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Abstract  11 

Closely spaced promoters in tandem formation are abundant in bacteria. We investigated the evolutionary 12 

conservation, biological functions, and the RNA and single-cell protein expression of genes regulated by 13 

tandem promoters in E. coli. We also studied the sequence (distance between transcription start sites ‘dTSS’, 14 

pause sequences, and distances from oriC) and potential influence of the input transcription factors of these 15 

promoters. From this, we propose an analytical model of gene expression based on measured expression 16 

dynamics, where RNAP-promoter occupancy times and dTSS are the key regulators of transcription 17 

interference due to TSS occlusion by RNAP at one of the promoters (when dTSS ≤ 35 bp) and RNAP 18 

occupancy of the downstream promoter (when dTSS > 35 bp). Occlusion and downstream promoter 19 

occupancy are modeled as linear functions of occupancy time, while the influence of dTSS is implemented 20 

by a continuous step function, fit to in vivo data on mean single-cell protein numbers of 30 natural genes 21 

controlled by tandem promoters. The best-fitting step is at 35 bp, matching the length of DNA occupied by 22 

RNAP in the open complex formation. This model accurately predicts the squared coefficient of variation 23 

and skewness of the natural single-cell protein numbers as a function of dTSS. Additional predictions suggest 24 

that promoters in tandem formation can cover a wide range of transcription dynamics within realistic 25 

intervals of parameter values. By accurately capturing the dynamics of these promoters, this model can be 26 

helpful to predict the dynamics of new promoters and contribute to the expansion of the repertoire of 27 

expression dynamics available to synthetic genetic constructs. 28 

Author Summary 29 

Tandem promoters are common in nature, but investigations on their dynamics have so far largely relied 30 

on synthetic constructs. Thus, their regulation and potentially unique dynamics remain unexplored. We first 31 
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performed a comprehensive exploration of the conservation of genes regulated by these promoters in E. 32 

coli and the properties of their input transcription factors. We then measured protein and RNA levels 33 

expressed by 30 Escherichia coli tandem promoters, to establish an analytical model of the expression 34 

dynamics of genes controlled by such promoters. We show that start site occlusion and downstream RNAP 35 

occupancy can be realistically captured by a model with RNAP binding affinity, the time length of open 36 

complex formation, and the nucleotide distance between transcription start sites. This study contributes to 37 

a better understanding of the unique dynamics tandem promoters can bring to the dynamics of gene 38 

networks and will assist in their use in synthetic genetic circuits. 39 

Introduction 40 

Closely spaced promoters exist in all branches of life in convergent, divergent, and tandem formations [1- 41 

7]. Models of tandem promoters [8-10] have largely been based on measurements of synthetic constructs 42 

[11-13] and predict that such promoter arrangements result in unique transcription dynamics due to the 43 

interference between RNAPs transcribing the promoters [9, 10, 14-19].  44 

When an RNAP is committed to form the open complex (OC), a process lasting up to hundreds of seconds 45 

[20-22], it occupies approximately 35 base pairs (bp), from the transcription start site (TSS, position 0) until 46 

position -35 [23- 25]. If the TSS of a neighbouring promoter is closer than 35 bp away, it will not be possible 47 

for both promoters to be occupied simultaneously, since an RNAP occupying one of them will ‘occlude’ the 48 

other, preventing it from being reached [9]. However, if the promoters are more than 35 bp apart, this 49 

occlusion does not occur. Instead, interference will occur when RNAPs elongating from the upstream 50 

promoter collide with an RNAP occupying the downstream promoter [14] (in either closed or open complex 51 

formation), forcing one of the RNAPs to fall-off (both scenarios are likely possible, and we expect it to differ 52 

with, e.g., the binding affinity of the RNAP to the downstream promoter). Meanwhile, models based on 53 

empirical parameter values suggest that collisions between two elongating RNAPs are rare (because 54 

events such as pausing or simultaneous initiations from both promoters are rare). Also, even if and when 55 

such collisions occur, they are unlikely to result in fall-offs since the RNAPs are moving at similar speeds 56 

and in the same direction [9][10][26]. 57 

Models suggest that both forms of interference decrease the mean RNA production rate while increasing 58 

its noise based on the distance between promoters (dTSS), their strengths [10], and the time spent between 59 

commitment of the RNAP to OC and escape from the promoter region [27]. These hypotheses have yet to 60 

be empirically validated in natural tandem promoters.  61 

We studied how dTSS and the time spent by RNAPs on the TSSs affect gene expression dynamics due to 62 

interference between the transcription processes of tandem promoters (Fig 1). We consider only the natural 63 

tandem promoters that neither overlap with nor have in between another gene (positionings I and II, which 64 

differ in if the promoter regions overlap or not) (see the other arrangements in Fig. S1 in the S2 Appendix). 65 
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The numbers of these arrangements in E. coli are shown in Table S8 in the S3 Appendix. From the 66 

measurements of these genes’ protein levels, we then establish a model that we use to explore the state 67 

space of potential dynamics under the control of tandem promoters (Fig 2 illustrates our workflow). 68 

 69 
Fig 1. Interference between tandem promoters with different arrangements relative to each other 70 

and to neighbour genes. (A) Interference by an RNAP occupying the downstream promoter on the activity 71 

of the elongating RNAP from upstream promoter. The TSSs need to be at least 36 bp apart (the length 72 

occupied by an RNAP when in OC, [23, 25]) (B) Interference by occlusion of one of the promoter’s TSS by 73 

an RNAP on the TSS of the other promoter. The distance between the TSSs need to be ≤ 35 bp apart. Blue 74 

clouds are RNAPs. Black arrows sit on TSSs and point towards the direction of transcription elongation. 75 

Arrangements (I-II) of two promoters studied in the manuscript in tandem formation are represented. The 76 

red rectangles are the protein coding regions. We studied only the natural tandem promoters that neither 77 

overlap with nor have in between another gene (arrangements I and II, which differ based on whether the 78 

promoter regions overlap or not). Other arrangements (not considered in this study) are shown in Fig. S1 79 

in the S2 Appendix. Figure created with BioRender.com. 80 

 81 

 82 
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Fig 2. Workflow. (I) We identified genes controlled by tandem promoters in Regulon DB. (II) Next, we 83 

measured the single-cell protein levels of those genes with arrangements I and II that are tagged in the 84 

YFP strain library [28]. We also measured the mean RNA fold changes of these genes over time (S1 85 

Appendix, section ‘RNA-seq measurements and data analysis’). (III) We used the single-cell data to tune 86 

the model. (IV) Finally, we used the model to explore the state space of protein expression. Figure created 87 

with BioRender.com.  88 

Results 89 

E. coli has 831 genes controlled by two or more promoters in tandem formation (RegulonDB and section 90 

‘Selection of natural genes controlled by tandem promoters for flow-cytometry’ in the S1 Appendix). 91 

However, to study the dynamics of genes controlled by tandem promoters, we focused on only 102 of them, 92 

because their activity is expected to be undisturbed by neighboring genes in the DNA (arrangements I and 93 

II in Fig 1), for reasons described in section ‘Selection of natural genes controlled by tandem promoters for 94 

flow-cytometry’ in the S1 Appendix. 95 

Further, these promoters do not have specific short nucleotide sequences capable of affecting RNAP 96 

elongation (section ‘Pause sequences’ in the S4 Appendix). Also, the 102 genes expressed by these 97 

promoters are not overrepresented in a particular biological process (section ‘Over-representation test’ in 98 

the S4 Appendix). From time-lapse RNA-seq data (S1 Appendix, section ‘RNA-seq measurements and 99 

data analysis’), we also did not find evidence that their dynamics are affected by their input transcription 100 

factors (TFs) in our measurement conditions (section ‘Input-output transcription factor relationships’ in the 101 

S4 Appendix) nor by H-NS in a consistent manner (section ‘Regulation by H-NS’ in the S4 Appendix). 102 

Finally, they do not exhibit any particular TF network features (Table S3 in the S3 Appendix). As such, 103 

neither input TFs nor specific nucleotide sequences are considered in the model below. In addition to all of 104 

the above, we found no correlations between the shortest distance from the TSS of upstream promoters 105 

from the oriC region in the DNA and expression levels (section ‘Relationship with the oriC region’ in the 106 

S4 Appendix). 107 

Model of gene expression controlled by tandem promoters 108 

RNAPs bind, slide along, and unbind from a promoter several times until, eventually, one of them finds the 109 

TSS [29-30], commits to OC at the TSS, and initiates transcription elongation.  110 

Reactions (1a1) are a 4-step (I-IV) model of transcription [20, 31]. The forward reaction in step I in (1a1) 111 

models RNAP binding to a free promoter (Pfree), which becomes no longer free albeit the RNAP might not 112 

yet have reached the TSS. This state, pre-finding of the TSS, is here named Pbound and its occurrence 113 

increases with RNAP concentration, [R]. Next, as it percolates the DNA, the RNAP should find and stop at 114 
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the nearest TSS and form a closed complex (CC) with the DNA (step II, Reaction 1a1). CCs are unstable, 115 

i.e. reversible [22] (reaction 1a2) but, eventually, one of them will commit to OC irreversibly [32], via step 116 

III, Reaction 1a1 [21-22]. It follows RNAP escape from the TSS, freeing the promoter (step IV, Reaction 117 

1a1) [33-37]. Then, the RNAP elongates (Relong) until producing a complete RNA (reaction 1a3) and freeing 118 

itself. 119 

These set of reactions usually model well stochastic transcription dynamics [20]. However, if two promoters 120 

are closely spaced in tandem formation, they can interfere [38]. Figure 3 shows sequences of events that 121 

can lead to interference between tandem promoters, not accounted for by the model above. 122 

123 

Fig 3. Events leading to transcriptional interference between tandem promoters. (A) Sequence of 124 

events in transcription in isolated promoters. A similar set of events occurs in tandem promoters, if only one 125 

RNAP interacts with them at any given time. (B / C) Interference due to the occlusion of the downstream / 126 

upstream promoter by a bound RNAP, which will impede the incoming RNAP from binding to the TSS. (D) 127 

Interference of the activity of the RNAP incoming from the upstream promoter by the RNAP occupying the 128 

downstream promoter. One of these RNAPs will be dislodged by the collision. Created with BioRender.com. 129 

From Figure 3, if the TSSs are sufficiently close, the occupancy of one TSS by an RNAP will occlude the 130 

other TSS, blocking its kinetics [18]. This is accounted for by reaction 1a5, which competes with CC 131 

formation in reaction 1a1. Its rate constant, kocclusion, is defined in the next section. In (1a5), ‘u/d’ stands for 132 

occlusion of the upstream promoter by an RNAP on the TSS of the downstream promoter. 133 
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Instead, if the TSSs are not sufficiently close, they will still interfere since the elongating RNAP (Relong) 134 

starting from the upstream promoter can collide with RNAPs on the TSS of the downstream promoter. This 135 

can dislodge either RNAP via (reaction 1a4) or (reaction 2a3), depending on the sequence-dependent 136 

binding strength of the RNAP to the TSS [9]. 137 

Finally, once reaction 1a1 occurs, either reaction 1a3 or 1a4 occur. To tune their competition, we introduced 138 

the terms d and (1-d) in their rate constants, with d being the fraction of times that an elongating RNAP 139 

from an upstream promoter finds an RNAP occupying the downstream promoter. Meanwhile, ‘f’ is the 140 

fraction of times that the RNAP occupying the downstream promoter falls-off due to the collision with an 141 

elongating RNAP, whereas ‘1-f’ is the fraction of times that it is the elongating RNAP that falls-off. 142 

 
I II III IV

uu u u
escapebind cc oc

kk R k ku u u u u u
free bound cc oc free elongP P P P P R


⎯⎯⎯⎯→ ⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ +  (1a1)  143 

unbindku u
cc freeP P⎯⎯⎯⎯→          (1a2) 144 

( )1u
elong dk f

u
elongR RNA

 − 
⎯⎯⎯⎯⎯⎯→         (1a3) 145 

u
elong dk fu

elongR
 

⎯⎯⎯⎯⎯→          (1a4) 146 

/u d
occlusionku u

bound freeP P⎯⎯⎯⎯→          (1a5) 147 

Next, we reduced the model and derived its analytical solution. First, since Pcc completion is expected to 148 

be faster than Pbound completion ([10] and references within) we merged them into a single state, Poccupied, 149 

which represents a promoter occupied by an RNAP prior to commitment to OC, whose time length is similar 150 

to Pbound.  151 

Similarly, in standard growth conditions, the occurrence of multiple failures in escaping the promoter [46] 152 

per OC completion should only occur in promoters with the highest binding affinity to RNAP. Thus, in 153 

general promoter escape should be faster than OC [20, 32]. We thus merged OC and promoter escape into 154 

one step named ‘events after commitment to OC’, with a rate constant kafter. The simplified model is thus: 155 

  uu
afterbind kk Ru u u u

free occupied free elongP P P R


⎯⎯⎯⎯→ ⎯⎯⎯→ +     (1b1) 156 

These two steps are not merged since only the first differs with RNAP concentration [20, 26,39]. Further, 157 

reports [40-41] indicate that E. coli has ~100-1000 RNAPs free for binding at any moment but ~4000 genes, 158 

suggesting that the number of free RNAPs is a limiting factor.  159 
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Finally, we merge (1a2), (1a5) and (1b1) in one multistep without affecting the model kinetics: 160 

 

/

u u
bind after

u d u
occlusion unbind

k R ku u u u
free occupied free elong

k k
P P P R



+

⎯⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯→ +⎯⎯⎯⎯⎯⎯⎯    (1c1) 161 

Overall, this reduced model of transcription of upstream promoters has a multistep reaction of transcription 162 

initiation (1c1), a reaction of transcription elongation (1a3) and a reaction for failed elongation due to RNAPs 163 

occupying the downstream promoter (1a4).  164 

Regarding RNA production from the downstream promoter, it should either be affected by occlusion if dTSS 165 

≤ 35, or by RNAPs elongating from the upstream promoter if dTSS > 35 (Fig 3). We thus use reactions (2a1), 166 

(2a2), and (2a3) to model these promoters’ kinetics:  167 

 

/

d d
bind after

d u d
occlusion unbind

k R kd d d d
free occupied free elong

k k
P P P R



+

⎯⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯→ +⎯⎯⎯⎯⎯⎯⎯    (2a1) 168 

d
elongkd

elongR RNA⎯⎯⎯→         (2a2) 169 

occupykd d
free occupiedP P⎯⎯⎯⎯→         (2a3)  170 

Finally, one needs to include a reaction for translation (reaction 3), as a first order process since protein 171 

numbers follow RNA numbers linearly (Fig S6 in the S2 Appendix), and reactions for RNA and protein 172 

decay accounting for degradation and for dilution due to cell division (reactions 4a and 4b, respectively). 173 

TF regulation is not included as noted above (Figs S3 and S4A in the S2 Appendix). 174 

pk
RNA Prot⎯⎯→          (3) 175 

rdk
RNA⎯⎯⎯→           (4a) 176 

pdk
Prot ⎯⎯⎯→              (4b) 177 

Transcription interference by occlusion  178 

In a pair of tandem promoters, the occlusionk  of one of them should increase with the fraction of time that 179 

the other one is occupied. Further, it should decrease with increasing dTSS between the two promoters’ 180 
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TSS. We thus define occlusionk  for the upstream (Eq. 5a) and downstream (Eq. 5b) promoters, respectively 181 

as: 182 

/ max ( )u d
occlusion ocl TSS dk k I d =          (5a) 183 

/ max ( )d u
occlusion ocl TSS uk k I d =          (5b) 184 

Here, 
max
oclk  is the maximum occlusion possible. It occurs when the two TSSs completely overlap each other 185 

(dTSS = 0) and the TSS of the ‘other’ promoter is always occupied. Meanwhile, I(dTSS) models distance-186 

dependent interference.  187 

We tested four models of interference: ‘exponential 1’, ‘exponential 2’, ‘step’, and ‘zero order’ (Table 1). 188 

The first two assume that the effects of occlusion decrease exponentially with dTSS (first and second order 189 

dependency, respectively).  190 

Meanwhile, the ‘Step’ model assumes that interference only occurs precisely in the region in the DNA 191 

occupied by the RNAP when in OC formation. For this, it uses a logistic equation to build a continuous step 192 

function, where L is the length of DNA (in bp) occupied by the RNAP in OC. As such, L tunes at what dTSS 193 

the step occurs, while m is the steepness of that step (set to 1 bp-1).  194 

Finally, the ‘Zero order’ model assumes (unrealistically) that interference by occlusion, is independent of 195 

TSSd . Fig S7 in the S2 Appendix shows how occlusionk  differs with TSSd  in each model, for various 196 

parameter values. 197 

Table 1. Potential models of transcriptional interference due to promoter occlusion considered. 198 

Interference by occlusion  ( )TSSI d  
occlusionk  

Exponential 1 (“Exp1”) ( )1 TSSb d
e
− 

 
( )1max TSSb d

oclk e 
− 

   

Exponential 2 (“Exp2”) ( )2
1 2TSS TSSb d b d

e
−  + 

 

( )2
1 2max TSS TSSb d b d

oclk e 
−  + 

   

Step (“Step”) 

( )

1
1

1
−  −

−
+ TSSm d L

e
 

( )
max 1

1
1 TSS

ocl d L
k

e


− −

 
 −  

+ 
, for m = 1 bp-1 
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Zero order (“ZeroO”) k  max

oclk   

 199 

Finally,  is the fraction of time that the ‘other’ promoter is occupied. It ranges from 0 (no occupancy) to 1 200 

(always occupied). It is estimated for upstream and downstream promoters as: 201 

 

 

u
bind

u u u u
unbind bind after

k R

k k R k



=

+  +
       (6a) 202 

 

 

d
bind

d d d d
unbind bind after

k R

k k R k



=

+  +
       (6b) 203 

Similarly, if 
max

occupy
k  is the maximum possible interference due to RNAPs occupying the downstream 204 

promoter, koccupy is defined as: 205 

( )max
1occupy u after occupy

k k k f=    −          (7)  206 

Analytical solution of the moments of the single-cell protein 207 

numbers 208 

Next, we derived an analytical solution of the expected mean single-cell protein numbers at steady state, 209 

MP, which is later tuned to fit the empirical data. For any gene, regardless of the underlying kinetics of 210 

transcription, rk  is the effective rate of RNA production. Based on the reactions above, the mean protein 211 

numbers in steady state will be (see sections “Analytical model of mean RNA levels controlled by a single 212 

promoter in the absence of a closely spaced promoter” and “Derivation of mean protein numbers at steady 213 

state produced by a pair of tandem promoters” in the S1 Appendix): 214 

r p
P

rd pd

k k
M

k k


=


         (8) 215 

This equation applies to a pair of tandem promoters as well. In that case, assuming that kbind of the two 216 

tandem promoters is similar, we have: 217 
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  ( )

 

 

 

1bind after d

occlusion bind unbind after

r

bind after

occlusion occupy bind unbind after

k R k f

k k R k k
k

k R k

k k k R k k

    − 
 +

+  + + 
=  

  
 
 + +  + + 

   (9) 218 

To derive the other moments, we considered that empirical single-cell protein numbers in E. coli are well fit 219 

by negative binomials [28]. Consequently, Mp and the squared coefficient of variation 
2

PCV , should be 220 

related as (Equations S28 to S38 in the S1 Appendix): 221 

( ) ( )2

10 10 1 10log log ( ) log= −P PCV C M ,   with  1

p

pd rd

k
C

k k
=

+
  (10) 222 

This relationship matches empirical data at the genome wide level, except for genes with high transcription 223 

rates [54]. Additionally, we further derived a relationship (Section ‘CV2 and Skewness of single-cell protein 224 

expression of a tandem promoter’s model’ in the S1 Appendix) between MP and the skewness, SP, of the 225 

single-cell distribution of protein numbers: 226 

( ) ( ) ( )10 10 2 10

1
log log log

2
= − P PS C M ,  with  2 1

1

1
2C C

C
= −   (11) 227 

Single-cell distributions of protein numbers  228 

To validate the model, we measured by flow-cytometry the single-cell distributions of protein fluorescence 229 

of 30 out of the 102 genes known to be controlled by tandem promoters (with arrangements I and II). 230 

Measurements were made in 1X and 0.5X media (3 replicates per condition) using cells from the YFP strain 231 

library (section ‘Strains and Growth Conditions’ in the S1 Appendix). Data from past studies show that, in 232 

these 30 genes, RNA and protein numbers are well correlated (Fig S6 in the S2 Appendix) in standard 233 

growth conditions. Past studies also suggest that most of these genes are active during exponential growth 234 

(~95% of our 30 genes selected should be active, according to data in [42] using SEnd-seq technology). 235 

Single-cell distributions of protein expression levels are shown in Fig 4A for one of these genes as an 236 

example. The raw data from all 30 genes (only one replicate) are shown in Fig S8 in the S2 Appendix. 237 

Finally, the mean, CV2 and skewness for each gene, obtained from the triplicates, are shown in Excel 238 

sheets 1 and 2 in the S6 Table. In addition, we also show this mean, CV2 and skewness after subtracting 239 

the first, second, and third moments of the single-cell distribution of the fluorescence of control cells, which 240 
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do not express YFP (Sheets 3, 4 in the S6 Table) (Section ‘Subtraction of background fluorescence from 241 

the total protein fluorescence’ in the S1 Appendix).   242 

Based on the analysis of the data of these 30 genes, we removed from subsequent analysis those genes 243 

(5 in 1X and 14 in 0.5X) whose mean, variance, or third moment of their protein fluorescence distributions 244 

are lower than in control cells (not expressing YFP), i.e., than cellular autofluorescence (Sheets 3, 4 in S6 245 

Table). As such, only one gene studied here (in condition 1X alone) codes for a protein that is associated 246 

to membrane-related processes, which might affect its quantification (section ‘Proteins with membrane-247 

related positionings’ in S4 Appendix). As such, we do not expect this phenomenon to influence our results 248 

significantly. The data from these genes removed from further analysis is shown in Fig S6 in S2 Appendix 249 

alone, for illustrative purposes. 250 

We started by testing the accuracy of the background-subtracted flow-cytometry data by confronting it with 251 

microscopy data (also after background subtraction, see section ‘Microscopy and Image Analysis’ in the S1 252 

Appendix). We collected microscopy data on 10 out of the 30 genes (Table S7 in the S3 Appendix). The 253 

microscopy measurements of the mean single-cell fluorescence expressed by these genes (example image 254 

in Fig. 4B), were consistent, statistically, with the corresponding data obtained by flow-cytometry (Fig 4C). 255 

Next, we converted the fluorescence distributions from flow-cytometry (25 genes in 1X and 16 genes in 256 

0.5X) into protein number distributions. In Fig 4D we plotted our measurements of mean protein 257 

fluorescence in 1X against the protein numbers reported in [28] for the same genes, in order to obtain a 258 

scaling factor (sf = 0.09). Using sf, we estimated MP, 
2

PCV  , and SP of the distribution of protein numbers 259 

expressed by the tandem promoters in (Sheets 5, 6 in S6 Table) (Section ‘Conversion of protein 260 

fluorescence to protein numbers’ in S1 Appendix). 261 
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262 

Fig 4. Single cell protein numbers by microscopy and flow-cytometry. (A) Example single-cell 263 

distributions (3 biological replicates) of fluorescence (in arbitrary units) of cells with a YFP tagged gene 264 

controlled by a pair of tandem promoters obtained by flow-cytometry, ‘FC’. (B) Example confocal 265 

microscopy image of cells overlapped by the results of cell segmentation from the corresponding phase 266 

contrast image. The two white arrows show the dimensions of the image, for scaling purposes. (C) Mean 267 

single-cell protein fluorescence of 10 genes (Table S7 in the S3 Appendix) when obtained by FC plotted 268 

against when obtained by microscopy, ‘Mic’. (D) Mean single-cell protein fluorescence (own measurements) 269 

plotted against the corresponding mean single-cell protein numbers reported in [28]. From the equation of 270 

the best fitting line without y-intercept (y-intercept = 0), we obtained a scaling factor, sf, equal to 0.09. 271 

To test the robustness of the estimation of the scaling factor, we also estimated a scaling factor from 10 272 

other genes present in the YFP strain library [28] (listed in Table S2 in S3 Appendix). These genes were 273 

selected as described in the section ‘Selection of natural genes controlled by single promoters’ in S1 274 

Appendix. Using the data from this new gene cohort (Supplementary Figure S9A in S2 Appendix) reported 275 

in S7 Table, we estimated a scaling factor of 0.08, supporting the previous result. Meanwhile, since when 276 
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merging the data from tandem and single promoters, the resulting scaling factor equals 0.09 277 

(Supplementary Figure S9B in S2 Appendix), we opted for using 0.09 from here onwards.  278 

We also tested how sensitive the estimated scaling factor is to the removal of data points. Specifically, for 279 

1000 times, we discarded N randomly selected data points, and estimated the resulting scaling factor. We 280 

then compared, for each N, the mean and the median of the distribution of 1000 scaling factors 281 

(Supplementary Figure S10 in S2 Appendix). Since the median is not sensitive to outliers, if mean and 282 

median are similar, one can conclude that the scaling factor is not biased by a few data points. Visibly, the 283 

mean and the median only start differing for N larger than 6, which corresponds to nearly 30% of the data. 284 

Log-log relationship between the mean single-cell protein 285 

numbers of tandem promoters and the other moments  286 

We plotted MP against 
2

PCV  and SP in log-log plots, in search for the fitting parameters, ‘C1’ and ‘C2’, to 287 

estimate the rate of protein production per RNA (equation 10). To increase the state space covered by our 288 

measurements, in addition to M9 media (named ‘1X’), we also used diluted M9 media (named ‘0.5X’), 289 

known to cause cells to have lower RNAP concentrations (Fig. 5A) (Section ‘Strains and growth conditions’ 290 

in the S1 Appendix), without altering the division rate (Figs. S11A and S11B in the S2 Appendix). We note 291 

that 1X and 0.5X only refer to the degree of dilution of the original media and not to how much RNAP 292 

concentration and consequently, protein concentrations, were reduced by media dilution. From the same 293 

figures, we attempted stronger dilutions, but no further decreases in RNAP concentration were observed 294 

and the growth rate decreased. 295 

Next, from Fig 5B, most genes (of those expressing tangibly in both media) suffered similar reductions (well 296 

fit by a line) in protein numbers with the media dilution, as expected by the model of gene expression 297 

(Equations 8 and 9). This linear relationship could also be interpreted as evidence that the difference in 298 

expression of these genes between the two conditions is not affected by TFs in our measurement 299 

conditions. Namely, if TF influences existed, and TF numbers changed, they would likely be diversely 300 

affected by their output genes (weakly and strongly activated, repressed, etc.) and, thus, our proteins of 301 

interest would not have changed in such similar manners (linearly). 302 

Meanwhile, as in [44-45], 
2

PCV decreases linearly with MP (log-log scale), irrespective of media (R2 > 0.8 303 

in all fitted lines), in agreement with the model (Fig 5C). Fitting Equation 10 to the data, we extracted C1 in 304 

each condition. SP also decreases linearly with MP, irrespective of the media (Fig 5D). Similar to above, 305 

Equation 11 was fitted to each data set and C1 and C2 were obtained (R2 > 0.6 for all lines).  306 
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Since C1 from Fig 5C and 5D differed slightly (likely due to noise), we instead obtained C1 and C2 values 307 

that maximized the mean R2 of both plots. Using ‘fminsearch’ function in MATLAB [46], we obtained C1 = 308 

72.71 and C2 = 16.94 (R2 of 0.80 and 0.61, respectively) for Fig 5C and Fig 5D, respectively.  309 

 310 

Fig 5. Relative RNAP concentrations along with the relationships between the moments of the single 311 

cell distributions of protein numbers. (A) Relative RNAP levels measured by flow-cytometry (Section 312 

‘flow-cytometry’ in the S1 Appendix) in three media. (B) Scatter plot between MP in M9 (1X) and diluted M9 313 

(0.5X) media. Also shown are the best fitting line and standard error and p-value for the null hypothesis that 314 

the slope is zero. (C) MP vs 
2

PCV  and (D) MP vs SP of single-cell protein numbers of genes with tandem 315 

promoters in M9 (1X) and M9 diluted (0.5X) media.  The lines and their shades are the best fitting lines and 316 

standard errors, respectively. ‘Merge’ stands for data from both 0.5X and 1X conditions. 317 

Inference of parameter values and model predictions as a 318 

function of dTSS 319 
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We next used the model, after fitting, to predict how dTSS and the promoters’ occupancy regulate the 320 

moments of the single-cell distribution of protein numbers (MP, 
2

PCV , and SP) under the control of tandem 321 

promoters. We started by assuming the parameter values from the literature listed in Table 2 and tuned the 322 

remaining parameters. 323 

To set the RNAP numbers in Table 2, we considered that the RNAPs affecting transcription rates are the 324 

free RNAPs in the cell, and that, for doubling times of 30 min in rich medium, there are ~1000 free RNAPs 325 

per cell [41]. Meanwhile, for doubling times of 60 min in minimal medium, there are ~144 [40]. In both our 326 

media, we observed a doubling time of ~115 mins (Fig. 5B). Thus, we expect the free RNAP in 1X to also 327 

be ~144/cell or lower. Meanwhile, in 0.5X, we measured the RNAP concentration to be 17% lower than in 328 

1X (Fig. 5A) and no morphological changes. Thus, we assume the free RNAP in 0.5X to equal ~120/cell. 329 

Next, we fitted the equations (8) and (9) relating dTSS with log10 (MP) in all interference models (Table 1), 330 

using the data on MP in 1X medium (Fig 6A) and the ‘fit’ function of MATLAB. For this, we set 
maxk = max

occupyk331 

=
max
oclk , for simplicity, as well as realistic bounds for each parameter to infer. To avoid local minima, we 332 

performed 200 searches, each starting from a random initial point, and selected the one that maximized 333 

R2. Results are shown in Table 3. 334 

Next, we inserted all parameter values (empirical and inferred) in Equations (10) and (11) to predict 
2

PCV  335 

and SP in 1X medium (Figs 6B and 6C). Also, we inserted the same parameter values and the estimated 336 

RNAP numbers in 0.5X medium in equations (8-11) to obtain the analytical solutions for MP, 
2

PCV  and SP 337 

for 0.5X medium (Figs 6D, 6E and 6F).  338 

From Fig. 6, the data is ‘noisy’, which suggests that it is not possible to establish if the models are 339 

significantly different. As such, here we only select the one that best explains the data, based on the R2 340 

values of the fittings. Table 3 shows the mean R2 for MP, 
2

PCV , and SP when confronting the model with 341 

the data. Overall, from the R2 values, the step model is the one that best fits the data. Meanwhile, the 342 

‘ZeroO’ model is the least accurate, which supports the existence of distinct kinetics when dTSS is smaller 343 

or larger than 35 nucleotides, which is the length of the RNAP when committed to OC on the TSS [23-25]. 344 

In summary, the proposed model of expression of genes under the control of a pair of tandem promoters is 345 

based on a standard model of transcription of each promoter, which are subject to interference, either due 346 

to occlusion of the TSSs or by RNAP occupying the downstream promoter on the TSS of the downstream 347 

promoter. The influence of each occurrence of these events is well modeled by linear functions of TSS 348 

occupancy times, while their dependency on dTSS is modeled by a continuous step function. If dTSS is larger 349 
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than 35 bp, effects from the RNAP occupying the downstream promoter can occur, else occlusion can 350 

occur. 351 

Table 2. Parameter values imposed identically on all models. 352 

Parameter description Parameter Value  References 

Inverse of the mean time to 

complete OC  
kafter 0.005 s-1 

Differs between promoters. Since 

empirical data lacks, we used the 

data from in vivo single RNA 

measures for Lac-Ara-1 [20]. 

RNA and protein dilution due 

to division kdil = 
( )ln 2

D
 1.005× 10-4 s-1 Legend of Fig S8 

RNA degradation krdeg 2.3 × 10-3 s-1 [28]  

RNA decay due to dilution 

from cell division and due to 

degradation  

krd = krdeg + kdil 2.4 × 10-3 s-1 From row 2. 

Protein degradation 

kpdeg 2.93 × 10-5 s-1 

[47], estimates it to be from ~6×10-5 

to ~2×10-5. We used the value in [48], 

in that interval. 

Protein decay due to dilution 

by cell division and 

degradation 

kpd = kpdeg + kdil 1.3 × 10-4 s-1 From rows 2 and 5. 

Fall-off probability of the 

RNAP occupying the 

downstream promoter 

f 50% (0.5) 
Set here (likely sequence-

dependent) 

Protein production rate 

constant 
kp = C1×(kpd+krd)  0.18 s-1 C1 is estimated here.  

Free RNAP per cell 

[R] 

144/cell in 1X 

and 120/cell in 

0.5X media 

See main text. 

 353 

Table 3. Parameter values inferred for each model. 354 

Interference 
model  

Inferred parameter values Average R2 
(M, CV2, S)  
1X medium 

Average R2 
(M, CV2, S)  
0.5X medium 

Exponential 1  bindk R = 1.09 × 10-2 s-1 × (cell vol)-1 

bindk  = 7.53 × 10-5 s-1 

0.21 (Figs. 6A, 6B, 

and 6C) 

0.09 (Figs. 6D, 

6E, and 6F) 
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unbindk  = 0.84 s-1 

maxk = 677.7 s-1 

b1 = 5.08 × 10-2 bp-1 

Exponential 2  bindk R = 9.71 × 10-3 s-1 × (cell vol)-1 

bindk = 6.74 × 10-5 s-1 

unbindk  = 0.80 s-1 

maxk = 554.8 s-1 

b1 = 7.92 × 10-8 bp-1 

b2 = 1.47 × 10-3 bp-2 

0.25 (Figs. 6A, 6B, 

and 6C) 

0.12 (Figs. 6D, 

6E, and 6F) 

Step  bindk R  = 6.62 × 10-3 s-1 × (cell vol)-1 

bindk  = 4.60 × 10-5 s-1 

unbindk  = 0.49 s-1 

maxk = 313.4 s-1 

L = 35.11 bp (by best fitting, which 

corresponds to 35 bp) 

0.35 (Figs. 6A, 6B, 

and 6C) 

0.15 (Figs. 6D, 

6E, and 6F) 

zero order   bindk R  = 4.63 × 10-3 s-1 × (cell vol)-1 

bindk  = 3.22 × 10-5 s-1 

unbindk  = 0.57 s-1 

maxk = 6.48 s-1 

-0.007 (Figs. 6A, 

6B, and 6C) 

-0.12 (Figs. 6D, 

6E, and 6F) 

 355 
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 356 

Fig 6. Empirical data and analytical model of how dTSS influences the single-cell protein numbers of 357 

genes controlled by tandem promoters. (A) Mean, (B) CV2, and (C) S of single protein numbers in the 358 

1X media as a function of dTSS. (D), (E), and (F) show the same for the 0.5X media, respectively. Each red 359 

dot is the mean from 3 biological repeats for a pair of promoters (S6 Table). The dots were also grouped in 360 

3 ‘boxes’ based on their dTSS. In each box, the red line is the median and the top and bottom are the 3rd and 361 

1st quartiles, respectively. The vertical black bars are the range between minimum and maximum of the red 362 

dots. In A, all lines are best fits. In B, C, D, E, and F, all lines are model predictions, based on the parameters 363 

used to best fit A. The insets show the R2 for each model fit and prediction. 364 

 365 

 366 

We then confronted the analytical solutions of the step model with stochastic simulations (Section 367 

‘Stochastic simulations for the step inference model’ in the S1 Appendix). We first assumed various dTSS, 368 

but fixed bindk , for simplicity. Visibly, MP, 
2

PCV , and SP of the stochastic simulations are well-fitted by the 369 

analytical solution, supporting the initial assumption that 
2

PCV , and SP follow a negative binomial (Fig S13 370 

in the S2 Appendix). 371 

However, natural promoters are expected to differ in bindk  as they differ in sequence [49-50]. Thus, we 372 

introduced this variability and studied whether the analytical model holds. To change the variability, we 373 
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obtained each bindk  from gamma distributions (means shown in Table 3 and CVs in Table S9 in the S3 374 

Appendix). We chose a gamma distribution since its values are non-negative and non-integer (such as rate 375 

constants). Meanwhile, all parameters of the step model, aside from bindk , are obtained from Tables 2 and 376 

3. For dTSS ≤ 35 and dTSS > 35, and each CV considered, we sampled 10.000 pairs of values of  bindk R , 377 

and calculated M, CV2 and S for each of them. Next, we estimated the average and standard deviation of 378 

each statistics. From Fig S14 in the S2 Appendix, if ( ) 1bindCV k  , the analytical solution is robust. In 379 

that the standard error of the mean is smaller than MP/3. Notably, for such CV, the strength of the two paired 380 

promoters would have to differ unrealistically by more than 2000%, on average (Table S9 in the S3 381 

Appendix). Thus, we find the analytical solution to be reliable. 382 

From our estimation of kp, we further estimated a protein-to-RNA ratio, 
pP

RNA pd

kM

M k
= . From Eq. 8 and 383 

Table 2, we find that 
p

pd

k

k
 ~ 1418 in both media, which agrees with previous estimations (~1832 in 27]). 384 

 385 

Next, we used the fitted model to predict (using Eqs. 8 to 11) the influence of promoter occupancy ( ) on 386 

the PM , 
2

PCV   and PS  of upstream and downstream promoters. We set dTSS to 20 bp to represent 387 

promoters where ≤ 35, and to 100 bp to represent promoters with dTSS > 35. Then, for each cohort, we 388 

changed   from 0.01 to 0.99 (i.e., nearly all possible values). In addition, we estimated these moments 389 

when kocclusion, koccupy, and   are all set to zero (i.e., the two promoters do not interfere), for comparison. 390 

From Fig. 7, a pair of tandem promoters can produce less proteins than a single promoter with the same 391 

parameter values, if dTSS ≤ 35, which makes occlusion possible. Meanwhile, if dTSS > 35, tandem promoters 392 

can only produce protein numbers in between the numbers produced by one isolated promoter and the 393 

numbers produced by two isolated promoters. In no case can two interfering tandem promoters produce 394 

more than two isolated promoters with equivalent parameter values. I.e., according to the model, the 395 

interference between tandem promoters cannot enhance production. 396 

Meanwhile, the kinetics of the upstream (Figs. 7A and S15A in the S2 Appendix) and downstream 397 

promoters (Figs. 7B and S15B in the S2 Appendix) only differ in that the downstream promoter is more 398 

responsive to  . 399 
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 400 

Fig 7. Mean protein numbers produced as a function of other promoter’s occupancy. MP of the single-401 

cell distribution of the number of proteins produced (A) by the upstream promoter alone, and (B) by the 402 

downstream promoter alone. Results are shown as a function of the fraction of times that the upstream 403 

(0.01 ≤ u ≤ 0.99) and the downstream (0.01 ≤ d  ≤ 0.99) promoter are occupied by RNAP. The null model 404 

is estimated by setting kocclusion, koccupy, and   to zero.  405 

Finally, consider that the model predicts that transcription interference should occur in tandem promoters, 406 

either due to occlusion if dTSS ≤ 35 occupancy or due to occupancy of the downstream promoter if dTSS > 407 

35. Meanwhile, in single promoters, neither of these phenomena occurs. Thus, on average, two single 408 

promoters should produce more RNA and proteins than a pair of tandem promoters of similar strength. 409 

Using the genome wide data from [28] on protein expression levels during exponential growth we estimated 410 

the double of the mean expression level (it equals 183.8) of genes controlled by single promoters (section 411 

‘Selection of natural genes controlled by single promoters’ in the S1 Appendix). Meanwhile, also using data 412 

from [28], the mean expression level of genes controlled by tandem promoters equals 148 (estimated from 413 

the 26 that they have reported on), in agreement with the hypothesis. Nevertheless, this data is subject to 414 

external variables (e.g., TF interference). A definitive test would require the use of synthetic constructs, 415 

lesser affected by external influences. 416 

Regulatory parameters of promoter occupancy and 417 

occlusion 418 

Since the occupancy, , of each of the tandem promoters is responsible for transcriptional interference by 419 

occlusion and by RNAPs occupying the downstream promoter, we next explored the biophysical limits of 420 

 . Eqs. 6a and 6b define the occupancies of the upstream and downstream promoters, u  and d , 421 
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respectively. For simplicity, here we refer to both of them as  . Fig. 8A shows that   increases with the 422 

rate of RNAP binding (  bindk R ), but only within a certain range of (high) values of the time from binding 423 

to elongating (
1

afterk −
). I.e., RNAPs need to spend a significant time in OC, if they are to cause interference, 424 

which is expected. Similarly,   changes with 
1

afterk −
, but only for high values of  bindk R . I.e., if it’s rare 425 

for RNAPs to bind, the occupancy will necessarily be weak. 426 

In detail, from Fig. 8A,   can change significantly within 10-2 < kbind[R] < 10 s-1 and 10-2 < 
1

afterk −
 < 102 s-1. 427 

For these ranges, we expect RNA production rates (kr, equations 5a, 5b, 6b, 7 and 9) to vary from ~10-5 (if 428 

dTSS ≤ 35) and ~10-4 (if dTSS > 35) until 10 s-1. In agreement, in E. coli, promoters have RNA production rates 429 

from ~10-3 to 10-1 s-1 when induced [20-21, 39, 51-52]and ~10-4 to 10-6 s-1 when non-fully active [28]. Thus, 430 

  can differ within realistic intervals of parameter values. 431 

Next, we estimated kocclusion, the rate at which a promoter occludes the other as a function of dTSS and   432 

using Equations 6a and 6b. kmax is shown in Table 3. To model I(dTSS) we used the step function in Table 433 

1. Overall, kocclusion changes linearly with  , when and only when dTSS ≤ 35 (Fig. 8B).  434 

 435 

Fig 8. Promoter occupancy   estimated for the step model. (A)   as a function of the rate constant 436 

for a free RNAP to bind to the unoccupied promoter (  bindk R ) and of the time for that RNAP to start 437 

elongation after commitment to OC, 
1−

afterk . The horizontal black line at 1 = , is the maximum fraction of 438 

time that the promoter can be occupied (i.e., the maximum promoter occupancy). (B) 
occlusionk  plotted as a 439 
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function of   and dTSS. Since 
occlusionk  increases with   if and only if dTSS ≤ 35, it renders the simultaneous 440 

occupation of both TSS’s impossible.  441 

 442 

State space of the single cell statistics of protein numbers of 443 

tandem promoters 444 

We next studied how much the single-cell statistics of protein numbers (MP, 2

PCV , and SP) of the upstream, 445 

‘u’, and downstream, ‘d’, promoters changes with u , d , and dTSS. Here, u  and d  are increased from 446 

0 to 1 by increasing the respective kbind (Eqs. 6a and 6b).  447 

From Fig. 9A, if dTSS ≤ 35 bp, reducing d   while also increasing u  is the most effective way to increase 448 

Mu, since this increases the number of RNAPs transcribing from the upstream promoter that are not 449 

hindered by RNAPs occupying the downstream promoter. If dTSS > 35 bp, the occupancy the downstream 450 

promoter, d , becomes ineffective.  451 

Oppositely, from Fig. 9B, if dTSS ≤ 35 bp, increasing d  while also decreasingu , is the most effective way 452 

to increase Md since this increases the number of RNAPs transcribing from the downstream promoter does 453 

not interfere by RNAPs elongating from the upstream promoter. If dTSS > 35 bp, the occupancy the upstream 454 

promoter, u , becomes ineffective.  455 

Finally, from Fig. 9C, regardless of dTSS, for small d  andu , as the occupancies increase, Mt increases 456 

quickly and in a non-linear fashion. However, as both d  and u  reach high values, Mt decreases for 457 

further increases, if dTSS ≤ 35 bp. Instead, if dTSS > 35 bp, Mt appears to saturate. 458 

From Figs. S16 in the S2 Appendix, 2

PCV  and SP behave inversely to MP. 459 

Relevantly, in all cases, the range of predicted protein numbers (Fig. 9C1) are in line with the empirical 460 

values (~10-1 to 103 proteins per cell) (Fig. 4D).  461 
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 462 

Fig 9. Mean protein expression as a function of both promoters’ occupancy. Expected mean protein 463 
numbers due to the activity of: (A) the upstream promoter alone, (B) the downstream promoter alone, and 464 

(C) both promoters. MP is shown as a function of the fraction of times that the upstream (0 ≤ u  ≤ 1) and 465 

the downstream (0 ≤ d  ≤ 1) promoters are occupied by RNAP, when dTSS > 35 (yellow) and dTSS ≤ 35 466 

(dark green) bp.  467 

Discussion 468 

E. coli genes controlled by tandem promoters have a relatively high mean conservation level (0.2, while the 469 

average gene has 0.15, with a p-value of 0.009), suggesting that they play particularly relevant biological 470 

roles (section ‘Gene Conservation’ in the S1 Appendix). From empirical data on single-cell protein numbers 471 

of 30 E. coli genes controlled by tandem promoters, we found evidence that their dynamics is subject to 472 

RNAP interference between the two promoters. This interference reduces the mean single-cell protein 473 

numbers, while increasing its CV2 and skewness, and can be tuned by  , the promoters’ occupancy by 474 

RNAP, and by dTSS. Since both of these parameters are sequence dependent [21, 31] the interference 475 

should be evolvable. Further, since   of at least some of these genes should be under the influence of 476 

their several input TFs, the interference has the potential to be adaptive. 477 

We proposed models of the dynamics of these genes as a function of   and dTSS, using empirically 478 

validated parameter values. In our best fitting model, transcription interference is modelled by a step 479 

function of dTSS (instead of gradually changing with dTSS), since the only detectable differences in dynamics 480 

with changing dTSS were between tandem promoters with dTSS ≤ 35 and dTSS > 35 nucleotides (the latter 481 

cohort of genes having higher mean expression and lower variability). We expect that causes this difference 482 

tangible is the existence of the OC formation. In detail, the OC is a long-lasting DNA-RNAP formation that 483 

occupies that strict region of DNA at the promoter region [24, 31]. As such, occlusion should share these 484 

physical features. Because of that, when dTSS ≤ 35, an RNAP bound to TSS always occludes the other 485 

TSS, significantly reducing RNA production. Meanwhile, if dTSS > 35, interference occurs when an RNAP 486 

elongating from the upstream promoter is obstructed by an RNAP occupying the downstream promoter.  487 
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Meanwhile, contrary to dTSS, if one considers realistic ranges of the other model parameters, it is possible 488 

to predict a very broad range of accessible dynamics for tandem promoter arrangements. This could explain 489 

the observed diversity of single-cell protein numbers as a function of dTSS (Fig 6). At the evolutionary level, 490 

such potentially high range of dynamics may provide high evolutionary adaptability and thus, it may be one 491 

reason why genes controlled by these promoters are relatively more conserved. 492 

One potentially confounding effect which was not accounted for in this model is the accumulation of 493 

supercoiling. Closely spaced promoters may be more sensitive to supercoiling buildup than single 494 

promoters [53-55]. If so, it will be useful to extend the model to include these effects [26]. Using such model 495 

and measurements of expression by tandem promoters when subject to, e.g. Novobiocin [56], may be of 496 

use to infer kinetic parameters of promoter locking due to positive supercoiling build-up. 497 

Other potential improvements could be expanding the model to tandem arrangements other than I and II 498 

(Fig 1), to include a third form of interference (transcription elongation of a nearby gene).  499 

One open question is whether placing promoters in tandem formation increases the robustness of 500 

downstream gene expression to perturbations (e.g., fluctuations in the concentrations of RNAP or TF 501 

regulators). A tandem arrangement likely increases the robustness to perturbations which only influence 502 

one of the promoters. Another open question is why several of the 102 tandem promoters with 503 

arrangements I and II appeared to behave independently from their input TFs (according to the RNA-seq 504 

data), albeit having more input TFs (1.62 on average) than expected by chance (the average E. coli gene 505 

only has 0.95). As noted above, we hypothesize that these input TFs may become influential in conditions 506 

other than the ones studied here. 507 

Here, we also did not consider any influence from the phenomenon of “RNAP cooperation” [57]. This is 508 

based on this being an occurrence in elongation, and we expect interactions between two elongating 509 

RNAPs to rarely affect the interference between tandem promoters [9]. However, potentially, it could be of 510 

relevance in the strongest tandem promoters. 511 

Finally, a valuable future study on tandem promoters will require the use of synthetic tandem promoters 512 

(integrated in a specific chromosome location) that systematically differ in promoter strengths and 513 

nucleotide distances. This would allow extracting parameter values associated to promoter interference to 514 

create a more precise model than the one based on the natural promoters (which is influenced by TFs, etc). 515 

Similarly, measuring the strength of individual natural promoters would contribute to this effort. 516 

Overall, our model, based on a significant number of natural tandem promoters whose genes have a wide 517 

range of expression levels, should be applicable to the natural tandem promoters not observed here (at 518 

least of arrangements I and II), including of other bacteria, and to be accurate in predicting the dynamics of 519 

synthetic promoters in these arrangements. 520 
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Currently, predicting how gene expression kinetics change with the promoter sequence remains 521 

challenging. Even single- or double-point mutants of known promoters behave unpredictably, likely because 522 

the individual sequence elements influence the OC and CC in a combinatorial fashion. Consequently, the 523 

present design of synthetic circuits is usually limited to the use of a few promoters whose dynamics have 524 

been extensively characterized (Lac, Tet, etc.). This severely limits present synthetic engineering. 525 

We suggest that a promising methodology to create new synthetic genes with a wide range of predictable 526 

dynamics is to assemble well-characterized promoters in a tandem formation, and to tune their target 527 

dynamics using our model. Specifically, for a given dynamics, it is possible to invert the model and find a 528 

suitable pair of promoters with known occupancies and corresponding dTSS (smaller or larger than 35), 529 

which achieve these dynamics. A similar strategy was recently proposed in order to achieve strong 530 

expression levels [58]. Our results agree and further expand on this by showing that the mean expression 531 

level can also be reduced and expression variability can further be fine-tuned. 532 

Importantly, this can already be executed, e.g., using a library of individual genes whose expression can 533 

be measured [28]. From this library, we can select any two promoters of interest and arrange them as 534 

presented here, in order to obtain a kinetics of expression as close as possible to a given target. Note that 535 

these dynamics have a wide range, from weaker to stronger than that of either promoter (albeit no stronger 536 

than their sum, Fig 9C1-C3). Given the number of natural genes whose expression is already known and 537 

given the present accuracy in assembling specific nucleotide sequences, we expect this method to allow 538 

the rapid engineering of genes with desired dynamics with an enormous range of possible behaviours. As 539 

such, these constructs could represent a recipe book for the components of gene circuits with predictable 540 

complex kinetics. 541 

Materials and Methods  542 

Using information from RegulonDB v10.5 as of 30th of January 2020, we started by searching natural genes 543 

controlled by two promoters (Section ‘Selection of natural genes controlled by tandem promoters’ in the S1 544 

Appendix). Next, we studied their evolutionary conservation and ontology (Sections ‘Gene conservation’ 545 

and ‘Gene Ontology’ in the S1 Appendix) and analysed their local topological features within the TFN of E. 546 

coli (Section ‘Network topological properties’ in the S1 Appendix). 547 

RNA-seq measurements were conducted in two points in time (Section ‘RNA-seq measurements and data 548 

analysis’ in the S1 Appendix), to obtain fold changes in RNA numbers of genes controlled by tandem 549 

promoters with arrangements I and II, their input TFs, and their output genes (Fig 1). We used this data to 550 

search for relationships between input and output genes.  551 

Next, a model of gene expression was proposed, and reduced to obtain an analytical solution of the single-552 

cell protein expression statistics of tandem promoters (Sections ‘Derivation of mean protein expression of 553 
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the model’ and ‘Derivation of CV2 and skewness of protein expression of the model’ in the S1 Appendix). 554 

This analytical solution was compared to stochastic simulations conducted using the simulator SGNS2. 555 

(Section ‘Stochastic simulations for the step inference model’ in the S1 Appendix). 556 

We collected single-cell flow-cytometry measurements of 30 natural genes controlled by tandem promoters 557 

(Section ‘Flow-cytometry and data analysis’ in the S1 Appendix) to validate the model. For this, first, from 558 

the original data, we subtracted the cellular background fluorescence (Section ‘Subtraction of background 559 

fluorescence from the total protein fluorescence’ in the S1 Appendix). Then, we converted the fluorescence 560 

intensity into protein numbers (Section ‘Conversion of protein fluorescence to protein numbers in the S1 561 

Appendix). From this we obtained empirical data on M, CV2, and S of the single-cell distributions of protein 562 

numbers in two media (Sections ‘Media and chemicals’ and ‘Strains and growth conditions’ in the S1 563 

Appendix). Flow-cytometry measurements were also compared to microscopy data, supported by image 564 

analysis (Section ‘Microscopy and Image analysis’ in the S1 Appendix), for validation.  565 

Comparing the data from RegulonDB (30.01.2020) used here, with the most recent (21.07.2021), we found 566 

that the numbers of genes controlled by tandem promoters of arrangements I and II differed by ~4% (from 567 

102 to 98). Regarding those whose activity was measured by flow-cytometry, this difference is ~3% (30 to 568 

31). Globally, 163 TF-gene interactions differed (~3.4%) while for the 98 genes controlled by tandem 569 

promoters of arrangements I and II, only 10 TF-gene interactions differ (~2.7%). Finally, globally the 570 

numbers of TUs differed by ~1%, promoters by ~0.6%, genes by ~1%, and terminators by ~15% (which did 571 

not affect the genes studied, as they changed by ~4% only). These small differences should not affect our 572 

conclusions. 573 

Finally, a data package [59] is provided in Dryad with flow-cytometry and microscopy data and codes used. 574 
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