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Abstract— Fireflies (Coleoptera: Lampyridae) consist of over 2,000 described extant species. A well-resolved1

phylogeny of fireflies is important for the study of their bioluminescence, evolution, and conservation. We2

used a recently published anchored hybrid enrichment dataset (AHE; 436 loci for 88 Lampyridae species and3

10 outgroup species) and state-of-the-art statistical methods (the fossilized birth-death-range process imple-4

mented in a Bayesian framework) to estimate a time-calibrated phylogeny of Lampyridae. Unfortunately,5

estimating calibrated phylogenies using AHE and the latest and most robust time-calibration strategies is6

not possible because of computational constraints. As a solution, we subset the full dataset and applied7

three different strategies: using the most complete loci, the most homogeneous loci, and the loci with the8

highest accuracy to infer the well established Photinus clade. The estimated topology using the three data9

subsets agreed on almost all major clades and only showed minor discordance with less supported nodes.10

The estimated divergence times overlapped for all nodes that are shared between the topologies. Thus,11

divergence time estimation is robust as long as the topology inference is robust and any well selected data12

subset suffices. Additionally, we observed an unexpected amount of gene tree discordance between the 43613

AHE loci. Our assessment of model adequacy showed that standard phylogenetic substitution models are14

not adequate for any of the 436 AHE loci which is likely to bias phylogenetic inferences. We performed15

a simulation study to explore the impact of (a) incomplete lineage sorting, (b) uniformly distributed and16

systematic missing data, and (c) systematic bias in the position of highly variable and conserved sites. For17

our simulated data, we observed less gene tree variation and hence the empirically observed amount of gene18

tree discordance for the AHE dataset is unexpected.19

[AHE; Phylogeny; RevBayes.]20
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Introduction21

Fireflies (Coleoptera: Lampyridae) consist of more than 2,000 globally distributed described species renowned22

for their charismatic lighted mating signals. A time-calibrated phylogeny of fireflies would be useful to23

study their diversification, biogeographical history, and the evolution of their bioluminescence (Fallon et al.24

2018). Furthermore, divergence times on a genus level can provide new insights into recent colonization.25

However, a time-calibrated phylogeny of widely-sampled Lampyrids does not currently exist. The lack of a26

time-calibrated phylogeny might be surprising given the enigmatic status of fireflies but is possibly due to27

debated phylogenic relationships (Branham and Wenzel 2001; Stanger-Hall et al. 2007; Martin et al. 2017)28

and general challenges in dating beetle phylogenies (Toussaint et al. 2017). A recent study by Martin et al.29

(2019) obtained 436 anchored hybrid enrichment loci (AHEs) for 88 Lampyridae species and 10 outgroup30

species. In this study, we will use this AHE dataset to estimate a time-calibrated phylogeny of Lampyridae.31

This study also serves as case-study to evaluate divergence time estimation using genomic data.32

Genomic data, such as the AHE dataset by Martin et al. (2019), has promised to solve many outstanding33

phylogenetic debates (Rokas et al. 2003; Misof et al. 2014; Jarvis et al. 2014). Unfortunately, genomic data34

has introduced as many or more new challenges. One of the most prevalent problems of phylogenomics is35

that different “genomic” datasets (often a method-dependent sub-sample of the genome; Andermann et al.36

2020) and inference methods produce conflicting phylogenetic results with high support (Philippe et al.37

2017; Betancur-R et al. 2019). Most recent studies have focused on the impact on the inferred tree topology38

(e.g., Arcila et al. 2017; Kuang et al. 2018; Alda et al. 2019; Bossert et al. 2021), but other aspects of the39

phylogenetic inference still need much study. For example, it has been shown that outlier loci (Brown and40

Thomson 2017; Shen et al. 2017; Walker et al. 2018) and data filtering methods can have a strong impact41

on the inferred phylogeny. Much less attention has been paid on estimating divergence time using genomic42

datasets (but see Smith et al. 2018).43

The two most common approaches for inferring (uncalibrated) phylogenies from genomic data are con-44

catenation of all loci and two-step coalescent-based methods. The concatenation method (e.g., RAxML (Sta-45

matakis 2014) and IQ-TREE (Minh et al. 2020)) merge all loci together and assume that all loci evolve under46

the same topology with the same branch lengths. Two-step coalescent-based methods (e.g., ASTRAL, Zhang47

et al. 2018) estimate first the per-locus gene trees and then estimate the species assuming a multispecies48

coalescent approach. Current two-step approaches are considered superior due to their ability to incorporate49

incomplete lineage sorting (ILS) but do not provide time-calibrate phylogenies. Therefore, we cannot use a50

two-step coalescent-based approach to estimate divergence times. The only currently existing methods using51

sequence data directly to estimate time calibrated phylogenies are full Bayesian coalescent-based methods52

and concatenation methods for divergence time estimation.53

Today, there exists no consensus on estimating a time-calibrated phylogeny using genomic data. Ideally54

we would like to use all loci and full Bayesian inference methods using relaxed clocks (Drummond et al. 2006).55

Unfortunately, full Bayesian inference is impossible for genomic datasets due to computational limitations56
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(Harrington et al. 2016; Li et al. 2020). Common approaches include (1) penalized-likelihood methods such57

as r8s (Sanderson 2003) and treePL (Smith and O’Meara 2012) (see for example Hamilton et al. 2019; Alda58

et al. 2019; Opatova et al. 2020; Burbrink et al. 2020); (2) approximate-likelihood methods as implemented59

in PAML (see for example Harrington et al. 2016; McGowen et al. 2020; Li et al. 2020), and (3) full-likelihood60

Bayesian divergence time analysis using a relaxed clock model, as implemented in BEAST (Drummond et al.61

2012) and RevBayes (Höhna et al. 2016), on a subset of the available data (see for example Harrington et al.62

2016; Ericson et al. 2020; Bianconi et al. 2020).63

Penalized likelihood approaches are faster to compute but do not use the sequence data directly. Thus64

penalized likelihood approaches are less robust because they do not fully take the uncertainty in branch65

length estimates into account (Ho and Duchêne 2014). Approximate-likelihood methods are also faster than66

full-likelihood methods but their accuracy has not been compared against another. Since full-likelihood Bayes67

divergence times methods are most widely used and well established, we focus on and explore the third option.68

Specifically, we will focus on different approaches to sub-sample the full AHE dataset. Several approaches69

to subsample the full dataset have been proposed: (1) choose a random subset of the loci (Harrington et al.70

2016; Alda et al. 2019; Ericson et al. 2020), (2) choose the most complete loci (Harrington et al. 2016),71

and (3) choose the loci with lowest GC variation (Romiguier et al. 2013). Additionally to the second and72

third option, we selected loci with a high phylogenetic accuracy to recover the established genus Photinus.73

Before estimating the divergence time using the three concatenated data subsets, we explored each single74

AHE locus to identify reliable loci and exclude outlier loci (Brown and Thomson 2017; Walker et al. 2018).75

We estimated the phylogeny using each AHE locus individually, producing 436 posterior distributions of76

phylogenetic trees. We used these individual phylogenies to (1) explore the gene-tree discordance, (2) support77

for named sub-families, tribes and genera, (3) correlation between data summary statistics and gene tree78

error. Finally, we performed a simulation study to test the impact of (a) incomplete lineage sorting, (b)79

uniformly distributed and systematic missing data, and (c) systematic bias in the position of highly variable80

and conserved sites. All of the methods described in this paper have been implemented in the Bayesian81

phylogenetic inference software package RevBayes (Höhna et al. 2016).82

Methods and Data83

Lampyridae Anchored Hybrid Enrichment (AHE) Dataset84

In this study we used the 436 anchored hybrid enrichment sequences from Martin et al. (2019). The dataset85

contains 88 Lampyridae species and 10 outgroup species. The AHEs have been trimmed and cleaned (Martin86

et al. 2019). Martin et al. (2019) kept only loci will an overall sequence completeness of 50%. Here we use87

exactly the same alignments downloaded from doi:10.5061/dryad.737c8t8.88

Our specific focus in this study is the genus Photinus. Photinus is the second more specious genus of89

Lampyridae comprising of ≈ 240 species with a Neartic and Neotropical distribution (McDermott 1964).90

Only in the past 15 years more than 40 new Photinus species have been described (Zaragoza-Caballero 2007,91
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2015; Zaragoza-Caballero et al. 2020). It is hypothesized that the origin of Photinus resides in Tropical92

America (McDermott 1964) and the estimation of the age of this genus will be the first step into elucidating93

its biogeographical history.94

Fireflies from the genus Ellychnia were traditionally placed outside Photinus but recent molecular studies95

have shown that Photinus is paraphyletic and Ellychnia is grouped within it (Stanger-Hall et al. 2007; Lewis96

and Cratsley 2008; Lower et al. 2017; Martin et al. 2017). From a morphological perspective, Ellychnia and97

Photinus share morphological characteristics that support placing these into the same genus (). Thus, we98

consider the combined clade of Photinus and Ellychnia in this study.99

Sequence coverage— First, we explored the sequence coverage of the 436 sequence alignments. Figure S1100

shows the percentage of missing sites per taxon and AHE locus. That is, we specifically looked whether a101

given taxon (i.e., column) or locus (i.e., row) had considerable lower sequence coverage (white or light gray).102

The distribution of missing sites is not homogeneous and particular taxa are more affected than others.103

Sequences for Photinus and Ellychnia species had a comparably high sequence coverage.104

Data summary statistics— We computed several summary statistics for the data which might indicate the105

usefulness of each AHE locus. The summary statistics were: (1) number of variable sites, (2) number of106

invariable sites, (3) minimum pairwise distance between any taxon pair, (4) maximum pairwise distance107

between any taxon pair, (5) minimum GC content of any taxon for this locus, (6) maximum GC content of108

any taxon for this locus, (7) average GC content for this locus, (8) variance in GC content over all taxa for109

this locus.110

The number of variable sites should be a predictor for the informativeness of the locus, with the ex-111

pectation that loci with a higher number of variable sites have more information to resolve the phylogeny112

correctly. Conversely, the number of invariant sites should be lower to obtain more phylogenetic information.113

Nevertheless, it might be the case that if all sites are variable (i.e., no invariant sites), then the locus is likely114

saturated and most information is lost due to multiple substitutions. Alternatively, we could use the fraction115

of variable sites to invariant sites, although this fraction is only informative in the context of the sequence116

length. Therefore we used the number of variable and invariant sites directly to avoid redundancy.117

The minimum pairwise distance shows how well we can expect to resolve the phylogeny on a species118

level. If there are some species with identical sequences for this AHE locus, then we have no information119

about the species except that they should be very closely together. The maximum pairwise distance can120

indicate if there are outlier sequences which bias our phylogenetic reconstruction. If such outlier sequences121

with high pairwise distance to all other sequence exist, then this indicates non-orthologous sequences or122

miss-alignments which will lead to wrong placements of the taxa in the inferred phylogeny.123

The GC content has been suggested to be an indicator of gene tree error with GC rich loci having a higher124

error (Romiguier et al. 2013). Similarly, a high variance in GC content could indicate branch heterogeneous125

or non-stationary substitution processes, for example due to convergent evolution which would also bias126

phylogenetic inference.127
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Exploration of Individual AHE Loci128

Inference of phylogenies per AHE locus— We performed a phylogenetic analysis for each individual loci. The129

goal was to estimate the tree topology and species relationships without confounding factors of molecular130

clocks and divergence times. Therefore, we performed a standard Bayesian phylogenetic analysis, which131

had been shown recently to perform best for AHE loci (Bossert et al. 2021). Our pipeline consisted of a132

GTR+Gamma+I substitution model (Tavaré 1986; Yang 1996) and a uniform prior on tree topologies with133

an exponential prior distribution on the branch lengths (Höhna et al. 2017). We ran four replicated MCMC134

runs with 50,000 iterations each (with, on average, 167.8 moves per iteration). We sampled phylogenies135

every iteration.136

Posterior support of known clades— For each AHE locus, we computed the posterior probability of 26137

named subfamilies, tribes and genera (see Table S1). We only computed the posterior probability if the locus138

contained at least two species with more than 50% sequence coverage. Specifically, we computed the posterior139

probability if the given clade was found to be strictly monophyletic according to known classifications. The140

posterior probabilities show us (a) which known clades are supported, and (b) how much variation in support141

exists for the known clades. We expect that well established clades, such as Photinus + Ellychnia, should142

overall be well supported. Nevertheless, we would not be surprised to see some variation in support as143

gene trees are expected to be different from species trees (Maddison 1997). For example, the multispecies144

coalescent process predicts that gene trees can be different to the species tree if internal branches are very145

short and population sizes are very large (Rosenberg and Tao 2008; Huang and Knowles 2009). However, the146

discordance between species tree and gene trees should be restricted to local difference within few coalescent147

units (Degnan and Rosenberg 2009) and not produce gene trees that are drastically different from the species148

tree.149

Model Adequacy Testing— Additionally, for each locus we performed posterior prediction simulations to150

check for model adequacy using the P 3 pipeline (Höhna et al. 2018). Posterior predictive distributions151

are used to perform model adequacy testing, i.e., testing the absolute fit of a model to the observed data152

(Bollback 2002). If the model shows a bad absolute fit to the data, then estimates, such as the tree topology,153

can be biased (Brown 2014). For example, if our model predicts much lower variation in GC content among154

sequences, then our inference might wrongly group taxa with low (or high) GC content together (Romiguier155

et al. 2013).156

Posterior predictive distributions are simulated using parameters values (e.g., phylogeny and substitution157

rates) drawn from the posterior distribution. Thus, we used posterior distributions for each AHE locus from158

the above MCMC analyses. We discarded the initial 50% of samples as burnin and used the remaining159

100,000 samples (four replicates with originally 50,000 samples each). Finally, we computed the posterior160

predictive p-values as frequency how often the summary statistic of the observed data was larger or equal to161

the summary statistic computed using the simulated data (midpoint p-values; Höhna et al. (2018)). That is,162

if we obtain a very low p-value, then most or all of our simulated datasets have a larger summary statistic.163
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For example, if our empirical alignment had very few variable sites and most simulated datasets had more164

variable sites, then the p-value would be close to zero. Conversely, a high posterior predictive p-value depicts165

larger summary statistics from the observed data compared with the simulated data.166

Simulation Study167

We performed a simulation study as a benchmark and reference for our single locus phylogenetic analyses.168

Specifically, we focused on (1) the discordance between gene trees and species trees under the multispecies169

coalescent model, (2) the impact of missing sequence data on phylogeny inference and model adequacy testing,170

and (3) the impact of unequal distribution of fast versus slow evolving sites in combination with missing171

sequence data on phylogeny inference and model adequacy testing.. First, under the multispecies coalescent172

model we expect that gene trees differ from the species to some extend purely due to the stochastic process173

(Degnan and Rosenberg 2009). For example, assuming a population size of 100,000 diploid individuals and a174

generation time of one year, the expected time of a coalescent event between two individuals is 200,000 years.175

Then, if the branch leading to the next speciation event is shorter than the coalescent time between two176

individuals, then we could observe deep coalescent events with incomplete lineage sorting. Thus, to observe177

incomplete lineage sorting the population size needs to be sufficiently large and/or the internal branch length178

needs to be sufficiently short. In our simulations, we simulated 436 gene trees within the fixed species tree179

(see below) and three different population sizes: 100,000 diploid individuals, 1,000,000 diploid individuals180

and 10,000,000 diploid individuals. The chosen population sizes for the simulations were based on known181

insect effective population sizes (Keightley et al. 2015; Crossley et al. 2019; Arguello et al. 2019; Kapopoulou182

et al. 2020).183

Second, the AHE dataset —as most phylogenomic datasets— are far from complete and missing sequence184

data is heterogeneously distributed (see Figure S1). On the one hand, missing sequence data can impact185

phylogeny inference, specifically if some taxa have a high fraction of missing sequence data (Sanderson186

et al. 1998). These taxa are often rogue and cannot be placed with certainty or correctly in the phylogeny187

(Thomson and Shaffer 2010). On the other hand, several simulation studies have shown that if missing188

data is homogeneously distributed or the number of informative sites is large, then missing data are not189

problematic (Wiens 2003; Roure et al. 2013). Much less attention has been given to model adequacy testing190

and computing summary statistics with missing sequence data. For example, if a given site (i.e., column)191

in the alignment contains mostly missing sites but the few actual sites are identical, it is then unclear if this192

site is invariant or not. Thus, missing sites can impact our calculation of summary statistics, and thus our193

evaluation of model adequacy. Here, we explore the impact of missing data with a specific focus on how194

missing data is distributed in AHE datasets.195

We simulated sequence alignments for each of the three sets of 436 gene trees as follows. We simulated196

branch rates from a uncorrelated lognormal relaxed clock model with mean 1.836× 10−3 (in million years)197

and standard deviation of 0.58. Then, we simulated sequence data under a GTR+Γ model with base198

frequencies π = {0.31, 0.17, 0.19, 0.33}, substitution rates ε = {0.087, 0.295, 0.08, 0.09, 0.38, 0.068} and site199

rate categories r = {0.039, 0.271, 0.841, 2.849}. The lengths of the sequences was determined from the200
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corresponding empirical alignment. All values were retrieved from the empirical concatenated analysis to201

provide biologically realistic simulation settings. Additionally, each simulated alignment was masked so that202

the same positions in the data matrix were missing for both the empirical dataset and simulated dataset. This203

procedure to create alignments with missing data by applying masks obtained from the empirical alignments204

produce patterns where missing data are non uniformly distributed but clustered around the beginning and205

end of the alignment as well as on given taxa (see Supplementary Figures S12-S14). Thus, we obtained two206

sets of alignments for each simulated alignment.207

Third, the AHE dataset has a heterogenous distribution of variable sites where most variable sites are208

at the flanking regions and most invariable sites are in the center of the locus (Faircloth et al. 2012). This209

heterogeneous distribution of fast versus slow evolving sites stands in strong contrast to the model assumption210

of standard phylogenetic models. The among site rate variation model (+Γ) allows for rate variation using211

four discrete rate categories but each site evolves independently and identically distributed. That is, each site212

has a probability of 0.25 to be in any of the four rate categories regardless of the position in the alignment213

(center vs. beginning/end). This model violation might not be a problem for many phylogenetic analyses.214

However, the combination of missing data that is more prevalent at the same positions as highly variable sites215

could induce a systematic bias. We explored this potential systematic bias by repeating the above simulation216

with rate categories drawn deterministically depending on the position in the alignment. Specifically, we217

divided the alignment in eight equal-sized regions where the outer regions received the highest of the four218

rate categories and the middle regions the lowest rate categories respectively.219

In total, we simulated three sets of 436 gene trees and four alignments per gene trees (436 loci x 3220

population sizes x 2 levels of missing data x 2 modes of rate variation = 5232 simulated alignments). We221

analyzed each simulated alignment with the same inference pipeline as the empirical AHE dataset. We222

performed an MCMC analysis for each alignment, a posterior predictive simulation, and computed the223

posterior predictive p-values and posterior probabilities of the pre-defined clades.224

Divergence time estimation of Lampyridae phylogeny225

For the Lampyridae divergence time estimation we used the 436 ultra-conserved elements (AHEs) recently226

published by Martin et al. (2019). Because of computational limitations we could not perform a phylogenetic227

analysis on all 436 AHE loci jointly with a model of appropriate complexity (e.g., each AHE loci having228

its own unlinked GTR+Γ substitution model). Instead, we selected three data subsets (Figure 1). The229

first data subset contained all loci with at 95% sequence coverage (Figure 1) because gappy sequences (i.e.,230

low sequence coverage) could indicate sequencing and/or alignment problems. Additionally, missing data231

reduce information in the alignment (Philippe et al. 2004) and we aimed to maximize the phylogenetic232

information for the associated computational cost. The second data subset contained all AHE loci which233

supported the genus Photinus to be monophyletic because we constrained Photinus to be monophyletic234

for the fossil calibration (Table 1). Using loci that conflict with the enforced calibration constraint could235

lead to biased results (Yang and Rannala 2006). The third data subset consisted of all UCE loci with low236

variation in GC content among taxa. Increased variance in GC content among taxa is often a signal of237
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a) overlap b) high coverage c) high PP d) low GC variance
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Figure 1: Overlap and completeness of the AHE data subsets. We selected three data subset based on (b) loci with
on average 95% completeness (high coverage), (c) loci with a high posterior probability of Photinus being monophyletic (high
PP), and (d) loci with low variance in GC content. (a) shows the overlap between data subsets. Despite there being some
overlap between the data subsets, the majority of loci is private to each subset. (b–d) shows the completeness of the selected
loci. We computed the percentage of sites missing per sequence. Black cells depict complete sequences and white cells depict
entirely missing sequence. The gray shades depict the percentage in between. Each row represents one of the AHE loci and
each column represent one taxon.

compositional heterogeneity which is not modeled appropriately using standard phylogenetic substitution238

models (e.g., GTR+Γ) and can lead to wrong phylogenetic inferences (Foster 2004; Romiguier et al. 2013;239

Duchêne et al. 2017). The data subsets contained 37, 24 and 30 AHE loci for the high sequence coverage,240

Photinus monophyly, and low GC variance criteria respectively. These data subsets share some loci but the241

majority of loci are private for each data subset (Figure 1). Overall, the data subset include loci with rather242

higher sequence coverage, i.e., fewer missing sites (Figures 1), compared with the full dataset (Figure S1).243

Thus, our divergence time analyses using these three different data subsets are mainly independent. If all244

three datasets produce the same or highly similar divergence time estimates, then we are confident that245

these data subsets are representative for the whole AHE dataset and that the divergence time estimates are246

robust to our choice of data subsets.247

For each data subset we employed a partitioned GTR+Γ substitution model (Tavaré 1986) where among248

site rate variation was modeled by 4 discrete categories obtained from a gamma distribution (Yang 1994). We249

did not perform any substitution model selection (e.g., Tagliacollo and Lanfear 2018) as Bayesian inference250

is robust to substitution model over-parametrization (Huelsenbeck and Rannala 2004; Lemmon and Moriarty251

2004; Abadi et al. 2019). Thus, our chosen substitution model is conservative albeit computationally more252

demanding because it assigns each partitions its own set of substitution model parameters. We applied253

standard prior distributions for the substitution model parameters, that is, a flat Dirichlet prior distributions254

on both the stationary frequencies and on the exchangeability rates (Höhna et al. 2017). Furthermore,255

to account for rate variation among lineages we used a relaxed-clock model with uncorrelated lognormal256

distributed rates (UCLN, Drummond et al. 2006). We applied an uninformative hyperprior distribution on257

both the mean ∼ uniform(0, 100) and standard deviation, sd ∼ uniform(0,100) of the branch-specific clock258

rates.259

Estimating a dated phylogeny of most insect clades is extremely challenging because of the lack of260

appropriate fossils for node calibrations. We found five fossil taxa belonging to different genera within261
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Table 1: Fossils and calibration constraints for the time-calibrated divergence time analysis.

Fossil taxon Max age
(MA)

Min age
(Ma)

Reference Monophyletic clade constraint

†Lampyris orciluca 12.7 11.608 Heer (1865) †Lampyris orciluca, Lampyris noctiluca
†Lamprohiza fossilis 28.4 23.03 Kazantsev (2012) †Lamprohiza fossilis, Lamprohiza splendidula
†Electrotreta rasnitsyni 37.2 33.9 Kazantsev (2012) †Electrotreta rasnitsyni, Drilaster sp, Stenocladius

shirakii
†Lucidota prima 37.2 33.9 Wickham (1912) †Lucidota prima, Lucidota atra
†Photinus kazantsevi 37.2 33.9 Alekseev (2019) †Photinus kazantsevi, Photinus sp 1, Photinus sp 2,

Photinus floridanus, Photinus macdermotti 2, Phot-
inus stellaris, Photinus ardens, Photinus carolinus,
Photinus pyralis, Ellychnia sp, Ellychnia corrusca,
Photinus macdermotti 1, Photinus granulatus, Photi-
nus australis, Photinus brimleyi

Lampyridae (Table 1). We included the recently published fossil for the Photinus clade; †Photinus Kazantsevi262

found in Baltic amber and dated to the Upper or Mid-Eocene (33.9 to 47.8 ma Alekseev 2019). However, the263

taxonomic placement of this fossil specimen is unknown, i.e., whether this fossil represent a stem or crown264

fossil, or might even be wrongly described as belonging to Photinus. To explore the sensitivity of our fossil265

calibrations and divergence time analyses, we performed each divergence time analyses for the three data266

subsets twice; once including †Photinus Kazantsevi and enforcing Photinus to be monophyletic and the other267

time excluding †Photinus Kazantsevi. This sensitivity analysis provides both insights into the robustness of268

the divergence time analysis when a fossil is excluded (Near and Sanderson 2004; Saladin et al. 2017) and269

the placement of †Photinus Kazantsevi.270

We also omitted using the fossil †Electrotreta rasnitsyni because our preliminary analyses showed that271

Drilaster sp and Stenocladius shirakii were not recovered as sister species (see also Martin et al. 2019). We272

did not want to enforce the sister relationship between Drilaster sp and Stenocladius shirakii because this273

could bias the phylgeny inference.274

We used the fossilized birth-death-range process (Stadler et al. 2018) to time-calibrate the Lampyridae275

phylogeny. The fossilized birth-death range process requires assignment of fossils to clades (see Table 1) and276

integrates over both the actual placement within the clade (e.g., stem vs crown) and the actual time of fossil277

within the specified stratigraphic range. That is, we provided both minimum and maximum ages (Table 1)278

for each fossil taxon. Then, the fossilized birth-death range process gives equal probability that the true age279

of the fossil was within the specified range. In principle, we could omit the monophyletic constraints if we had280

morphological data for both fossil and extant taxa using tip-dating approaches (Ronquist et al. 2012; Arcila281

et al. 2015; Gavryushkina et al. 2017). Unfortunately, there does not exist an appropriate morphological282

dataset for fossil and extant Lampyridae which prohibits tip-dating approaches.283

Estimating the divergence times under a relaxed-clock model is extremely challenging because of the non-284

identifiability between evolutionary rates and time (Donoghue and Yang 2016). We used a newly developed285

MCMC move, the RateAgeBetaShift, to alleviate the problem of highly correlated parameter estimates286

(Zhang and Drummond 2020). Additionally, we performed 12 independent Metropolis-Coupled MCMC287

(MCMCMC, Altekar et al. 2004) runs with one cold and seven heated chains for 50,000 iterations (with288

on average 458 moves per iteration). Each single MCMCMC replicate took up ∼ 1, 111, ∼ 618 and ∼ 956289
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hours (for the three data subsets respectively) using 8 CPUs simultaneously with a total of ∼ 515, 710 CPU290

hours (∼ 21, 487.93 CPU days or ∼ 58.87 CPU years). This high computational cost using only 24 to 37291

loci demonstrates that it is computationally unfeasible to perform joint Bayesian divergence time analyses292

using all 436 loci.293

Results294

Properties of the AHE loci295

We obtained a minimum of 218 variables sites and a maximum of 2,071 variable sites with a mean of 696296

variable sites (Figure 4 and S2). Similarly, we obtained a minimum of 23 invariable sites, a maximum of of297

1067 invariable sites and a mean of 225 invariable sites. We used the number of variable sites as a proxy298

for how informative a locus is (Townsend 2007). Overall, the distribution of the number of variable sites299

appeared unimodal without extremely low outliers. Thus, we did not see any indication that specific loci300

should be particularly poor for phylogenetic inference.301

The minimum and maximum pairwise distance showed interesting patterns. The majority of loci had302

a minimum pairwise distance of zero (Figure 4 and S2), which means that the alignments contained two303

sequences without substitutions among them. Hence, there is no phylogenetic signal to distinguish between304

the sequences. In itself, this low pairwise distance does not imply a problem for phylogenetic inference305

because the two taxa will be placed as sister taxa. However, this distribution could indicate that there are306

several taxa that cannot be resolved.307

The maximum pairwise distance showed a skewed distribution with some larger outliers. This could308

indeed be problematic. First, the high maximum pairwise distance will most likely lead to long branches in309

the phylogeny. Second, the high distance could occur due to non-homologous sequences. The sequences, for310

example, could be contaminated, mis-aligned and/or represent paralogs.311

The distribution of GC content showed some slightly multi-modal and skewed mean GC content and312

variance in GC content (Figure 4 and S2). The mode with lower mean GC content and higher variance in313

GC content could represent loci which are problematic for phylogenetic inference.314

Gene trees315

Posterior probabilities of named clades— Our single loci (gene trees) phylogenetic analyses yielded very316

mixed results (Figure 2 and S3). On a subfamily level, monophyly of Lampyrinae and Amydetinae was317

rejected by all 436 loci, whereas the monophyly of Luciolinae and Photurinae was rejected by the majority318

of loci (Figure S3). The monophyly of Ototretinae was ambiguously supported and the Lamprohizinae was319

the only subfamily which we recovered as monophyletic. The results on a tribe level were similar; either all320

or the majority of loci rejected the monophyly of all six tribes (Cratomorphini, Lamprocerini, Lampyrini,321

Photinini, Phosphaenini and Luciolini). The monophyletic support increased on the genus level; eight of322
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Figure 2: Posterior probability of being monophyletic per AHE locus for five example clades. For each AHE
locus, we computed the posterior probability that the clade is monophyletic. A histogram with most loci having a high posterior
probability (e.g., Ellychnia) depicts strong support by the majority of AHE loci. Conversely, a histogram with most loci having
a low posterior probability (e.g., Ototretinae) depicts strong support against monophyly by the majority of AHE loci. Other
clades (e.g., Photinus) received contradicting support with some loci strongly supporting and other loci strongly rejecting
monophyly. The histograms for all clades is shown in the supplementary material.

the fourteen genera were recovered as monophyletic, five genera were rejected as being monophyletic and323

Australoluciola was ambiguously recovered as either monophyletic or not (Figure S3).324

Correlation between missing data and posterior support— Given the poor support on higher taxonomic325

levels, and the ambiguous support for some of the named clades, we investigated whether there is a correlation326

between missing data and phylogenetic accuracy. Here, we associate phylogenetic accuracy with the ability327

to recover monophyly of an established clade. Specifically, we used the posterior probability of Photinus328

being monophyletic. We focus here on Photinus because it is a well studied genus whose monophyly is329

not debated (Stanger-Hall et al. 2007; Lower et al. 2017; Martin et al. 2019) although we observed rather330

ambiguous support (Figure 2). The same investigation for all named clades is shown in the Supplementary331

Material Figure S4.332

We observed that there is no correlation between sequence coverage and the posterior probability of Phot-333

inus being monophyletic (Figure S4). This results is actually expected because we removed taxa which had334

50% or more sites in the sequence missing. The overall sequence coverage instead represents the completeness335

of the entire alignment and therefore loci with higher average sequence coverage are loci that contain more336

taxa after pruning. The same trend and correlation between sequence coverage and phylogenetic accuracy337

can be seen for all other tested clades (Figures S4). Thus, our pruning of incomplete sequences from the338

alignment makes filtering loci based on overall sequence coverage futile.339

Correlation between summary statistics of the data and posterior support— Next to the sequence complete-340

ness of a loci, other summary statistics of the data could provide good indicators about the quality and341

usefulness of a locus (phylogenetic accuracy). Again, we used the ability to recover monophyly of the clade342

Photinus as a predictor for phylogenetic accuracy. We compared several summary statistics to the posterior343

probability of Photinus being monophyletic (Figure 3, green dots and green dashed line). Instead of seeing344

clear trends (i.e., monotonously increasing or decreasing correlations), we observed unimodal correlation345

(e.g., for the number of invariant sites). That means that outlier loci with extreme values for the summary346

statistics produce lower phylogenetic accuracy (e.g., number of invariant sites, minimum GC content and347
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Multinomial Profile Likelihood
PPS vs. PP
Data stats vs. PP
Data stats vs. PPS

Number of Variable Sites Number of Invariant Sites

Min Pairwise Distance Max Pairwise Distance Min GC content

Max GC content Mean GC content Variance of GC content

Figure 3: Comparison between phylogenetic accuracy (i.e., posterior probability of the clade Photinus being
monophyletic), model adequacy (i.e., posterior predictive p-values) and data summary statistics obtained for
the AHE dataset of Martin et al. (2019). In blue we show the comparison between posterior predictive p-values (x-axis) and
the posterior probability of Photinus being monophyletic (y-axis). In green we show the comparison between data summary
statistics (x-axis) and the posterior probability of Photinus being monophyletic (y-axis). In green we show the comparison
between data summary statistics (x-axis) and posterior predictive p-values (y-axis). The dashed lines represent smoothed
spline function of the corresponding comparisons. We observe that there is no correlation between model adequacy (posterior
predictive p-values) and the posterior probability of Photinus being monophyletic (blue line). Interestingly, we observe some
correlation between data summary statistics and model adequacy (red line). For each AHE locus, we computed the posterior
probability that the clade Photinus is monophyletic. In the supplementary material we show each comparison separately.
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maximum GC content). Only for the minimum pairwise distance and the variance in GC content did we348

observe a positive correlation (and negative correlation, respectively) with phylogenetic accuracy. A nega-349

tive correlation between the variance in GC content and phylogenetic accuracy is expected because a low350

variance in GC content corresponds to more homogeneous substitution processes which are easier to model351

and produce less biased phylogenetic estimates (Foster 2004).352

Model adequacy— Our posterior predictive simulations showed clear model violations for all loci (Figure 5353

and S9). No single locus passed all eight posterior predictive checks using a significance level of α = 0.05.354

Thus, based on our pipeline and our model adequacy checks, we do not have an appropriate phylogenetic355

model for a single locus. All of our gene tree estimates could be biased due to model violations. If we would356

filter our original dataset based on which locus passed all model adequacy checks, then we would be left357

without any locus to proceed further.358

The minimum, maximum, mean and variance of GC content is more difficult to interpret with regards to359

our phylogenetic model. The minimum GC content of the posterior predictive datasets was too low (posterior360

predictive p-value close to 0.0) or too high (posterior predictive p-value close to 1.0) for the majority of loci.361

Since our phylogenetic substitution model assumes a homogeneous process with all sequences having the362

same stationary distribution (i.e., same expected GC content), it is possible that we do not correctly model363

outliers sequences with either high or low GC content. This hypothesis corroborated that our posterior364

predictive datasets have too low variance in GC content (Figure ??, posterior predictive p-value close to365

0.0). Nevertheless, it is unexpected that our posterior predictive datasets have too low mean GC content.366

The mean GC content should be modeled accurately by the stationary distribution of the substitution367

process.368

We observed no clear correlation between the posterior predictive p-value and the gene tree estimation369

accuracy (when assuming monophyly of Photinus as a proxy for gene tree accuracy, Figure ?? blue dots370

and dashed blue line). However, we observed a negative correlation between several summary statistics and371

posterior predictive p-values (Figure ?? red dots and dashed red line). This indicates that large summary372

statistics are likely to be outliers which we cannot model adequately. For example, a high minimum or373

maximum pairwise distance could be alignment errors and removing these loci could improve phylogenetic374

inference.375

Simulation Study376

In our simulation study, we simulated 12 sets of 436 loci under different conditions. The motivation of the377

simulation study was to establish (1) how much gene tree error is realistic, (2) the impact of missing sequence378

data on phylogeny inference and model adequacy testing, and (3) the impact of unequal distribution of fast379

versus slow evolving sites in combination with missing sequence data on phylogeny inference and model380

adequacy testing.381

First, we observed that simulated complete alignments had different distributions of summary statistics382

compared to the empirical data. Interestingly, when we masked the alignments to mimic the distribution383

of missing sequence data as in the original AHE dataset, then we obtained comparable summary statistics.384
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Empirical UCE

IID complete

IID missing

UCE rate complete

UCE rates missing

Multinomial Profile Likelihood Number of Variable Sites Number of Invariant Sites Min Pairwise Distance Max Pairwise Distance Min GC content Max GC content Mean GC content Variance of GC content

Figure 4: Summary statistics of the empirical AHE datasets and simulated datasets. The top row shows the
summary statistics computed for the simulated dataset with missing sequences and systematically distributed highly variable
sites. The second row shows the summary statistics computed for the simulated dataset with complete sequences and system-
atically distributed (i.e., akin to the empirical AHE dataset) highly variables sites. The third row shows the summary statistics
computed for the simulated dataset with missing sequences and homogeneous highly variable sites. The fourth row shows
the summary statistics computed for the simulated dataset with complete sequences and homogeneous (i.e., independent and
identically distributed, IID) highly variables sites. The bottom row shows the summary statistics computed for the empirical
dataset of Martin et al. (2019). The simulated datasets show similar distributions to the empirical dataset only if missing
sequences were considered. The distribution of highly variables versus conserved sites had little to no impact on the summary
statistics.

Specifically, the distribution of minimum and maximum pairwise distance matched the empirical distribution385

only if we removed sites distributed exactly as in the empirical dataset. Similarly, the distribution of mean386

and variance of GC content matched between simulated dataset and empirical dataset only if we removed387

sites distributed exactly as in the empirical dataset. Thus, the observed variance in GC content from the388

empirical data could be a bias observed due to the missing data. However, the distribution of maximum389

and minimum GC content are wider for the empirical data than for the simulated data. Therefore, not all390

aspects of the empirical data could be explained solely due to missing data. Furthermore, the systematic391

distribution of highly variable sites at the beginning and end of the sequences compared with the conserved392

regions in the center did not impact the computed summary statistics.393

Empirical UCE
IID complete

IID missing
UCE rate complete
UCE rates missing

Multinomial Profile Likelihood Number of Variable Sites

Number of Invariant Sites

Min Pairwise Distance

Max Pairwise Distance

Min GC content

Max GC content

Mean GC content

Variance of GC content

Figure 5: Posterior predictive p-values for the empirical and simulated datasets. The top row shows the frequency
of posterior predictive p-values for the empirical dataset of Martin et al. (2019). The second row shows the posterior predictive
p-values for the simulated dataset with complete sequences and homogeneous (i.e., independent and identically distributed, IID)
highly variables sites. The third row shows the posterior predictive p-values for the simulated dataset with missing sequences
and homogeneous highly variable sites. The fourth row shows the posterior predictive p-values for the simulated dataset with
complete sequences and systematically distributed (i.e., akin to the empirical UCE dataset) highly variables sites. The fifth row
shows the posterior predictive p-values for the simulated dataset with missing sequences and systematically distributed highly
variable sites. The empirical dataset has mostly posterior predictive p-values of either 0.0 or 1.0, indicating model violation and
inadequacy. Conversely, non of the simulated datasets showed model violations as the model used for simulation and inference
was identical. Missing data did not impact the posterior predictive p-values and thus the computation of the summary statistics
in a systematically biased way.

Our posterior predictive simulations using the simulated data showed that our phylogenetic model was394

adequate, except in the case when the data were simulated with highly variable sites at the ends of the395

alignment and sites missing from the alignments. This result is not surprising because the model used for396

simulation and inference matched but instead very reassuring that our implementation of the models is397
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indeed correct. Furthermore, our results imply that missing data, even when distributed in a systematic398

manner, do bias our posterior predictive p-values and model adequacy tests. The only exception was when399

using the the multinomial likelihood and the maximum pairwise distance for the simulated data with the400

combination of systematically ordered highly variables sites at the borders and missing sequence data. It401

remains therefore surprising that our phylogenetic substitution model was not adequate for even a single402

empirical locus.403
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Figure 6: Gene tree discordance measured using the normalized Robinson-Foulds (RF) distance between
several reference trees and the single gene trees. As reference trees, we used the the maximum a posterior (MAP)
phylogeny using the three different data subsets (high coverage, low variance in GC content, and high posterior probability of
Photinus being monophyletic). The left panel shows the frequency of the RF-distance for the empirical dataset of Martin et al.
(2019). The second panel shows the RF-distance for the simulated dataset with complete sequences and homogeneous (i.e.,
independent and identically distributed, IID) highly variables sites. The third panel shows the RF-distance for the simulated
dataset with missing sequences and homogeneous highly variable sites. The fourth panel shows the RF-distance for the simulated
dataset with complete sequences and systematically distributed (i.e., akin to the empirical UCE dataset) highly variables sites.
The right panel shows the RF-distance for the simulated dataset with missing sequences and systematically distributed highly
variable sites. Neither of our simulation conditions are a strongly negative impact on gene tree discordance.

We observed an unexpected amount of gene tree discordance between our species tree and the gene trees404

(Figure 6). The RF-distance computed for the empirical dataset are more centered at intermediate values405

and never close to 0. That means, not a single gene tree was equal to or close to any of our reference trees.406

Using the simulated data as a reference predicts that we should observe more often gene trees that are similar407

to the species tree. It remains elusive to what reason is causing this unexpected gene tree discordance.408

Time-Calibrated Lampyridae Phylogeny409

Topology of Lampyridae— The support for the named clades using the three concatenated data subsets410

largely matches the support from the single gene tree analyses (Figure 2 and S12). The concatenated411

analyses inferred trees with extremely high support; the posterior probabilities of the named clades were412

either 0.0 or 1.0. This strong support could be inflated posterior probabilities instead of true signal. The413

selected four MCMC replicates show identical posterior probabilities, indicating convergence of the MCMC414

analyses.415

The most interesting results are obtained for the clade that received ambiguous support from the single416

gene trees: Photinus, Australoluciola and Ototretinae. It is expected that we received high posterior support417

for Photinus being monophyletic for the data subset with the loci support Photinus monophyly with at418

least 0.95 posterior probability. Reassuringly, the other two data subsets also recovered Photinus to be419

monophyletic. It is therefore most probable that Photinus is indeed monophyletic and the single gene420
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tree results are driven by missing data (see results of the simulation study above). Note that we defined the421

clade Photinus to include Ellychnia in the computation of the posterior probability for monophyly. In all our422

analysis we recovered both Ellychnia itself being monophyletic and Photinus + Ellychnia being monophyletic,423

indicating that Photinus is paraphyletic (Figure 7). The inclusion of Ellychnia within Photinus has been424

reported previously (Stanger-Hall et al. 2007; Stanger-Hall and Lloyd 2015; Martin et al. 2019) and has led425

Zaragoza-Caballero et al. (2020) to change Ellychnia to Photinus.426

All three data subsets agreed that Australoluciola is not monophyletic. In the UCE dataset from Martin427

et al. (2019) there are only two species belonging to Australoluciola (see Table S1). Our inferred results show428

Australoluciola being paraphyletic with Pteroptyx sp and Trisinuata sp nested within, agreeing with previous429

results by Jusoh et al. (2018). Ototretinae also consisted of only two species (Drilaster sp and Stenocladius430

shirakii) in the AHE dataset by Martin et al. (2019). Ototretinae was inferred to be monophyletic using the431

Photinus 0.95 posterior probability data subset, but was not found to be monophyletic using the other two432

data subsets (Figure S12).433

Table 2: Fossils and calibration constraints for the time-calibrated divergence time analysis.

Study Age (MA) Data Method

McKenna et al. (2015) 78 4 Lampyridae species, eight nu-
clear genes

BEAST with 15 node-calibrations

Bocak et al. (2016) 130 (120-145) 2 Lampyridae species, 13
mtDNA genes

BEAST with 2 node calibrations

Kusy et al. (2018) 80 (60–97) 8-gene dataset with 4 Lampyri-
dae species

BEAST with 2 node-calibrations

Amaral et al. (2019) 71.9 (57.9–85.6) 13 Lampyridae species, 100
amino acid sequences

BEAST with 2 node-calibrations

McKenna et al. (2019) 90 (60–110) 2 Lampyridae species, 4,818
genes

MCMCTree with 18 node calibrations

Zhang et al. (2020) 100 (74.38–129.33) 5 Lampyridae species, 531 genes MCMCTree with 2 node calibrations

This study 139.85 (108.43–165.68) 37, 24 and 30 AHE loci RevBayes using the fossilized birth-
death process with 4 fossil taxa

Divergence Times of Lampyridae— We inferred a time-calibrated phylogeny of Lampyridae. Our estimate434

of the crown age of Lampyridae is 139.85 Ma with a 95% credible of [108.43, 165.68]. Our estimated crown435

age is older than most previous estimates (Table 2). Toussaint et al. (2017) showed that previous divergence436

time estimates of McKenna et al. (2015) are likely underestimates. Specifically, McKenna et al. (2015)437

estimated a crown age of Elateroidea of 166.18 (151.83–181.57) while Toussaint et al. (2017) estimated a438

crown age of 246.02 (231.35–260.12).439

Most previous analyses used only very few Lampyridae species (up to five species) which could possibly440

bias crown age estimates if the true crown group was not sampled. Furthermore, most previous studies441

should not be considered as independent evidence, as for example Zhang et al. (2020) uses divergence times442

for calibrations which were estimated by Zhang et al. (2018).443

Our divergence times are robust for the majority of clades when comparing the three different data subsets444

(Figure S13). If the clades were identified as being monophyletic for all three data subsets (Figure S12), then445

also the estimated crown ages were identical (Figure S13). However, when the clades were not found to be446
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Figure 7: Time-calibrated phylogeny of Lampyridae. Estimated time-calibrated lampyridae phylogeny under the
fossilized birth-death-range process using the high posterior probability of Photinus being monophyletic data subset.
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monophyletic, then the clade ages also differed (e.g., Ototretinae). This result is not surprising as the crown447

age is defined as the most recent common ancestor for the selected taxa, and if this most recent common448

ancestor includes different species then the interpretation of this ancestor and its age should be different.449

Our sensitivity analysis of including and excluding the recently published Photinus fossil, †Photinus450

kazantsevi (Alekseev 2019), yielded largely identical results (Figure 8). †Photinus kazantsevi was dated to451

be 33.9 to 37.2 million years old. Our estimated crown age of Photinus was between 32 and 63 Ma, including452

and excluding †Photinus kazantsevi. This result gives us confidence that †Photinus kazantsevi can be used453

to calibrate the crown age of Photinus.454
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Figure 8: Estimated crown age of Photinus. We show the crown age of the Photinus clade for the three data subsets with
(top row) and without (bottom row) using the †Photinus kazantsevi. First, we observe that the data subset has little impact
on the estimated Photinus crown age. Second, the usage of †Photinus kazantsevi does not significantly impact the Photinus
crown age estimate, which corroborates the †Photinus kazantsevi placement and Photinus crown age.

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469195doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469195
http://creativecommons.org/licenses/by/4.0/


Discussion455

Divergence time estimation using genomic data456

The objective of this study was to estimate a time-calibrated phylogeny of fireflies using genomic data. The457

computational demand was extremely high prohibiting the full use of the 436 loci combined with adequate458

full-likelihood Bayesian divergence time estimation methods (e.g., adequately partitioned substitution model,459

relaxed clock model and fossilized birth-death process). Even when we used a smaller subset of the data, i.e.,460

24 to 37 loci, the computational demand was still high (several weeks to months for a single analysis) but461

manageable. Until faster methods are available, we can only resort to using a subset of data if we wish to use462

full-likelihood methods for divergence time estimation. However, until now, there are no clear guidelines on463

how to select the best data subset for divergence time estimation. Here, we constructed three data subsets464

and explored several characteristic of the data but failed to find a clear correlation to phylogenetic accuracy.465

First, we observed that our inferred phylogenies from the three data subsets are mostly identical. That466

means that different data subset can converge on the same phylogeny and this could indicate support that467

the inferred phylogeny is robust. Other studies had shown that different data sources (e.g., exons, ultra468

conserved elements and transcriptomic sequences) yield different phylogenies, e.g., Betancur-R et al. (2019).469

In our study with used the same data source but different data subset. Thus, the difference in results of470

phylogenomic studies could originate rather from the data source than the amount of data.471

Second, divergence time estimates seem robust to the chosen data subset if the inferred topology agreed.472

It is not surprising that a clade, which was inferred to be monophyletic for one data subset but not for473

another data subset, obtained a different crown age estimate (e.g., Ototretinae). Therefore, we conclude474

that it is more important to focus first on robust estimation of phylogeny using different data subset. Once475

we understand how to select data subsets to produce reliable phylogenies, then we can safely use the same476

data subsets for divergence time estimation. Our study raises some important aspects where we need to477

improve our inference of phylogeny.478

Unrealistic gene tree discordance479

Our analyses of the 436 AHE loci revealed strong gene tree discordance. Such large amounts of gene tree480

discordance are not expected even when allowing for incomplete lineage sorting. Richards et al. (2018) showed481

that discordance between mitochondrial loci and nuclear loci is equally large, suggesting that much of the482

apparent gene tree discordance originates from methodical factors and biological factors. Our simulation483

study corroborates these findings: we cannot explain the observed gene tree discordance with incomplete484

lineage sorting or phylogenetic uncertainty.485

In our analyses, we did not clean the AHE dataset but took the data as given. There are several possible486

sources of error which we did not check. For example, we did not assess orthology and did not check for487

alignment errors. However, the AHE dataset was curated following current best practices and therefore488

should reflect the state of the field.489

In the last decade, we have seen several debates about using concatenation or coalescent-based species490

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469195doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469195
http://creativecommons.org/licenses/by/4.0/


tree approaches (for a recent review see Bravo et al. 2019). Our observed higher accuracy of the concatenated491

analyses over the single gene trees is surprising and provides empirical evidence against standard theoret-492

ical expectations. We expect that there is recombination between loci and therefore that concatenation493

approaches can be misleading (Degnan and Rosenberg 2009). Instead, we find that the information within494

single loci is misleading and, when concatenated, the noise is canceled out to leave the true phylogenetic495

signal. We do not advocate that concatenation approaches are philosophically or theoretically superior,496

but instead we notice that current single gene tree estimation methods are plagued by high gene tree error497

(Bossert et al. 2021) and thus strong empirical violation of the assumptions of the multispecies coalescent498

process Reid et al. (2014). We need to understand and alleviate the gene tree error before we can con-499

tinue with the debate on coalescent-based species tree approaches. Finally, even if both concatenation and500

summary-based multispecies coalescent approach show robust to noise in single gene tree estimates (Mol-501

loy and Warnow 2018), noise in single gene tree estimates are highly problematic when used for ancient502

population size estimation and inference of gene flow (Kutschera et al. 2014).503

Filtering loci504

Previous studies have shown that loci can be filtered to increase phylogenetic accuracy (e.g., Alda et al.505

2019). However, previous studies mainly focused on the resulting species tree and not on the single genes506

(e.g., Leite et al. 2021). Overall, we could not identify a single summary statistics as a reliable predictor for507

phylogenetic accuracy (Figure 3). Thus, we could not use single summary statistics as data filtering criteria508

for robust phylogenetic inference. It is possible that some phylogenetic relationships of Lampyridae require509

revision and thus our proxies of phylogenetic accuracy are misleading. Clearly more work is needed if these510

summary statistics of the data are used for selecting data subsets. Our results show some promise and single511

summary statistics could be used to detect outliers which are then removed to clean the dataset (Figure 3).512

Additionally, a combination of summary statistics might provide a fruitful future approach.513

Posterior predictive simulations514

Posterior predictive distributions to test model adequacy have not been routinely applied in phylogenomic515

studies (Brown and Thomson 2018). If a model is not adequate for a given dataset, then we cannot guar-516

antee the accuracy and robustness of the estimates. With genomic data, our hope is that for some loci we517

have adequate phylogenetic substitution models while for other loci we do not. Such a result would allow us518

to proceed with the subset of loci that we can model adequately. Unfortunately, our results show that we519

do not have adequate phylogenetic substitution models for any of the 436 AHE loci. This fact should not520

be downplayed and we direly need more accurate substitution models. First, we need to develop a better521

understanding of posterior predictive distribution and the expected behavior under simulations. Second, we522

need more and better summary statistics that will guide us in the development of more accurate phyloge-523

netic substitution models. Third, we need to adopt our standard phylogenetic pipelines to include more524

complex substitution models, for example, within-locus partitioning (Freitas et al. 2021), site-heterogeneous525

substitution models (Lartillot et al. 2007; Wu et al. 2013) and Markov modulate Markov model (Baele et al.526
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2021). Then, we should revisit both the gene tree accuracy as well as gene tree model adequacy. Until527

then, we cannot say with confidence why we observe so much gene tree discordance, whether biological or528

methodological.529

Missing data and summary statistics— We investigated here if missing sequence data is a problem for530

phylogenetic inference. In theory, missing sequence data does not pose a problem if sufficient information531

is retained (Philippe et al. 2004). Imagine that we would add another column to our data matrix but this532

column consists only of missing sites. In that case, we have not added any information to our data and in533

fact the likelihood function remains the same after adding this column of missing data (Felsenstein 2004).534

Hence, missing data in itself is not problematic.535

Previous studies have investigated the impact of missing data using simulation studies (Philippe et al.536

2004; Wiens 2003). A challenge to evaluate missing data is how the missing data is distributed. If we537

randomly place missing data in the data matrix, then this has only a minor impact on our ability to538

correctly infer the true phylogeny. Here we used an empirically informed approach and removed sites using539

the same positions as in the original data matrix (see Supplementary Figures XXX). In our simulations it540

occurred that complete sequences were missing and certain regions (the boundary of the sequences) have541

higher prevalence of missing data. This uneven distribution of missing data has the effect that some taxa542

cannot be placed accurately and the entire gene tree is erroneous. Therefore, it was necessary to remove543

taxa for a locus with too few non-missing sites, e.g., we removed taxa with fewer than 50% sites.544

Our simulations and results confirm theoretical expectations that missing sites do not bias phylogenetic545

inference (Figure 6). However, we observed that missing sites to bias distributions of summary statistics546

(Figure 4) and a non-uniform distribution of highly variable sites together with a non-uniform distribution of547

missing sites can bias posterior predictive distributions (Figure 5). This study was the first study to explore548

missing data for posterior predictive distributions. In most cases, summary statistics are not explicitly549

defined for missing data. For example, how should the GC content be computed for a sequence where 50%550

of the sites are missing? We resolved the issue by computing the GC content of only the non-missing sites,551

although missing sites could be more concentrated at GC rich regions (Beauclair et al. 2019). Similarly, how552

should the minimum distance between two sequence without overlap be computed? Our approach was to553

simply omit these sequences. These two examples show the importance of simulating missing data with the554

same distribution as the observed data to not bias summary statistics. Since the prevalence of missing data555

increases for phylogenomic studies, we need to find better solutions to incorporate missing sequence data556

into our analyses and summary statistics, both for filtering as well as model adequacy testing.557

Conclusions558

The primary aim of this study was to estimate a time-calibrated phylogeny of Lampyridae. We used the559

previously published 436 AHE loci from Martin et al. (2019). To calibrate the phylogeny, we employed560

the recently developed fossilized birth-death-range process (Stadler et al. 2018) together with standard561
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relaxed-clock models (Drummond et al. 2006) in a Bayesian framework, as implemented in the software562

RevBayes (Höhna et al. 2016). Full Bayesian relaxed-clock divergence time estimation analyses cannot563

handle datasets with hundreds of loci without sacrificing model complexity. Instead, we selected three564

different data subsets and found that divergence time estimates agreed for all clades that were identical565

between analyses (Figure ??). We estimated a crown age of Lampyridae of 139.85 [108.43, 165.68] Ma which566

is considerably older than some previous estimates (Kusy et al. 2018; Zhang et al. 2018; Amaral et al. 2019;567

McKenna et al. 2019) but matches recent findings of earliest fossils belonging to Lampyridae (Kazantsev568

2015) and is in agreement with some other studies (Bocak et al. 2016; Toussaint et al. 2017; Zhang et al.569

2020) obtained from taxonomically broader studies. Thus, divergence time estimation using hundreds of loci570

is robust if a representative data subset is chosen. Previous results on topological disagreement depending571

on data filtering (e.g., Kuang et al. 2018; McLean et al. 2019) apply to divergence time estimation too.572

In the process of selecting robust data subsets, we investigated the phylogenetic accuracy of single AHE573

loci. We found an unexpected amount of gene tree discordance (Figure 6). We explored the impact of574

incomplete lineage sorting, missing sequence data and systematic distribution of highly variable sites using575

simulations. The observed gene tree discordance cannot be explained due to incomplete lineage sorting.576

Instead, the gene tree discordance most likely originates from data errors (e.g., paralogs and poor align-577

ments) or model inadequacy (Figure 5). Surprisingly, our standard phylogenetic substitution models are not578

adequate for even a single AHE locus. We showed that this model inadequacy is not due to missing data579

(Figure 5) although missing data influence the distribution of summary statistics (Figure 4). More work on580

understanding the causes of the apparent gene tree discordance is needed. It is paramount to have robust581

gene trees not only for phylogeny and divergence time estimation but also to draw any conclusions about582

biological processes such as incomplete lineage sorting, horizontal gene transfer and gene flow.583
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tropical caducifolio del paćıfico mexicano. Revista mexicana de biodiversidad 86:638–651.842
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