the sum of the elements in the entry-wise product
of two matrices. The vec(·) operation denotes vectorization. Subscripts j and
k denote arbitrary U matrices, and we have refrained from writing explicit
functional dependencies throughout.

This allows us to show that interference between weight updates arises from
overlapping input filters, overlapping output filters, or both, i.e., rank-one re-
lationships; since our weight updates are outer products, we can rewrite (5).
Let z denote the output filter for a given update U (meaning z = WT

r δr or
z = ⟨δTr ξrξh⟩) and let u be the input filter (meaning u = µ for the βh = 0,
βi = 1 case). We find:

M = [(Uj , Uk)F ] = [tr(UT
j Uk)] = [zTj zku

T
j uk] (6)

The first source of interference is thus input filter overlap (uT
j uk), and the second

is overlap between target output errors (zTj zk). Intuitively, interference only
occurs if weight updates modify connections from a shared set of inputs or to a
shared set of outputs, and it depends on the angles of these updates. Equation
(6) shows that, to mitigate interference, one of these pairs of vectors must be
orthogonalized. Since noise subspaces determine zj , zk, uj and uk, this can
often be done. When certain task set characteristics are known a-priori, e.g.
that the action of turning on a light switch is insensitive to elbow angle, then
such knowledge can be used. If foreknowledge is not available, noise subspaces
can be adapted online during task exposure in an iterative way, mirroring the
gradient accumulation procedure (elaborated in the supplement on interference).

2.3 Noise tuning can avoid interference

To illustrate our results, we generated and solved random task sets with inessen-
tial (avoidable) interference. This required developing an interference taxonomy
and determining conditions for producing avoidable interference, then develop-
ing a generative model of task sets to meet those conditions. These points are
addressed in appendices.
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Specifically, we simulated ensembles composed of 1000 random networks
with eight tasks comprising one input-output pair each. Hidden and input
layers were 10 dimensional and readouts scalar. Our task-set choices yield sim-
ple situations for which it is straightforward to prove the various interference
properties and develop intuitions, but more complicated linear cases are simi-
lar. Trial blocks were ordered in an arbitrary, predefined sequence, with each
task appearing 10-15 times. These simulations allowed us to compare training
with gradient descent against training with the projective algorithm described
above. For demonstration, we used fixed update step sizes and oracle noise
covariance matrices, although we verified that online schemes estimating covari-
ance during learning produce similar results (see supplement). Similarly, we
used algorithmic gradients and projections, rather than sampled ones, yielding
a conservative estimate of improvement based on geometry alone, since sample
complexity improves with noise anisotropy. Again, we verified that sample-based
weight updates produce very similar results. Both algorithmic simplifications
serve to remove subtle dependencies between parameters while leaving clear the
geometric nature of our claims.

High accuracy, meaning an MSE for each task remaining under 0.01, was
generally reached within 2000 trials, given a learning rate of 0.01 and 25 trials
per epoch. Mean cumulative error, calculated at every trial for all tasks, was
reduced by an average of 25% relative to gradient descent when using projective
updates (figure 2, panels A-D). Example learning curves and error trajectories
for a smaller network can be seen in figure 2, panels (i-iii). The qualitative
features of each task’s learning curves are the same, but error increments during
the other tasks’ training are smaller by a factor of 5. This occurs because we
used an anisotropy parameter P = 0.8, meaning that weight updates were 4
parts projective and 1 part gradient.

The generality of our approach is illustrated by performance surfaces com-
puted across different parameter sets. The first performance surface explores
the impact of P , anisotropy strength, on relative error (figure 2C), and hence
the improvement arising from the use of directional derivatives. Increasing P
from zero improves performance linearly until a value of approximately 0.8, after
which performance improvements begin to reverse. The reversal arises from our
fixed step-size; a purely projective algorithm must sometimes move at a high
angle to the gradient, inducing a performance trade off between interference
avoidance and distance moved.

Performance improvement systematically grows when baseline interference
is increased by manipulating various factors (figure 2 D-F). One such factor is
input overlap; improvement over GD increases from 20% to 60% as overlap
becomes total. Another factor is the number of tasks performed relative to the
number of dimensions in hidden and input layers. When the former is low rel-
ative to the latter, target outputs are few and high dimensional, hence roughly
orthogonal. As the number of tasks increases, performance improvement grows.
It is maximal when every dimension is used by some readout, because only
one dimension is then ”free” to solve each task. Gradients never point in this
dimension, whereas the projective updates do by construction. A final factor
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Figure 2: Performance improvement relative to gradient descent in randomly
generated networks with inessential macroscopic interference. (i - iii) Example
learning curves and cumulative errors. (A) Ensemble mean (across random
task configurations) cumulative error curves for gradient descent and directional
derivative approaches. (B) Histogram and KDE of relative performance across
tasks. Most random task sets have inherently destructive interference, mitigated
by projective updates. (C) Relative performance as a function of anisotropic
noise strength P. Red indicates the value used in other panels (P=0.8), which is
near optimal for the given number of dimensions and inputs. (D,E,F) Relative
improvement of the projective method increases as a function of destructive
interference induced by input pattern overlap (D), number of inputs relative
to network size/capacity (E), and amount of training on any single task before
switching (F).
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combines learning rates and repetitions per epoch; their product defines an
effective number of trials per epoch. When low, the tasks are effectively inter-
leaved, and improvement is negligible. When high, gradient updates produce
large conflicting weight changes, which are mitigated by directional updates.

2.4 Propagating noise reduces de-specialization

Inessential interference is a general phenomenon, which doesn’t require any par-
ticular interpretation of solution manifold geometries. In ecological scenarios,
interpretations are often natural however. Tasks frequently have structure such
as hierarchy, which we may expect to re-use neural representations. For exam-
ple, oranges are simultaneously in the class of oranges, the class of citruses, and
the class of fruits. To respond ”yes” when asked if an orange is a fruit requires
an ”or” over class elements, because one should also reply ”yes” when asked
about an apple. But disjunctions propagate gradients along all backward paths
from a target output through hidden layers in a network, even when those paths
intersect representations which should remain separate. In the fruit example,
if one suspects an apple is a fruit, and similarly regards oranges, then one can
believe apples are fruits more strongly by increasing one’s belief that an apple
is a citrus. Gradient rules drive logically equivalent weight changes, such that
GD tends to de-specialize representations.

Specifically, under gradient descent, all connections are eligible for change at
all times. One way to constrain the set of weight updates is to change the nature
of the network noise. Up until now, we have considered noise in the hidden
layer independently of noise in earlier layers. However, one important potential
application of our directional derivative arguments occurs when updates take
their direction from existing feed-forward weights. In particular, the network
weights Wh provide a natural set of directional updates to consider based on
ϕhi, the noise in the hidden layer that is carried forward from the inputs. The
same formulas for d and D can be considered with ϕhi taking the place of λh,
and can be used to avoid the de-specialization just described.
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Figure 3: Avoiding de-specialization. Task gradients in sets with hierarchical
structure degrade previously segregated representations. This is avoided when
plasticity follows a Hebbian rule with forward-propagating noise. (A) Example
categorization task. The lowest level categories are individual items, and cate-
gories form a binary tree. (B) Each categorization resolution defines a task for
which the readout matrix is constant. Task 3 can be thought of as ”identify this
object”, specified by the tuple (object 1, lemon, I4). The readout matrix is the
identity here because each object is its own object-level category. (C) Readout
weight matrices for the 4-leaf binary tree example. (D-E) Simulation results for
the example task. (D) Fractional cumulative improvement in task performance
by category depth using feed-forward noise. (E) Weight divergence between
networks using gradient and directional updates. (F) Off-diagonal weight tra-
jectories as a function of P . (G) Improvement in task performance relative to
baseline for a range of signal and noise values in the initial weights. (H,I) Per-
formance relative to gradient descent given different mixture parameters P .

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.466943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.466943
http://creativecommons.org/licenses/by-nc-nd/4.0/


To demonstrate this application, we ran a series of network simulations with
hierarchical task structures. Groups of hidden units were taken by the read-
outs to encode objects in the input, and we defined readouts for superordinate
categories including multiple objects, thereby instantiating the ”or” operations
discussed above. We further defined non-overlapping object representations as
binary vectors in the input, and initialized network weights to small Gaussian
random values. The learning task was then to correctly respond to both category
queries and object identification queries. Lastly, because forward-propagating
noise extrapolates from extant information in the weight structure, we trained
the network for several iterations on individual items using GD.

When the network continues learning with gradients, the category conditions
tend to mix processing in the hidden layer before ultimately removing these
mixed representations (figure 4, E and F). Notably, training the network with
forward-propagating noise maintains the compositional character of the hidden
representations (panels E,F), improving performance (panels D,G, and H).

As above, our illustration depends on various parameters. Most salient are
the signal and noise in initial weights and the anisotropy. Here again, a purely
projective approach is not ideal. Graded anisotropy, combining feed-forward
noise with an independent isotropic component, imparts useful flexibility in the
weight updates (figure 4, F,H) while avoiding interference between subordinate
categories (panel D). Regarding the initial weights, we find that increasing ab-
solute noise degrades performance, because the initial gradient-based training
has limited ability to remove it (panel G).

2.5 Noise correlations set eligibility through dependence

Representation de-specialization is closely related to the broader question of how
learning can be biased toward compositionality. Most objects can be described
as bundles of features, with varying statistical interdependence, and when learn-
ing a task, only some subset of these might be relevant. Nausea is more easily
associated with food characteristics than environmental cues like time of day,
for example. Generally, specific features can be preferentially attended to sup-
port directed exploration of policy space, enhancing learning and generalization
(Michael J. Frank and Badre 2012; Niv et al. 2015). In this section, we con-
sider how feature-dependent noise can work in tandem with modulated Hebbian
plasticity to facilitate such preferential learning.

When average responses are subtracted from both the input and output
vectors comprising Hebbian plasticity, input noise becomes the basis of the in-
put filter rather than the stimulus itself. Noise independence between pairs of
input and output features then makes their relation invisible to the Hebbian
learning rule, whereas dependent-noise pairs produce candidate weight updates.
Combined with layer-wise representation decompositions, networks can there-
fore ”tag” features with varying levels of eligibility for mutual learning, even
when parallel representations are active.

Mathematically, feature eligibility can be manipulated by expanding the
βh = 0, βi = 0 plasticity case according to feature-based noise terms. For a set
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of input features pi and hidden features qj , we can set input noise to
∑

i η
2
ijpj ,

and hidden noise to
∑

j ηijqi. Then private, independent noise terms ηij link
each pj to each qi. Limiting exploration of the policy space corresponds to
removing (or weakening) some of these links, e.g., by setting noise between a
priori unrelated feature categories to zero.

Technically, the square term η2ij violates the mean-zero noise assumption, but

this can be absorbed by a slightly different choice of baseline (ci = 1 − ⟨η2ij⟩ ⊘
⟨xi⟩, where ⊘ is elementwise division), as discussed in the supplement. Other
means can also accomplish the same ends. Similarly, ”setting the noise” can be
construed as either a subtle violation of linearity or via the interpretation that
there are multiple forms of activity with different transfer properties in the same
network, and an update rule that depends on some of these but not others. This
latter idea happens to be empirically true, since biological plasticity operates on
a complex mixture of action potentials, spike rates, calcium signals, etc. Again,
such considerations are elaborated in the supplement, and we return to our more
heuristic discussion now.

The reward-modulated Hebbian algorithm describing our situation arises
(roughly) from the ⟨a1b4⟩ term in equation (3). Expanding the update according
to the above noise decomposition gives:

⟨∆Wh⟩ ≈ 2α⟨a1b4⟩ (7)

= 2α⟨δTr ξrξhξTu ⟩ (8)

= 2α
∑
ij

δTr Wrqip
T
j ⟨η4ij⟩ (9)

The approximate equality here comes from neglecting higher order (bias) terms.
Updates thus decompose as a sum of gradient-like terms operating on input and
output feature vectors, and can be considered a set of simultaneous line-searches,
each defined by a ”legitimate” or ”matched” input-output pair (figure 4, A,B).

We simulated simple compositional task sets for illustration. Tasks were
constructed by generating random basis decompositions for network input and
hidden layers, then associating elements of each basis with elements of the
other. The desired input-to-hidden transformation was thus an orthogonal ma-
trix W ∗

h = BAT , with input feature vectors encoded in A and hidden ones in
B. Stimuli were generated as compositions of the basic features, and likewise
for target outputs. The number of input features per stimulus was determined
with a compositionality parameter C ∈ {1, ..., n}, where n is the network width.
This yields a set of n-choose-C potential inputs, which grows rapidly when C
is not approximately 1 or n. Therefore, we selected stimuli to form minimal
spanning sets for the features.

To perform graded feature-matching, we defined a parameter L, the ”linking
number”. Cross-layer feature dependencies form a bipartite graph, with links
between layers set by the non-zero ηij terms. Whereas GD operates on the
complete feature graph, the best projective algorithm operates only on those
input-to-hidden feature links required for the task, reducing dimensionality. The
linking number L interpolates between GD and this best projective algorithm
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by setting the in- and out-degrees of each feature vector in the hidden and input
layers, respectively.

Figure 4: Eligibility through dependence (A) Representations can be decom-
posed according to orthogonal feature sets, and subsets of features in both
layers can have dependent or independent noise with respect to one another.
Here q2 and p1 are statistically dependent, and likewise for q1, q2, and p2.
(B) Elgibility segregation. Eligibility for gradient descent is defined by activity
and can occur across any combination of features. Eligibility in the modulated
Hebbian case can be limited by noise dependence. (C) Hebbian algorithm per-
formance. Improvement results from both the large decrease in dimensionality
of the learning problem and the orthogonalization of features. Parameters are
C = 8, L = 1, and n = 10. (D) Average weight trajectories connecting features
for the gradient and projective updates, using the same parameters as C and
taking P = 0.8. ”Diag” and ”off” refer to weight groups which connect input
features to their target outputs and inappropriate ones, respectively. GD learns
cross-modal connections then removes them, whereas the projective algorithm
avoids them. (E) Performance gains increase with compositionality and linking.
GD is equivalent to the projective algorithm when the linking number is maxi-
mal (10 here). The projective algorithm improves superlinearly to its maximum,
achieved when learning is completely factorized (linking = 1).

Our simulations show improved performance, as expected from the dimen-
sionality reduction imparted by projective filtering (figure 4, panels C-E). In
particular, the projective algorithm generates much less interference, solves the
example task set more quickly, and accrues less error than GD. The impact
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of linking number shows that any reduction in dimensionality improves perfor-
mance across compositionality parameters C (fig 4E). Thus, feature matching
via noise covariance and Hebbian plasticity can drastically improve learning.

3 Discussion

3.1 Review

Biological learning, as noted above, is often discussed as an approximation to
gradient descent. Here we have developed the alternative perspective that bi-
ological phenomena, such as modulated Hebbian plasticity and noise correla-
tions, can endow networks with valuable mechanisms to adaptively shape credit
assignment. Whereas gradient descent can be considered optimal from the per-
spective of minimizing error in any given task, we have shown that inductive
biases afforded by noise and Hebbian plasticity can be leveraged to minimize
interference between tasks, to prevent de-specialization of representations, and
to bias learning toward features that are likely to be relevant in new tasks.

Specifically, we showed how noise variance interacts with synaptic plasticity
to produce different input and output filters for stimulus information in net-
works. By developing a characterization of task interference and a generative
model for tasks with certain interference properties, we showed that it is possi-
ble to shape the modulated Hebbian rules to selectively explore non-interfering
synaptic update dimensions, inducing a bias that can be manipulated indepen-
dently from network structure. Moreover, we showed that this selective explo-
ration can result from adaptive noise tuning, whereby the degree of anisotropic
noise can be used to focus learning on weight subspaces orthogonal to (or com-
mensurate with) those needed to solve additional tasks. We also provided a
thorough analysis of the task factors and network parameters in which such
performance gains are most likely to be realized.

Subsequently, we demonstrated that noise originating from feed-forward ac-
tivity could be adaptive in tasks that demand representational specialization. In
particular, we showed how the hierarchy of nested ”or” functions exhibited by
a categorization task induces gradients which tend to de-specialize neural rep-
resentations of subordinate categories. We showed that this de-specialization
is a function of the noise subspace available for estimating a gradient, and we
used information encoded in existing weights to limit the effective dimension of
that space. As such, we demonstrated one instance in which destructive task
interference could be avoided even without orthogonalizing gradients. More
generally, we demonstrated the potential value of, and a mechanism for, seg-
regating learning across feed-forward pathways when there is reason to believe
those pathways should remain segregated.

Finally, we showed how the specific interaction of learning rule and noise
structure suggests an ”eligibility through dependence” function. By decompos-
ing representations within both sending and receiving layers of a network, the
statistical dependence of the noise could be used to make subsets of features in
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the input and output mutually ”available” or ”unavailable” for learning. Of key
importance here was the compatibility of this description with the decomposi-
tion of a Hebbian learning rule into gradient projections operating on feature
pairs. By routing learning eligibility according to a-priori relevance, such a seg-
regation results in substantially reduced learning dimensionality and can greatly
improve performance.

3.2 Relation to other work

Our results provide an unexpected generalization of related noise correlation
work. Nassar et al. 2021 found that by fixing signal to noise ratios and vary-
ing noise correlation in a two-alternative forced choice task, they could improve
learning speed and weight homogeneity. Our first principles approach to study-
ing the interaction between Hebbian plasticity and noise has converged on a
new framework for understanding their results. In the terms we developed
here, their manipulation consisted of tuning anisotropy to maximize construc-
tive interference between two sub-tasks with a special geometry (elaborated in
the supplement). Our framework generalizes their results and applies to other
phenomena, including general interference, multi-task learning and eligibility
through dependence.

At a broader, conceptual scale, our learning algorithm is complementary
to other strategies in computational neuroscience, whereby interference can be
managed by changes in the network architecture (e.g., hippocampus and cor-
tex; Mcclelland et al. 1995; O’Reilly and Norman 2002; Schapiro et al. 2017).
Such strategies posit a division of labor for orchestrating complementary biases
among sub-networks of a learning agent. These sub-networks may support tar-
geted sampling via noise, and our geometric analyses may describe many neural
systems. For example, prefrontal cortical networks involving the basal ganglia
can ”gate” stimulus dimensions, providing top-down biases onto cortical and
striatal representations, thereby changing their eligibility for learning (Rougier
et al. 2005; Michael J. Frank and Badre 2012; Collins and Michael J. Frank 2013;
Franklin and Michael J Frank 2015; Stalnaker et al. 2016). However, because
these gating strategies recruit distinct neural populations across tasks, they are
unable to capitalize on possible constructive components or shared abstractions
that facilitate learning (Musslick et al. 2020, November 16). Thus, integrating
our projective algorithm into a gating framework might make both approaches
more powerful.

In basal ganglia models, opponent striatal populations, which respond in
opposite ways to dopaminergic Hebbian plasticity (Michael J. Frank 2005; Gur-
ney et al. 2015), exhibit advantages over classical RL algorithms (Jaskir and
Michael J. Frank 2021) and might be fruitfully investigated as a means of ge-
ometric interference avoidance. Moreover, recent data indicate that dopamine
conveys more than just scalar reward prediction errors (Langdon et al. 2018;
Engelhard et al. 2019; Hamid et al. 2021). We expect these graded or vector-
like RPE signals to impact policy gradients collinearly with the noise variance
changes we discuss, since both can be interpreted as assigning credit to a subset
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of dimensions (or ”experts” in the mixture-of-experts interpretation of Hamid
et al. 2021).

Additionally, we expect work on key biological phenomena, such as the large
principle component of approximately uniform firing in noise correlations (Ecker
et al. 2016; Kanashiro et al. 2017; Ni et al. 2018) to determine whether and how
faithfully our descriptions here apply to real systems. In the supplement we
elaborate testable predictions arising from our framework across several domains
of study, including work decomposing noise variance and stimulus responses
(A. Kohn 2005; A. Luczak et al. 2007; Artur Luczak et al. 2009), work on
inhibitory control of network properties (Isaacson and Scanziani 2011; Sippy
and Yuste 2013), and work on choice and stimulus probabilities (Haefner et al.
2013; Voelcker and Peron 2021, September 17; Yang et al. 2016).
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4 Supplementary material

4.1 Hebbian theories, interneurons, and noise control

Our results require some form of either online or prescriptive control of network
noise covariance, depending on how much task knowledge is taken to be known
beforehand (and its content). Because covariance is a macroscopic property, i.e.
a property of the system of neurons rather than some small subset of them, the
noise controller must have access to (and control of) most or all of the neurons’
activities. In cortex, this naturally implicates inhibitory interneurons, which are
in a unique position to integrate network information; interneurons have high
interconnectivity and exert tight control over pyramidal neurons (Gibson et al.
1999; Fino and Yuste 2011; Fino, Packer, et al. 2012; King et al. 2013; Pi et
al. 2013; Yavorska and Wehr 2016). Moreover, some interneurons are sensitive
to dopaminergic modulation, as the present analysis (hypothesizing adaptive,
interneuron based noise control) would predict. Vasoactive intestinal peptide
(VIP) expressing neurons, for example, specifically respond to reward signals
by disinhibiting functional pyramidal populations (Pi et al. 2013).

Similar ideas may apply in the striatum, where dopamine-modulated plas-
ticity is most well established (Shen et al. 2008; Yagishita et al. 2014; Ruan
et al. 2014). Local cholinergic interneurons (TANs) integrate information from
surrounding medium spiny neurons (MSNs) and reciprocally influence the de-
gree to which they are eligible for plasticity by DA signals (eg Morris et al.
2004; Franklin and Michael J Frank 2015; Cragg 2006). Orbitofrontal cor-
tex is reported to send top-down state input to TANS (Stalnaker et al. 2016),
which may therefore act on this information by modifying noise covariance in
the MSNs. Indeed, doing so could provide a complementary, dimensional elab-
oration of TANs’ hypothesized entropy-response characteristics (Franklin and
Michael J Frank 2015). Furthermore, sampling across D1 and D2 populations
could operate independently on opponent representations of costs and benefits
of alternative actions. Future work can consider how it might be constructive to
sample noise in such an opponent scheme so as to facilitate and suppress action
relationships with distinct input features.

While interneuron control of plasticity has been postulated in classical Heb-
bian literature before, this has been in the unsupervised setting, and towards
somewhat different ends. The naive Hebbian algorithm (raw pre x post synaptic
activity) requires some form of normalization to keep the weights from growing
in magnitude indefinitely, but under loose assumptions the weights converge to
a matched filter for the first principal component of the data. That is, they
converge to W ∝ q1p

T
1 , where p1 is the first principal component of the in-

put covariance, q1 = W0p1, and W0 is the initial weight matrix. Sanger’s rule
(Sanger 1989) suggests using feedback inhibition from the second layer onto
the first in order to perform Grahm-Schmidt orthogonalization over learning,
and thereby sequentially extract additional principal components. Sanger also
explored the use of competitive lateral inhibition (Rumelhart and Zipser 1985)
for separating outputs. The former idea was itself based on earlier work by
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(Oja 1982), and an adaptive covariance matrix estimation algorithm developed
by Karhunen (Karhunen 1984). An important difference between this classic
work and our predictions, however, is that we suggest inhibition shapes noise,
whereas earlier work simply required noiseless inhibition to ”turn down” activity
on certain units in a consistent, prescribed, and non-exploratory manner.

Hebbian algorithms like ours have the salient requirement of ”knowing” what
average activity and reward rates are for a given input. Previous work on con-
trastive Hebbian learning (Ackley et al. 1985), and the subsequently developed
GeneRec and XCAL algorithms (O’Reilly 1996; O’reilly 2001), provide a po-
tential means of addressing this. These latter rules are supervised algorithms
based on Boltzmann machine learning (Ackley et al. 1985). They function by
comparing evoked and ”clamped” (i.e., supervised) activity in a recurrent net-
work to generate a gradient estimate. The idea that early activity could be used
to generate a network prediction, and that later activity would provide a differ-
ential learning signal relative to this, could also be used in an algorithm such
as ours. That is, networks could generate the activity and reward baselines
necessary for comparison with trial-based outcomes at trial-time. For exam-
ple, this comparison between activity levels during expectation and outcome
is amplified by dopaminergic dynamics within striatal models of RL, driving
learning between contrasting attractor states (Michael J. Frank 2005; Franklin
and Michael J Frank 2015). Integrated with our results, this would suggest
late-emerging trial-wise noise correlations, because the early phase of the re-
sponse would be stereotyped and the latter phase would be exploratory. This
has the intriguing possibility of accounting for the recent finding that choice-
probability increases over time in rodent S1, following an early, transient, and
strong stimulus-probability (Voelcker and Peron 2021, September 17).

Finally, our work is related to research examining the integration of Hebbian
and non-Hebbian algorithms. In particular, other authors have often addressed
mixed supervised and unsupervised learning schemes (O’reilly 2001; O’Reilly et
al. 2012; Krotov and Hopfield 2019). These generally operate as regularization
schemes or as biases forcing networks to develop broadly useful and re-usable
representations. While Hebbian rules do not perform unsupervised learning in
our work, one could naturally interpolate between our case and unsupervised
learning by grading the stimulus selectivity of activity baseline comparisons and
reward modulation.

4.2 Relations to cognitive neuroscience

Differential impacts of reward signals via modulated Hebbian plasticity are also
prominent in the distinction between so called ”go” and ”no-go” striatal neu-
rons, which exhibit D1 and D2 dopamine receptors. In such a scheme, striatal
neurons learn from RPEs relative to their baseline expectation, much like the
REINFORCE algorithm, but in opposite directions. The opponency of this sys-
tem is thought to allow D1 neurons to specialize in representing benefits of an
action given the current input, whereas the D2 neurons come to represent the
cost of that action (Michael J. Frank 2005; Franklin and Michael J Frank 2015).
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The original model explored the utility of the opponency for learning complex
probabilistic classification tasks (e.g., the weather prediction task), which may
be interpretable in terms of the internal segregation of credit assignment we’ve
discussed here. Moreover, it may be productive to consider in future work how
noise can be differentially allocated to the inputs to D1 and D2 neurons to ex-
plore a range of policies in which actions can be facilitated or suppressed under
different stimulus configurations.

At a systems level, the tuning of noise parameters could be accomplished
by meta reinforcement learning (Wang et al. 2018), by gating of prefrontal
subpopulations in working memory (Michael J. Frank and Badre 2012) or by
attentional mechanisms (Niv et al. 2015). Each of these could provide a means
to focus reinforcement learning along only those subspaces in a learning scenario
that are relevant to an agent (or which satisfy e.g. non-interference criteria). In
turn, the tools we have developed to discuss and characterize task relationships,
and our characterization of policy gradient manipulations, should be broadly
portable to analyses of these systemic processes, regardless of any particular
commitment to implementational theories.

4.3 Relation to Nassar, Scott, and Bhandari 2021

As noted in the text, Nassar et al. 2021 find that noise correlations focused on the
signal dimension of a two-alternative forced choice discrimination task improve
learning speed and enhance the homogeneity of the learned network weights.
(There are other findings as well, but these are the relevant ones here.) The
learning rule used was a rate-coded, uncorrected Hebbian rule, which fits into our
framework by taking βh = 1 and βi = 1, and which itself had been introduced in
Law and Gold 2009. The discrimination task performed involved two completely
overlapping inputs (evidence for stimulus 1 and against stimulus 2, vs evidence
for stimulus 2 and against stimulus 1) and two completely overlapping readouts
(antagonistic responding). These inputs and outputs can be considered as two
tasks with essential interference and identical solution manifolds.

Notably, the paper’s aim was to explore a previously understudied aspect of
noise correlations (signal to noise ratio) and to look into Hebbian mechanisms
for generating correlation. These differ from our goals here, of understand-
ing the general relationship between noise, Hebbian rules, and gradients. As
we discovered in this work, the paper’s relevant manipulation was equivalent
to varying the projective parameter P discussed above, in order to maximize
constructive interference. This is itself equivalent to promoting sample based
gradient estimation along the true gradient dimension relative to others. In the
projective limit, every weight update then occurs strictly along the gradient, so
that every trial constitutes a gradient step (i.e. has no orthogonal component)
down the loss. Hence the improved learning speed, and weight distribution ho-
mogeneity. Nassar et al. 2021 did not characterize general features of Hebbian
rules or of noise distributions, but were interested instead in several particular
network and noise configurations that appeared to warrant consideration given
prior literature. This meant, for example, that there was no general treatment
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of any of the main elements of this manuscript, such as interference, solution
manifold geometries, uses of noise based on the Hebbian equations, etc.

4.4 Predictions

Our work suggests the following predictions and analyses: (i) Noise should be
partially exploratory, (ii) it should be factorizable, (iii) the components should
align with learning dimensions, (iv) variances and representations should co-
evolve, and (v) learning dimensions should reflect task knowledge. Addition-
ally, (vi) interneuron networks should control learning dimension, (vii) directed
sampling should reflect minimum energy network excitations, and (viii) consol-
idation and sampling mechanisms should cooperate dimensionally. Points (i) -
(v) reflect the update-sampling logic of the noise. (vi) - (vii) reflect the high
interconnectivity of interneuron networks, which suggests they can integrate
network information and determine activity dimensions. (viii) is a normative
claim for the mutual constraint of noise and consolidation, given (i)-(iii).

Elaborating, we expect activity, weights, and noise to co-evolve in a general-
ized Hebbian sense, with noise driving weights driving activity in rewarded di-
mensions. The alternative is factorized learning across neurons. We also expect
learned dimensions will be consolidated, and predict this will move representa-
tions in or out of the dimensions noise variance drives learning in (depending on
expectations of future needs). Moreover, sampling dimensions should be deter-
mined by a combination of low-energy network excitations (defined by network
weights and topology) and top-down input characteristics. The former presum-
ably reflect prior experience and the latter should represent task knowledge.
Both likely participate in tuning noise to maximize learning speed, minimize
sampling, avoid interference, and match features. Each point above requires
analysis of noise factorizations, dynamics, relations with representations, and
relations with task knowledge.

4.5 The REINFORCE algorithm

Our main results are very closely related to the classic REINFORCE algorithm.
For reference, we reproduce the specific relevant findings from Williams’ 1992
paper here. REINFORCE was originally formulated for two-layer neural net-
works with weights wij , inputs x, and outputs y, by the pair of equations:

∆wij = αij(r − bij)
∂ln(gi)

∂wij

gi = P (yi = ξ|w, x)

The quantities αij , r, and bij here are a learning rate, a ”reward” and a ”reward
baseline”. Two special cases are especially relevant to neuroscience. First, when
y is a vector of Bernouli random variables (”spikes”) with the probability of
emission determined as a logistic function applied to Wx, then (with a few
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other details determined) the algorithm takes the form:

∆wij = α(r − r̄)(yi − ȳi)xj (10)

Second, when y ∼ N (Wx,Σ), or in fact has any linear exponential family
distribution, one arrives at (up to proportionality) the same conclusion. Hence,
the results for either network construction are Hebbian algorithms, in the sense
that they depend on the Hebbian product (y− ȳ)xT . Williams established that
these algorithms are policy gradient algorithms. In particular, he showed that
the gradient of expected reward, with respect to the weights, is equal to the
expected value of the weight updates themselves. Hence, updating the weights
via a REINFORCE algorithm performs gradient descent on a reinforcement
learning problem’s loss. While Williams’ proof is done fairly abstractly, the
direct equivalence for exponential families can be seen in our appendix entries
on modulated plasticity and analytic policy gradients, where it is derived via
linear algebra and matrix calculus rather than the log-derivative trick.

4.6 Modulated plasticity with quadratic loss RPEs

In this section we derive the expected weight update under reward-modulated
Hebbian plasticity. That is, we compute the expected value of equation (2) over
trials. Equation (2) was:

∆Wh = α(r − ⟨r⟩)(xh − c1⟨xh⟩)(xi − c2⟨xi⟩)T

With reward based on mean squared error and a constant offset a, we have:

r = a− (x∗
r − xr)

2

= a− (x∗
r − µr − ξr)

2

≡ a− (δr − ξr)
2

We have used the last equation to define δr, which is the same definition found
in the text. The mean of this quantity is:

⟨r⟩ = a− ⟨(δr − ξr)
2⟩

= a− ⟨(δ2r − 2δTr ξr − ξ2r )⟩
= a− (δ2r − ⟨ξTr ξr⟩)

Hence, cancelling a terms, δ2r terms, and the zero-expectation cross term in ⟨r⟩,
the reward prediction error can be written:

r − ⟨r⟩ = 2δTr ξr − ξTr ξr + ⟨ξTr ξr⟩

These are the ai terms in the factored expectation, equation (3). This can be
interpreted as saying that the reward prediction error will be positive if either
the noise pushes the response unit activity in the right direction (via δTr ξr), or
the magnitude of the noise in the readouts ξTr ξr is smaller than the expected
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amount ⟨ξTr ξr⟩. This motivates the definition of the term ζr = ⟨ξTr ξr⟩ − ξTr ξr,
which measures the relative magnitude of readout noise, giving:

r − ⟨r⟩ = 2δTr ξr − ζr

The Hebbian term in the weight update is:

(xh − ch⟨xh⟩)(xi − ci⟨xi⟩)T = (µh + ξh − chµh)(µi + ξi − ciµi)
T

= βhβiµhµ
T
i + βiξhµ

T
i + βhµhξ

T
i + ξhξ

T
i

These are the bj terms in equation (3). Therefore, the expected weight update
is the set of ⟨aibj⟩ terms. If we specialize to the case of βh = 0, βi = 1 and take
the noise to be Gaussian, we reduce the equation to:

⟨∆Wh⟩ = ⟨α(r − ⟨r⟩)(xh − ⟨xh⟩)xT
i ⟩

= α⟨(2δTr ξr − ζr)(ξhµ
T
i + ξhξ

T
i )⟩

= 2α⟨δTr ξrξhµT
i ⟩ − α⟨ζrξhξTi ⟩

= 2α⟨δTr ξrξhµT
i ⟩ − 2α⟨ξTr ξr⟩⟨ξhξTi ⟩

This is equation (4) in the text. In moving from the second to third equation
we’ve made use of the symmetry of Gaussian distributions, so that third mo-
ments are zero. In moving from the third to the fourth, we’ve used the fact
that fourth order statistics of Gaussians can be re-written as products of second
order statistics. Before showing the conditions under which this reduces to a
gradient (section 4.8), we derive the gradient in question (section 4.7).

4.7 Analytic policy gradient for a linear network

In the simplest noise free case of a two layer network y = Wx we can perform
the following manipulations. First we expand the loss:

L(y) = (y − y∗)T (y − y∗)

= (Wx− y∗)T (Wx− y∗)

= xTWTWx− y∗TWx− xTWT y∗ + y∗T y∗

Then, with recourse to some well known formulas we find:

∇WL = W (xxT + xxT )− y∗xT − y∗xT

= 2(Wx− y∗)xT

= 2(y − y∗)xT

Thus one obtains the generalization of a one dimensional quadratic gradient to
a quadratic form. For the case involving derivatives of matrices inside products
(e.g. ∂ACADAT ), it is easier to make use of a formulation of matrix calculus
than to get things indirectly with well known basic formulas. There are several
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ways to do this, i.e. to calculate gradients of arrays with respect to other
arrays. We use the so-called ”narrow” or α-derivative, defined as DF (x) =
∂vecF/∂(vecF )T . Since we are taking the derivative of a scalar (reward) with
respect to a 2D array (a weight matrix), the α-derivative will be a vector we
can naturally reshape back into a matrix of equal dimensions with the weights.
The quadratic form defining reward is:

⟨r⟩ = ⟨a− (δr − ξr)
T (δr − ξr)⟩

We can use the chain rule and the inner-product derivative to write:

d⟨r⟩ = −2⟨(δr − ξr)
T (dδr − dξr)⟩

Hence we must compute two component differentials. To do so we make use of
the Kronecker product (⊗) relation:

AB = (I ⊗A)vec(B) = (BT ⊗ I)vec(A)

Taking the differential of the average response error we have:

dδr = d(x∗
r −WrWhWiµ)

= −Wrdvec(Whµi)

= −Wr(µ
T
i ⊗ I)dvecWh

For the response noise we have we have:

dξr = d(WrWhWiξ)

= d(Wr(ξ
T
i ⊗ I)vecWh)

= Wr(ξ
T
i ⊗ I)dvecWh

In both derivations we have made use of the Kronecker product to rewrite the
matrix product with the free variables (i.e. the terms [Wh]ij) arranged as a
vector. Assembling these pieces we have that:

∂⟨r⟩
∂(vecWh)T

= −2⟨(δr − ξr)
TWr(−µT

i ⊗ I − ξTi ⊗ I)⟩

(vec
∂⟨r⟩
∂Wh

)T = 2⟨δTr Wr(µ
T
i ⊗ I)⟩ − 2⟨ξTr Wr(ξ

T
i ⊗ I)⟩

vec
∂⟨r⟩
∂Wh

= 2⟨(µi ⊗ I)WT
r δr⟩ − 2⟨(ξi ⊗ I)WT

r ξr⟩

Un-vectorizing this using the same Kronecker product relation gives equation
(1) in the text, which we repeat here:

∂⟨r⟩
∂Wh

= 2WT
r δrµ

T
i − 2WT

r ⟨ξrξTi ⟩
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4.8 Noise decomposition and gradient projection

Important special cases of the modulated Hebbian updates occur when we take
noise in each layer to be a sum of a feed-forward term ϕ and layer-of-origin terms
λ. We can then obtain an expression for the weight change by splitting the
component expectations in ⟨∆Wh⟩. We take ϕnk to be the forward-propagated
noise from layer k to layer n and write the general form:

ξn = λn +
∑
k

ϕnk

The weight update expression is:

⟨∆Wh⟩ = α⟨(r − ⟨r⟩)(xh − ch⟨xh⟩)(xi − ci⟨xi⟩)T ⟩
= α⟨(2δTr ξr − ζr)(µh + ξh − chµh)(µi + ξi − ciµi)

T

= α(2δTr ξr − ζr))(βhβiµhµ
T
i + βiξhµ

T
i + βhµhξ

T
i + ξhξ

T
i )

There are 4 monomials here which depend on reward prediction error. Taking
βh = 0 and βi = 1 and letting the noise be Gaussian (which simplifies the ζ
term) gives:

⟨∆Wh⟩ = 2α⟨δTr (λr + ϕrh + ϕri)(λh + ϕhi)µ
T
i ⟩

+ 2α⟨(λr + ϕrh + ϕri)
T (λr + ϕrh + ϕri)⟩⟨(λh + ϕhi)(λi)

T ⟩

If we continue with the assumption that the layer-endogenous noise terms are
independent, then expectations involving different sending (right) indices are
zero. Furthermore, we can consider the case without input noise or endogenous
response noise to get:

⟨∆Wh⟩ = ⟨δTr ϕrhλhµ
T
i ⟩

= ⟨δTr Wrλhλhµ
T
i ⟩

= ⟨λT
hW

T
r δrλhµ

T
i ⟩

= ⟨λhλ
T
h ⟩WT

r δrµ
T
i

Taking λh to be full rank and isotropic makes ⟨λhλ
T
h ⟩ = I, so that we have:

⟨∆Wh⟩ = WT
r δrµ

T
i

This provides an alternative derivation of the REINFORCE algorithm, making
use of various linear algebraic manipulations in such a way as to clarify how it
can be generalized. In particular, the matrix ⟨λhλ

T
h ⟩ is a noise covariance matrix

which, interpreted as a transformation of weight space, operates to project out
any dimensions in which it is rank-deficient, and to stretch or compress other
dimensions according their variances. The various terms we have neglected
along the way can be interpreted according to the same principles - we only
neglected them because they are numerous.
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If we take βi = 0 instead, and ignore the ζ term, we have:

⟨∆Wh⟩ = 2α⟨δTr (Wrλh + ϕri)(λh + ϕhi)λ
T
i ⟩

Neglecting the feed-forward impacts of the input noise (as could be instantiated,
for example, by having different frequency-based transfer of activity through
different cortical layers), we can perform a similar manipulation as above:

⟨∆Wh⟩ = 2α⟨δTr Wrλhλhλ
T
i ⟩

= ⟨λhλ
T
hW

T
r δrλ

T
i ⟩

Now consider a decomposition of λh into components ηijqi, and λi into compo-
nents γijpj , with ηij and γij dependent only when the index pairs are the same.
Then:

⟨∆Wh⟩ = 2α⟨λhλ
T
hW

T
r δrλ

T
i ⟩

= 2α
∑
ij

⟨η2ijγij⟩qiqTi WT
r δrp

T
j

∝ 2α
∑
ij

⟨η2ijγij⟩(qiqTi )WT
r δrµ

T
i (pjp

T
j )

The last line shows that both input and output filters are now subject to projec-
tion, according to qiq

T
i and pjp

T
j respectively, and that each projected gradient

has it’s own learning rate according to the noise yoking feature pairs. Noise
can no longer be Gaussian for the ⟨η2ijγij⟩ term to be non-zero, however. If

we let γij = η2ij , the problem of vanishing skewness is resolved in exchange for
a violation of the mean-zero requirement. Intuitively, we can resolve this by
adding a correction term to the βi = 0 baseline. This effectively re-centers the
noise, and we calculate it by requiring xi − ci⟨xi⟩ = λi =

∑
η2ijpj . This gives

ci = 1 −
∑

⟨η2ijpj⟩ ⊘ ⟨xi⟩, or βi =
∑

⟨η2ijpj⟩ ⊘ ⟨xi⟩, and hence ci⟨xi⟩ must now
also be interpreted as a Hadamard product. (⊘ denotes element-wise division.)
Then we find the following, as desired:

xi − ci⟨xi⟩ = µi + (
∑

η2ijpj −
∑

⟨η2ij⟩pj)− ciµi

= µi + (
∑

η2ijpj −
∑

⟨η2ij⟩pj)− (1−
∑

⟨η2ij⟩pj ⊘ µi)⊙ µi

=
∑

η2ijpj −
∑

⟨η2ij⟩pj +
∑

⟨η2ij⟩pj ⊘ µi ⊙ µi

=
∑

η2ijpj

The first line splits xi consistently with our previous discussion, as a mean
activity plus mean zero noise, the second line substitutes our derived baseline,
the third equation results from distributing the Hadamard product of the mean,
and the fourth results from cancelling division by multiplication, element-wise.
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The result is the weight update we sought in our ”βi = 0” discussion:

⟨∆Wh⟩ = α⟨(r − ⟨r⟩)(xh − ch⟨xh⟩)(xi − ci⟨xi⟩)T ⟩
= 2α⟨δTr Wrλhλhλ

T
i ⟩+ bias

≈ ⟨λhλ
T
hW

T
r δrλ

T
i ⟩

∝ 2α
∑
ij

⟨η4ij⟩(qiqTi )WT
r δrµ

T
i (pjp

T
j )

This final line shows that the skewness problem is resolved by the quadratic noise
and baseline correction, as claimed. Notably, this was just one route to achieving
such an end, however. For example, we could have used a basic rule with a
baseline that wasn’t multiplied by average activity (i.e., we could have used
ci rather than ci⟨xi⟩ in order to side-step this technicality. We developed this
particular formulation to show that even without making seemingly unmotivated
modifications to the basic rule (as applying absolute values or departing from
the traditional mean-baseline might be construed), biological processes could
arrive at the same ultimate mathematical description.

Returning briefly to the question of ”setting noise”, we regard the manip-
ulations we have made as plausibly directed by e.g. top-down sources of layer
”endogenous” noise. Such noise could easily be ”formatted” to propagate from
the hidden layer onward, but not from the input layer to the hidden layer, such
as via the frequency dependent transfer noted above. The Hebbian rule must
obviously then listen to both noise processes in their given formats. While this
is a fairly specific hypothesis, we reiterate that the purpose of this paper is
the elaboration of the geometric relations inherent in the Hebbian weight up-
date and their potential uses. A general enumeration of routes to the same filter
analyses, or of biological mechanisms which may be suitable for generating these
routes, we leave for future work.

4.9 Interference categories from solution geometries

For a task’s solution to be reachable by directed exploration along yuT for some
y, certain conditions must be met, which induce a taxonomy of interference
categories. We define a set of tasks to have ”essential interference” if there is
no choice of subspaces along which to sample to avoid interference. We say a
set of tasks has ”inessential interference” if the task set does not have essential
interference but the gradients themselves do interfere. And we call a set ”non-
interfering” if the gradients are all orthogonal. By our definition, unsolvable
task sets exhibit essential interference, because minimizing error in one input-
output pair implies increasing error in another. Note that there are solvable
tasks with essential interference, however. These definitions are illustrated in
figure 5.

To be solvable, all component tasks’ solution manifolds must intersect. In
our case, these manifolds are flat because the networks are linear. This is
convenient analytically, and it permits extrapolating local gradient information
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into global information, but nonlinear networks are subject to similar qualitative
considerations. Here, solution manifolds are induced by readout weight kernels.
Several input-output pairs then have inessential interference when each item’s
solution space intersects with the intersection of all other items’ readout weight
kernels. Weights can thereby improve while moving within the other readouts’
kernels. Denoting solution manifolds for each task Si, these conditions are:

Si = xi∗
h + ker(W i

r)

Si ∩ (∩jker(W
j
r )) ̸= ∅

The first is the definition of a solution manifold; the output filter associated with
input i, denoted Si, comprises any activation of the hidden layer xi∗

h producing
zero error, plus any vector from the set which current readouts W i

r ignore. The
second condition states that this solution manifold must intersect the kernels of
the other tasks’ readout weights; then it can be found by moving in a direction
that doesn’t interact with those tasks.

Inessential interference is illustrated in figure 5 panel C. Solution manifolds
and readout weight kernels are shown, along with a path (green arrows) which
moves towards each task’s solution space within the other task’s kernel. Per-
forming gradient descent for one task would result in motion directly towards
that task’s solution space. This would not lie in the kernel of the other, im-
pacting performance on the second task. Panels A and B show violations of the
second condition above, meaning both exhibit essential interference.

Note that interference depends on the current weight configuration of a net-
work. When readouts are one dimensional, for example, each solution manifold
bisects the space weight space. This partitions it into regions of constant inter-
ference. Interference is also a property of task order. The gradient of reward
is always pointing towards some current solution flat, which may not be the
closest one. When network weights move from one cell of the partitioned space
into another, by virtue of following a weight update towards a non-proximal
solution manifold, the gradient for the just-crossed solution manifold changes
sign. Constructive interference with this second task then becomes destructive.
Figure 5B illustrates this.

Given the points above, we ask how noise can sample along interference min-
imizing dimensions. Prescriptive sampling requires choosing noise dimensions
in readout weight kernels, whereas an online approach can simply orthogonalize
current noise against all previously encountered gradients (which we also ver-
ified in simulation). This noise variance decrement accumulation mirrors the
gradient estimate accumulation inherent in REINFORCE like rules, is memory
efficient, and is biologically plausible. Additionally, it accords with the facts
that real neural responses to novel stimuli show decreasing variance over time,
and that networks of interneurons could tune noise at the network level via their
high inter-connectivity. Regardless of how control is accomplished biologically,
we make use of oracle kernels for each W i

r in our simulations here.
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Figure 5: Sketches of interference cases. (A) Tasks which aren’t simultaneously
solvable interfere in regions of the solution space that lie between their solution
manifolds (at minimum). Red arrows denote opposite directions of updates in
this region of the plane based on which task is being learned at a given time.
Green arrows denote constructive interference for regions of space in which both
solution manifolds lie in directions with an inner angle up to 90 degrees. (B) In
some situations, updates cannot move towards one solution manifold while mov-
ing parallel to the others. The red arrows are an example of gradient descent
moving the weights towards solution manifold S1, then back towards S2, and
finally towards S3. This illustrates how order matters, as well as how interfer-
ence is destructive in regions where angles between solution manifolds are less
than 90 degrees. (C) Inessential interference occurs when there is a dimension
in the intersection of relevant kernels along which weights can move via direc-
tional derivatives while solving the current task. In this example, a directional
derivative algorithm can follow K(W 2

r ) towards S1, then K(W 1
r ) towards S2

during consecutive training epochs in order to avoid interference. The green ar-
rows illustrate such a trajectory. (A,C) For any pair of solution manifolds, there
is a partition of the weight space into regions where gradients are destructive
(solution space angles less than 90 degrees), constructive (solution space angles
more than 90 degrees), or neither. These regions are denoted by red minus signs
and green plus signs here, respectively.

4.10 Solution manifold geometry

To determine when we have different essential and inessential interference con-
ditions, we inspect the intersection properties of generic flats in Euclidean space
(also called affine subspaces, such as lines and planes which may or may not pass
through the origin). The flats we consider are the null spaces of the readout
weight matrices, which are the spans of all vectors which a given readout matrix
sends to zero (i.e. ”doesn’t care about”). Every kernel can be written in terms
of a basis, and the intersection of kernels can therefore be written in terms of
basis relationships.

Let n denote the number of units in a network’s hidden layer. Then inputs
to the network’s readout weights have dimension n, and the basis for a given
readout’s null space is given in terms of vectors of dimension n. Let {vi1, vi2, ...vij}
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denote a set of basis vectors for each W i
r which are organized as columns in a

matrix V i, so that the dimensions of V j are (n× j). Consider j to be arbitrary,
meaning variable over the sets V i, and the vector m = [m1,m2, ...mn] to count
the number of readout kernels of each dimension, starting with 1 and ending
with n. That is, if we have a 3 dimensional hidden layer with two readouts,
one of which has a 1 dimensional null space and the second of which as a 3
dimensional null space (i.e. is the zero matrix), then the vector m = [1, 0, 1].

Now note that if there exists an intersection of these kernels, it has a co-
ordinate in each basis. Denote the coordinate vector for basis i by ai, and let
l = sum(m). Then the existence of the intersection is equivalent to the claim
that:

V 1a1 = V 2a2 = ... = V lal

Each equality between vectors here is an equality between n unknowns (the co-
ordinates), so that there are (−1+

∑
k mk)n equality constraints. On the other

hand, there are
∑

k mkk unknown coordinates, because every kernel of dimen-
sion k contributes k of them. An underdetermined system of linear equations
admits a set of solutions with as many degrees of freedoms as there are un-
constrained free variables. Hence, the set of equations above admits a solution
which can be parameterized by nf such that:

nf =
∑
k

mkk − (−1 +
∑
k

mk)n

When nf is greater than or equal to zero, such a solution generically exists.
When nf is less than zero, a solution may still exist but is not generic, meaning
any small displacement of a subspace will remove the solution. For example,
m = [3, 0] is a system of three lines in the plane. Random choices of these
lines will not intersect, and indeed nf = 3 − 2 × 2 = −1. On the other hand
if m = [2, 0] we have a random pair of lines, which will generally intersect in a
point, which is a subspace with nf = 0 degrees of freedom.

4.11 Generative model for inessential interference

The simplest form of inessential interference arises when we consider sets of
tasks which each have only one input-output pair. In this case, dimensional
considerations dictate various quantities. If we let Ki = Ker(W i

r), n be the
number of dimensions of the hidden layer, and mk be the number of kernels Ki

with dimension k, then for the intersection of the kernels to be non-empty the
following inequality must be satisfied:

n−1∑
k=1

mkk − (
n−1∑
k=1

mk − 1)n ≥ 0 (11)

To construct a task, we construct W ∗
h recursively, making use of random sub-

space elements ai ∈ ∩j ̸=iKer(W j
r ). If we use a recursion index l ∈ {1, ..., N},
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and use a random set of inputs xl then the procedure is:

W ∗
h (0) = 0 (12)

W ∗
h (l) = W ∗

h (l − 1) + alx
T
l (13)

We then set tir = W i
rW

∗
hxi, which completes the task specification for each T i.

For illustration, we would like tasks generated using this procedure to have
significant amounts of interference, and to have similar squared error magnitudes
given an initialization of the weights near zero. To this end, we take the random
al vectors to be unit length, and the xl vectors to be distributed randomly over
the unit sphere with pairwise correlations of 0.5. This means the xl vectors
are multivariate Gaussian random variables with an appropriate (non-diagonal)
covariance matrix, which we subsequently normalize.

4.12 Generative model for compositional tasks

For simulation 3, we generated orthogonal bases A and B for the input and hid-
den layers by randomly sampling multivariate normal distributions and applying
the Gram-Schmidt procedure to orthogonalize them. We regard the columns
of A as feature vectors f1...fn and the columns of B as feature vectors g1...gn.
We generated compositional input stimuli by circularly accumulating Euclidean
basis vectors ei into vectors vi according to the composition parameter C and
applying the basis trasnformation A. We did the same for outputs. For example,
if stimuli are denoted si, then in the n = 3, C = 2 case this would yield:

s1 = A(1, 1, 0)T , s2 = A(0, 1, 1)T , s3 = A(1, 0, 1)T

Juxtaposition here represents matrix multiplication, and parenthesis denote vec-
tors rather than indexing. Matching the inputs and outputs then indicates that
the target weight matrix Wh∗ = BAT , as shown in the text, because stimuli
must be back-transformed into the feature basis for the input and forward-
transformed into the euclidean basis for the hidden layer.

Linking numbers were free parameters which we used to generate projectors.
The input layer projector was constructed as P = I − (AI(:, [i]))(AI(:, [i]))T ,
where I was the identity matrix and [i] was the set of all indices to remove.
For linking number one, [i] would be every index other than that associated
with the current feature under consideration (out of all those included in a
compositional feature vector). This matrix corresponds to (pip

T
i ) in the final

equation of section 4.4 (describing input projections). A matrix for the outputs,
Q was constructed and applied similarly.

4.13 Note on step-size normalization

With respect to the biological (and indeed, in silico) implementations of our
results, it is important to note that the reward-modulated Hebbian rules are
being used to set relative weight update strengths which are subsequently made
intercomparable with gradient updates by fixing step sizes. While synaptic
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biology, with its diverse set of molecular dependencies, undoubtedly has enough
degrees of freedom to accomplish this, real weight updates are unlikely to be
fixed in magnitude. The existing literature on STDP does not appear sufficient
for determining how much the fixed step-size approximation matters however.
Nonetheless, it is also unlikely that step size depends quadratically on noise, as
simple Hebbian algorithms would dictate, because this description corresponds
with a discretized dynamical system having finite escape time to infinity. That
is, the naive algorithm is also of limited biological realism in the same regard as
ours. This of course means that both will deviate from the qualitative properties
induced by actual biological constraints to some extent. While these deviations
will even produce learning rate distortions, the approximation being made here
(and in all Hebbian work) is that they are not induced locally to the homeostatic
operating points of real networks.

From a computational point of view, fixed step sizes are highly desirable here.
This allows inter-comparability with gradient descent and avoids the patholog-
ical dynamics of super-linear state feedback. However, there is no theory-free
inter-comparison to be made between gradients and projective updates in simu-
lation 3, because different matrix norms yield different step sizes for projective
update matrices of rank greater than one. The gradient update is always rank
one, because it is an outer product, whereas the projective update is generally
higher rank because it is a sum of such products.

Two candidate matrix norms for use with the projective algorithm are the
Frobenious norm and the max norm. The two norms agree on rank one up-
dates, and therefore agree on the gradient update. The max norm is potentially
appropriate because it can be used to bound every rank-1 feature-pair’s update
to be at most equal in step size to the gradient update. On the other hand,
the Frobenious norm is also potentially appropriate because it splits the total
step size across feature-pair terms such that their sum of squares is equal to
the length of the gradient update. The degree to which synaptic update magni-
tudes interact across e.g. a cortical column is not known with enough precision
to adjudicate between these options. The max norm is more likely to be descrip-
tive of spatially well-separated pairs of neurons, whereas the Frobenious norm
is more likely to be descriptive of neurons with tight local inhibitory coupling.
Nonetheless, the use of the Frobenious norm is conservative, whereas the max
norm is ”permissive” or ”optimistic”. In simulation 3, we display results using
the max norm, because they don’t induce a transient early non-monotonicity in
the performance curve, which requires a detailed unpacking of matrix norms to
explain. Results are qualitatively similar under either norm.

4.14 Note on interference with zero weights

Our interference definitions ideally need to account for the case when a task’s
weight updates are all zero. When this occurs we can define interference as the
constraint correction applied to keep weight motion on the solution manifold
for the task with zero gradient. This recapitulates the classical mechanical
interpretation of Lagrangian optimization, and should generally be considered
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when discussing interference, but it is not especially relevant for our simulations.

4.15 Oracle vs. online sample-based quantities

To demonstrate the advantage of the directional derivative approach, in the
main text we used algorithmically computed gradients and gradient projections
(i.e., based on an oracle), which most cleanly assess how noise covariance and
Hebbian rules can be productively combined. Because real learning scenarios
may or may not have access to these projections a priori, we verified the consis-
tency of our results using numerical experiments with sample-based gradients
and with online computations of noise covariance. This was accomplished by
computing coloring matrices from the desired noise covariances, transforming
Gaussian white noise appropriately, and using the equations developed through-
out the text to sample Hebbian input and output filters on a trial-by-trial basis.
Technically speaking, we replaced trial level computations performed with or-
acles by block-accumulation loops of ”sub-trials” which accumulated Hebbian
weight updates. In theory, such ”sub-trials” could be promoted to ”trials”,
accumulated with a causal kernel such as an exponential moving average, and
interleaved (such that the task ceased to be sequential) without changing our
results. We chose the present implementation because (1) it removes com-
plications such as overlapping kernel time constants and (2) we are naturally
concerned with sequential tasks, which manifest interference in training error
over and above that in interleaved tasks. We found, as expected, that we were
able to reproduce gradient based learning curves using the appropriate isotropic
noise based gradient-estimators, and likewise for projective update curves and
estimators. Oracle covariance matrices were replaced with online adaptive ver-
sions which only orthogonalized noise according to previously encountered tasks
(i.e., had no foreknowledge). Simulation results recapitulate the findings in the
main text with only minor quantitative differences.

Specifically, to verify the interchangeable character of our gradient oracle
and Hebbian sample-based weight updates in simulation, we inspected their re-
lationships on a trial-by-trial basis and we computed the difference in cumulative
error at simulation end for an ensemble of 1000 random tasks as in simulation 1
/ figure 2 from the text. Average differences between the oracle algorithm and
the sample based algorithm were 0.5% +- 0.007% (mean +- SEM) of cumula-
tive error for gradient filter accumulation, and 0.5% +- 0.004% (mean +- SEM)
for projective filter accumulation, using an accumulation loop of 1000 ”sub-
trials”. These along with other diagnostics are shown in figures below. Lastly,
we produced a version of figure 2B below without the use of an oracle covariance
matrix. This shows a 4% point decrease in the ensemble mean improvement,
and indicates that the basic elements of our results are not especially sensitive
to whether noise dimension is set online or proactively.

In future work, we intend to provide a detailed examination of the sample
complexity based learning trade off which arises from the simplicity of obtaining
accurate low-dimensional estimators relative to high-dimensional ones.
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Figure 6: Sample-based cumulative simulation error relative to oracle cumu-
lative simulation error for gradient (g) and projective (d) output filter con-
struction. Converting to and from the use of a sample based oracle introduces
negligible differences in simulation results, given a-priori reasonable numbers of
samples for gradient estimation via the Hebbian updates, here 1k samples per
gradient. Average error induced in results such as those presented in figure 1 is
less than 1%.

40

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.466943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.466943
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Diagnostics comparing a random weight update based on oracle com-
putation with the same update based on a Hebbian sample accumulation, for
simulation 1. Because the input filter does not change, one only expects the
output filter to be distorted by sampling, and the eigendecomposition should
reproduce this vector (since the column space is one dimensional). Nonetheless
we computed the eigendecomposition because technically the output filters are
not accumulated in a disaggregated way from the (static) input filters. As can be
seen above, typical errors were negligible, the output filters were closely aligned,
and the eigenvalues were very generally very close as well. The exception to this
occurred where gradients were effectively zero, and alignment between sampled
and oracle computations diverged. These accounted for a significant fraction of
the total number of updates in simulation 1, but a negligible fraction of total
weight change, and therefore had no impact, as suggested by figure 6.
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Figure 8: Empirical filter correlation CDFs comparing sample and oracle based
output filters, for the weights contributing to 95% of the total weight change.
The least important 5% are excluded because they are essentially zero, and are
therefore relatively unconstrained in addition to being unimportant. Correla-
tions are extremely high, in agreement with figures 6 and 7. Left panel is for
gradient output filters g, and right panel is for projective output filters d. The
improved sample complexity of the lower dimensional filters is apparent in the
difference between these plots. Lines indicate simulations with 1k and 2k block-
accumulation sub-trial loops, for comparison.
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Figure 9: Figure 2B, recomputed without the use of a covariance oracle. That
is, task noise covariances were computed online. The mean is 4% points higher
than the equivalent panel in the text.
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