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Abstract 

Domain boundary prediction is one of the most important problems in the study of protein structure 

and function, especially for large proteins. At present, most domain boundary prediction methods 

have low accuracy and limitations in dealing with multi-domain proteins. In this study, we develop a 

sequence-based protein domain boundary predictor, named DomBpred. In DomBpred, the input 

sequence is firstly classified as either a single-domain protein or a multi-domain protein through a 

designed effective sequence metric based on a constructed single-domain sequence library. For the 

multi-domain protein, a domain-residue level clustering algorithm inspired by Ising model is 

proposed to cluster the spatially close residues according inter-residue distance. The unclassified 

residues and the residues at the edge of the cluster are then tuned by the secondary structure to form 

potential cut points. Finally, a domain boundary scoring function is proposed to recursively evaluate 

the potential cut points to generate the domain boundary. DomBpred is tested on a large-scale test set 

of FUpred comprising 2549 proteins. Experimental results show that DomBpred better performs than 

the state-of-the-art methods in classifying whether protein sequences are composed by single or 

multiple domains, and the Matthew’s correlation coefficient is 0.882. Moreover, on 849 multi-domain 

proteins, the domain boundary distance and normalised domain overlap scores of DomBpred are 

0.523 and 0.824, respectively, which are 5.0% and 4.2% higher than those of the best comparison 

method, respectively. Comparison with other methods on the given test set shows that DomBpred 

outperforms most state-of-the-art sequence-based methods and even achieves better results than the 

top-level template-based method. 

 

Keywords: protein domain, domain boundary prediction, domain-residue level clustering, inter-

residue distance 
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1 Introduction 

Protein structure domains are the fundamental units of protein structure, folding, function, evolution 

and design. More than 80% of eukaryotic proteins and 67% of prokaryotic proteins contain multiple 

domains, and many biological functions rely on the interactions amongst different domains [1, 2]. 

Thus, deducing protein domain boundaries is an essential step for determining structural folds, 

understanding biological functions and/or annotating evolutionary mechanisms [3]. Furthermore, 

with the revolutionary success of AlphaFold2 in protein structure prediction [4], there is a consensus 

in the community that the protein structures prediction for single domain is nearly solved [5]. In 

CASP14, AlphaFold2 structures have a median backbone accuracy of 0.96 Å RMSD95 ( αC  root-

mean-square deviation at 95% residue coverage, 95% confidence interval = 0.85–1.16 Å) [4], where 

CASP assesses the quality of protein structure predictions primarily on the individual domains. 

However, the full-chain modelling of multi-domain proteins remains a challenge in the absence of 

co-evolution information. There are two main approaches in the current modelling multi-domain 

protein structures [6]. The first is to directly predict the full-chain model from the protein sequence, 

such as AlphaFold [7], RaptorX [8] and I-TASSER [9]. The second is to divide multi-domain proteins 

into single domains, and then assemble the separately modelled domain structures into full-chain 

models through domain assembly methods, such as DEMO [2] and AIDA [10]. As the length of the 

protein sequence increases, directly predicting the full-chain model becomes very difficult and 

inefficient, but the assembly method is almost unaffected by the protein full-chain length. Therefore, 

how to accurately predict the domain boundary is the basis and key of the domain assembly methods. 

 

In general, domain boundary prediction methods can be classified into structure-based or sequence-

based. Structure-based methods require experimental or predicted protein structures for domain 

identification. CATHEDRAL [11] compares target protein structure against the template structures 

derived from the CATH [12] database to detect domains. DomainParser [13] uses a graph-theoretic 

approach to predict the domain boundary, in which each residue of a protein is represented as a node 

of the network and each residue-residue contact is represented as an edge with a particular capacity 

depending on the type of the contact. PDP [14] and DDOMAIN [15] split proteins into domains 

depending on the assumption that there are more intra-domain residue contacts than inter-domain 

contacts. DHcL [16] decomposes protein domains by calculating a van der Waals model of a protein. 

SWORD [17] assigns structural domains through the hierarchical merging of protein units, which are 
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evolutionarily preserved substructures that describe protein architecture at an intermediate level, 

between domain and secondary structure. Furthermore, some methods are based on 3D structure 

prediction. For example, RosettaDom [18] uses the Rosetta de novo structure prediction method to 

build three-dimensional models, and then applies Taylor s structure based domain assignment method 

to parse the models into domains. These methods which deduce domains from protein structures 

generally have higher accuracies, but they can be applied only to proteins with short sequence lengths 

or with known experimental structures due to the limited structure prediction ability and experimental 

limitations [3]. Compared with structural information, protein sequence information is easier to obtain 

[6]. Therefore, methods that predict domain boundary from sequences are more meaningful and 

challenging in principle [3]. 

 

Sequence-based domain identification methods can typically be categorised into two general groups. 

The first group is primarily homology-based methods, which detect domains by comparing them with 

homologous sequences having known annotated domains. For example, Pfam [19], CHOP [20] and 

FIEFDOM [21], in which the target sequences are searched through known protein structure or family 

libraries through hidden Markov model (HMM) or PSI-BLAST programs. Then, the domain 

boundary information is obtained from the homologous template or family. ThreaDom adopts a 

threading-based algorithm to improve remote homologous templates detection [22]. It firstly uses the 

LOMETS [23] program to thread a target sequence through PDB to find homologous templates 

followed by the multiple sequence alignment (MSA) construction based on the target sequence. 

According to these MSAs, a domain conservation score is calculated to measure the conservation 

level of each residue and further used to judge boundary regions. An extended version, 

ThreaDomEx[24], is further developed to assign discontinuous domains by domain-segment 

assembly. These homology-based methods can reach a high accuracy of predictions when close 

templates are identified, but the accuracy sharply decreases when the sequence identity between the 

target and template is low [22]. Another group of methods is ab initio methods, which can overcome 

this limitation to some extent [6], with representative examples including DOMPro [25], DoBo [26], 

ConDo [27], DNN-dom [28], and FUpred [3]. DOMPro [25] trains recursive neural networks for 

domain models with training features including sequence profiles, predicted secondary structure, and 

solvent accessibility. DoBo [26] introduces the evolutionary domain information that is included in 

homologous proteins into the protein domain boundary prediction. ConDo [27] utilises neural 
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networks trained on long-range, coevolutionary features, in addition to conventional local window 

features, to detect domains. DNN-dom [28] combines a convolutional neural network and 

bidirectional gate recurrent unit models to predict the domain boundary of a protein. FUpred [3] 

predicts protein domain boundary utilising contact maps created by deep residual neural networks 

coupled with coevolutionary precision matrices. However, the accuracy of sequence-based ab initio 

methods is often not high, although they are more practical especially in the absence of homologous 

sequences [3]. 

 

In the present work, we propose a novel ab initio sequence-based method, named DomBpred, to 

predict the domain boundary from protein sequences. In DomBpred, we construct a comprehensive 

domain sequence database based on the SCOPe and CATH databases and design an effective 

sequence metric to classify single-domain protein and multi-domain protein. For the multi-domain 

protein, a domain-residue level clustering algorithm inspired by Ising model is proposed to cluster 

the spatially close residues according to the inter-residue distance. The unclassified residues and the 

residues at the edge of the cluster are tuned by the secondary structure to form the potential cut points. 

Finally, a domain boundary scoring function is proposed to recursively evaluate the potential cut 

points to determine the domain boundary. Experimental results show that the domain classification 

ability and domain boundary prediction ability of DomBpred are better than those of comparison 

methods. 

 

2 Materials and methods 

The pipeline of DomBpred is shown in Figure 1. Starting from the input sequence, Jackhmmer [29] 

is employed to search homologous from a constructed single-domain sequence library (SDSL) to 

generate MSA, and then an effective sequence metric is used to determine whether the target sequence 

is a single-domain protein. If the target sequence is a multi-domain protein, the potential cut points 

are obtained by clustering close residues on the distance map. Then, the potential cut points are further 

tuned according to the predicted secondary structure information. Finally, a domain boundary scoring 

function is used to detect the domain boundary locations from the potential cut point collection. 
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Figure 1. Pipeline of DomBpred. (A) Single- and multi-domain protein classification, where a sequence metric is 
used to detect the classification of the target sequence. (B) Domain-residue level clustering for potential cut points. 
A set of potential cut points is obtained by clustering spatially close residues in the distance map. (C) Cut points 
adjustment. The potential cut points are tuned based on the predicted secondary structure. (D) Domain boundary 
determination. The domain boundary scoring function is used to evaluate potential cut points, and the domain 
boundary is finally generated based on the cut points. 
 

2.1 Single- and multi-domain proteins classification 

Known domain knowledge can be used to assist the identification of single-domain and multi-domain 

proteins from sequence. Thus, we collect the sequences of individual domain from SCOPe 2.07 

database [30] and CATH-Plus 4.3 database [31] to build a SDSL. In the data collection of SDSL, the 

protein sequence with more domains is included in SDSL if the same protein has a different number 

of domains defined in the two databases. If the same protein has same the number of domains defined 

in the two databases, the protein sequence defined in CATH-Plus 4.3 database is saved in SDSL. 

Finally, a pair-wise sequence identity < 100% and a sequence length > 35 residues are used to filter 

the domain sequences to obtain the final SDSL. 

 

Based on the SDSL, Jackhmmer [29] program is used to generate a MSA for the target sequence. In 

module A of pipeline, an effective sequence metric is used to determine whether the input sequence 

is a single-domain protein. The effective sequence metric is defined as follows: 

 
1

N k
eff effk

M M
=

=∑  (1) 
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where 𝑁𝑁 is the number of sequences in MSA and 𝑘𝑘𝑘𝑘 is the length of the k-th sequence in MSA; 

and ( , )iMat m k  represents whether the i-th residue of the k-th sequence in MSA forms a matched 

residue pair with the residue of the m-th sequence. ( , ) 1iMat m k =  if there is a matched residue pair; 

otherwise, ( , ) 0iMat m k = . If the number of matched residue pair exceeds half of the length of the k-

th sequence, the m-th sequence is considered as the similar sequence to the k-th sequence, and then 

( ) 1J x = ; otherwise, ( ) 0J x = . An illustration is shown in Figure 2. When effM  is greater than 1, 

the input sequence is judged as a multi-domain sequence, otherwise it is judged as a single-domain 

sequence. In DomBpred, the result is a direct output if the input sequence is predicted as a single-

domain sequence. Otherwise, the full-length multi-domain sequence needs to be further decomposed. 

 

 
Figure 2. Illustration of the matched residue pair and ( , )iMat m k  calculation process. When a matched residue 
pair is formed between i-th residue of the k-th sequence and a certain residue of the m-th sequence, then 

( , ) 1iMat m k = , otherwise ( , ) 0iMat m k = . When the sum of the scores of all residues of the k-th sequence exceeds 

half of the length of the k-th sequence, 
1

( ( , )) 1kL
ii

J Mat m k
=

=∑ ; otherwise, 0. 

 

2.2 Domain-residue level clustering for potential cut points 

In general, a domain is a compact and separate region in a protein, and the possibility of a domain 

boundary being located in the compact region is low. Inspired by the Ising model, a domain-residue 

level clustering method is designed to cluster spatially close residues based on the distance map to 

form a compact region. According to the predicted distance map of the target sequence, DomBpred 

clusters the residues with close distances into one cluster or class, and the unclassified residues and 
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the residues at the edge of the cluster are tuned based on the predicted secondary structure to form a 

set of potential cut points. 

 

2.2.1 Residue tag and update 

Each residue in the protein chain is assigned a numeric tag. Herein, for a target sequence, the numeric 

tags are set along the protein residues increment assignment. This setup can reflect an expected 

characteristic, that is, the residues adjacent in sequence tend to belong to the same domain. If a residue 

is surrounded by neighbours with a higher tag on average, then its tag increases; otherwise, it 

decreases. It is defined as an update cycle when the tag of each residue in the target sequence is 

updated once. At each update cycle, the new tag of residue 𝑖𝑖  is determined by its surrounding 

residues. The tag update formula is calculated as follows: 

 
1

( ( , ))
L

new old old old
i i i j

j
S S f S Sϑ

=

= + ∑  (4) 

 
  1 0

( )   0 0
1 0

x
f x x

x

>
= =
− <
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otherwise
ϑ
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 (6) 

where 𝑟𝑟 is the radius cut-off of the surrounding residues, and 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between the βC  

atoms of residues 𝑖𝑖 and 𝑗𝑗 in the distance map, where the distance map is generated by trRosetta 

[32]. 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑗𝑗 represent tags of residues 𝑖𝑖 and 𝑗𝑗, respectively. new
iS  represents the tag of residue 

𝑖𝑖 after the update, and old
iS  represents the tag of residue 𝑖𝑖 before the update. 

 

2.2.2 Dynamic neighborhood radius cut-off 

The cut-off of the neighbourhood radius 𝑟𝑟 is essential for domain-residue level clustering algorithm, 

and it affects the quality of potential cut points. When 𝑟𝑟 is small, the cut points may be generated in 

compact regions, and the quality of these cut points is usually not high, thereby also increasing the 

burden for further boundary determination. When 𝑟𝑟 is large, some spatially close domains merge 

together. In this case, the quality of these cut points is generally low, which also affects the accuracy 

of the final domain decomposition. Therefore, we design an adaptive method to dynamically 
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determine the cut-off of the neighbourhood radius 𝑟𝑟 according to the surrounding residues of each 

residue. For a residue, 𝑟𝑟 is determined based on the residue density, and the radius corresponding to 

the median of the density is selected as the value of 𝑟𝑟. An example for the selection of 𝑟𝑟 is shown 

in Supplementary Table S1. The residue density can be calculated as follows: 

 1
3

3 ( , )
 , [10,16]

4

L

j
r

dist i j
r

r
ρ

π
== ∈

∑
 (7) 

 
1

( , )
0

ij

ij

d r
dist i j

d r
≤

=  >
 (8) 

This adaptive method can ensure the quality of potential cut points, reduce the burden for further 

processing, and ensure that the spatially close domains are not merged together to the greatest extent. 
 

2.2.3 Iteration termination 

Under the guidance of the tag update formula (4) to (6), the compact region in the sequence evolves 

towards the same tag. Generally, the update is stopped when the tag of the residue in the sequence 

does not change after an update cycle. However, the tag at the boundary of the structure domain may 

fluctuate, so directly determining whether to stop updating by the change in tag in one update cycle 

is unsuitable. Here, to terminate the update, we design an iteration termination strategy as shown in 

Algorithm 1. In Algorithm 1, 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐��������⃗  represents the tags of all residues in the input sequence after the 

𝑐𝑐𝑐𝑐𝑐𝑐-th update cycle, and the cut-off parameter (𝑐𝑐) is set to 10−3. 

 

Algorithm 1 Iteration termination strategy 
Require: tag list (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐��������⃗ ← 〈𝑡𝑡𝑡𝑡𝑡𝑡1

𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑡𝑡𝑡𝑡𝑡𝑡2
𝑐𝑐𝑐𝑐𝑐𝑐, … , 𝑡𝑡𝑡𝑡𝑡𝑡𝐿𝐿

𝑐𝑐𝑐𝑐𝑐𝑐〉), cut-off parameter (𝑐𝑐) 
1:  for 𝑐𝑐𝑐𝑐𝑐𝑐 ← 1 to 𝐿𝐿 2⁄  do 
2:    if 𝑐𝑐𝑐𝑐𝑐𝑐 < 3 then 
3:      tag update 
4:    else 
5:      tag update 
6:      𝑎𝑎𝑎𝑎𝑎𝑎1���������⃗ = (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐−2�������������⃗ + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐−1�������������⃗ )/2 
7:      𝑎𝑎𝑎𝑎𝑎𝑎2����������⃗ = (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐−1�������������⃗ + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐��������⃗ )/2 
8:      if |𝑎𝑎𝑎𝑎𝑎𝑎2����������⃗ − 𝑎𝑎𝑎𝑎𝑎𝑎1���������⃗ | ≤ 𝑐𝑐 then 
9:        break 
10:     end if 
11:   end if 
12: end for 
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2.2.4 Tag adjustment 

In some proteins, the segment of one domain may be closer to other domains in space. In the 

DomBpred clustering process, these segments are clustered into other domains, which reduces the 

quality of potential cut points. Thus, we correct the segment by resetting the tags of these segments 

to tags of adjacent domains in the sequence. Figure 3 shows an example (1AGRA) to illustrate the 

process of tag adjustment. After the tag update, the protein is clustered into two regions. The residues 

in the dashed frame are clustered into red region because it is relatively closer to red region. However, 

these residues and green region belong to a same domain in the SCOPe annotation. These tags of the 

residues are reset to the tags of green region after the tag adjustment. 

 

 
Figure 3. Example of tag adjustment for protein 1AGRA. Residues with the same tag are clustered into one region, 
such as red and green regions, whereas residues with fluctuated tags are marked in yellow. The tag of the residues 
in the dashed frame changed from red region to green region after the tag adjustment process. 
 

2.2.5 Potential cut point collection 

As described above, the close residues on the distance map evolve towards the same tag. Therefore, 

adjacent residues with different tags are considered as potential cut points. The initial potential cut 

point set obtained by the above process needs to be further filtered. When a potential cut point is 

located in the 𝛼𝛼 -helix or 𝛽𝛽 -sheet region, the cut point is empirically inappropriate because the 

possibility of the domain boundary being located in the loop region is obviously higher than that in 

the secondary structure. In this method, when the potential cut point is located in the predicted 𝛼𝛼-

helix or predicted 𝛽𝛽-sheet region, the cut point is moved to the residue of the loop region, which is 

the closest to the original potential cut point on the sequence. Finally, the final set of potential cut 

points is obtained, where the secondary structure is predicted by PSIPRED [33]. 
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2.3 Domain boundary determination 

The final potential cut points set may contain incorrect cut points. Thus, the potential cut points set 

need to be further filtered. 

 

2.3.1 Domain boundary scoring function 

In general, protein domains are defined as structurally compact and separate regions of the 

macromolecules. A compact region can be described as a region with a large residue density, whereas 

a separate region can be described as a region with a small interface with other regions. Here, a 

domain boundary score function (DS) is designed to recursively evaluate whether the potential cut 

points are the boundary of the domain, defined as follows: 

 1 2

1 2

i ji D j D

i ji D j D

SO SO
DS

SI SI
∈ ∈

∈ ∈

+
=
∑ ∑
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where 𝑆𝑆𝑆𝑆𝑖𝑖 is the internal compactness score of residue 𝑖𝑖 of the first region 𝐷𝐷1 relative to 𝐷𝐷1, and 

𝑆𝑆𝑆𝑆𝑖𝑖 is the external compactness score of residue 𝑖𝑖 relative to the second region 𝐷𝐷2, where 𝐷𝐷1 and 

𝐷𝐷2 are the two regions that are decomposed at the cut point. 

 

The result of a decomposition may comprise only continuous regions or a mixture of discontinuous 

regions and continuous regions. Although the same DS score threshold can be used to measure the 

quality of different decomposition results, using different DS score thresholds may be more 

appropriate. Here, the two cut-off parameters 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  (cut-off for continuous domains) and 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑 

(cut-off for discontinuous domains) are used to judge the decomposition result comprising only 

continuous regions or mixed regions. These two thresholds are trained on a training set, and two 

optimal thresholds are obtained based on the balance of the normalised domain overlap (NDO) scores 

and the domain boundary distance (DBD) scores of the decomposition results. 

 

2.3.2 Domain boundary determination 

The process of the domain decomposition method is shown in Figure 1 (D). Firstly, the input sequence 
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is decomposed in a continuous domain way, that is, the input sequence is divided into two continuous 

domains at a potential cut point, and the 𝐷𝐷𝐷𝐷 of the potential cut point is calculated and denoted as 

𝐷𝐷𝐷𝐷𝑐𝑐. Secondly, the input sequence is decomposed in a discontinuous domain way, that is, the input 

sequence is divided into a continuous and a discontinuous domain based on two potential cut points, 

and the 𝐷𝐷𝐷𝐷 of the potential cut points is denoted as 𝐷𝐷𝐷𝐷𝑑𝑑. If the 𝐷𝐷𝐷𝐷𝑐𝑐 and 𝐷𝐷𝐷𝐷𝑑𝑑 scores of the input 

sequence are greater than 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑, respectively, that is, neither of the two ways can obtain 

a compact and separate domain, the input sequence is a domain and cannot be further decomposed 

again. If the 𝐷𝐷𝐷𝐷𝑐𝑐 or 𝐷𝐷𝐷𝐷𝑑𝑑 score of the input sequence is less than 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 or 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑, one of the two 

decomposition ways can obtain compact and independent domains. If the 𝐷𝐷𝐷𝐷𝑐𝑐 and 𝐷𝐷𝐷𝐷𝑑𝑑 scores of 

the input sequence are less than 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑 respectively, the input sequence is decomposed 

in the way with the largest difference to the corresponding cut-off. The above decomposition situation 

is summarised in Table 1. For the cut points in the potential cut points set, DomBpred recursively 

decomposes the target sequence through the above two decomposition methods until the sequence 

cannot be further decomposed. 

 
Table 1. Summary of various decomposition situations. 

Condition Decomposition way 
𝐷𝐷𝐷𝐷𝐶𝐶 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  & 𝐷𝐷𝐷𝐷𝑑𝑑 ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑 decomposition in continuous domain way 
𝐷𝐷𝐷𝐷𝑐𝑐 ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  & 𝐷𝐷𝐷𝐷𝑑𝑑 < 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑 decomposition in discontinuous domain way 
𝐷𝐷𝐷𝐷𝐶𝐶 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  & 𝐷𝐷𝐷𝐷𝑑𝑑 < 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑 decomposition with the way of largest difference 
𝐷𝐷𝐷𝐷𝐶𝐶 ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  & 𝐷𝐷𝐷𝐷𝑑𝑑 ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑 cannot be decomposed 

 

3 Result 

In this section, we test the performance of DomBpred on the test set dataset, where its performance 

was compared with the threading-based method ThreaDomEx [24], and three machine learning-based 

methods, including FUpred [3], ConDo [27], and DoBo [26]. Notably, FUpred uses a predicted 

contact map to predict the protein domain boundary, and ConDo utilises contact map information as 

an input feature for neural network training. Meanwhile, DoBo predicts domain boundary utilising 

sequence and sequence profile information as the input features. 

 

3.1 Datasets and assessment metrics 

To fairly compare the performance of our method with other methods on the same level, the data set 

of FUpred [3] (including the training and test sets) is used as the data set of DomBpred, which 
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includes 3400 single-domain and 1698 multi-domain proteins. The multi-domain proteins include 

1494 continuous and 204 discontinuous domain proteins. The test set contains 849 multi-domain 

proteins (716 continuous and 133 discontinuous) and 1700 single-domain proteins, and the training 

set contains 849 multi-domain proteins (778 continuous and 71 discontinuous) and 1700 single-

domain proteins. 

 

The NDO [34] and the DBD [35] scores, used to assess domain splitting in the CASP experiments, 

are utilised to assess the domain boundary prediction. The NDO score calculates the overlap between 

the predicted and true domain regions, whereas the DBD score is defined as the distance of the 

predicted domain boundary from the true domain boundary, where all linker regions of the domains 

are considered as the true boundaries. 

 

3.2 Classification of single- and multi-domain proteins 

Single-domain and multi-domain proteins are two classifications of proteins. Here, we compare the 

domain classification capabilities of DomBpred and other four state-of-the-art methods, and the 

comparison results are shown in Table 2. The results of the four comparison methods originate from 

a published paper [3]. In the test set of 849 multi-domain proteins and 1700 single-domain proteins, 

the accuracy of domain classification of DomBpred is 0.945, which is 3.9% higher than that of the 

second-best method (FUpred). Amongst all five predictors, DomBpred generates the highest MCC 

(0.882), followed by FUpred (0.799), ThreaDomEx (0.759), ConDo (0.671) and DoBo (0.371). In 

terms of multi-domain recall, DoBo has a higher recall than DomBpred. The 23 multi-domain proteins 

in the test set are predicted by DoBo to be single-domain proteins, resulting in high multi-domain 

recall and high single-domain precision. However, the multi-domain precision and single-domain 

recall of DoBo are low, indicating that DoBo tends to predict the proteins as multi-domain proteins. 

 

In domain classification performance, DomBpred shows a better performance in overall. This is 

attributed to the construction of SDSL and the design of effective sequence metric. Here, DomBpred 

classifies multi-domain and single-domain protein by using domain knowledge in SDSL because 

domains are the fundamental units of protein. 
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Table 2. Single- and multi-domain classification results on 2549 test proteins. 
Methods Multi-domain  Single-domain  All 
 Pre Rec F1  Pre Rec F1  ACC MCC 
DomBpred 0.881 0.966 0.921  0.982 0.935 0.958  0.945 0.882 
FUpred 0.860 0.873 0.867  0.936 0.929 0.933  0.910 0.799 
ThreaDomEx 0.767 0.933 0.842  0.962 0.858 0.907  0.883 0.759 
ConDo 0.803 0.751 0.776  0.880 0.908 0.894  0.856 0.671 
DoBo 0.436 0.973 0.602  0.965 0.371 0.536  0.571 0.371 
Note: Pre(multi)/Pre(single) represent the precision of multi-domain/single-domain classification and 
Rec(multi)/Rec(single) symbolize the recall of multi-domain/single-domain classification. F1 is the 
harmonic average of Pre and Rec, which takes into account both. The ACC and MCC are the accuracy 
of protein classification and the Matthew’s correlation coefficient, respectively. 

 

3.3 Prediction of structural domain boundary 

To examine the ability of various methods to predict the domain boundary, we present in Table 3 a 

summary of the NDO and DBD scores for DomBpred compared with the other four methods [3, 24, 

26, 27], and the detail information for the methods on each test protein is shown in Supplementary 

Table S2. The NDO and DBD scores for DomBpred are higher than those of the other four methods 

with P-values < 0.05 as determined by paired one-sided Student’s t-tests. For the 849 multi-domain 

proteins in the test set, the NDO of DomBpred is 4.2%, 8.4%, 11.1% and 45.1% higher than that of 

FUpred, ThreaDomEx, ConDo and DoBo, respectively. Under the different NDO cut-off, the 

comparison of the number of the results with the meeting NDO cut-off is shown in Figure 4, and the 

details are shown in Supplementary Table S3. In the 849 proteins, DomBpred has 648 proteins with 

NDO > 0.7, whereas the best comparison method FUpred has 579 proteins with NDO > 0.7. The 

detailed NDO score comparison between DomBpred and the other four methods is shown in 

Supplementary Figure S1. The DBD of DomBpred is 5.0%, 11.0%, 39.1% and 155.1% higher than 

that of FUpred, ThreaDomEx, ConDo and DoBo, respectively. Under the different DBD cut-off, the 

comparison of the number of the results with the meeting DBD cut-off is shown in Figure 5, and the 

details are shown in Supplementary Table S4. The detailed DBD score comparison between 

DomBpred and the other four methods is shown in Supplementary Figure S2. Additionally, ConDo, 

ThreaDomEx, and FUpred are roughly equivalent in terms of NDO scores, but ThreaDomEx and 

FUpred are at least 20% higher than ConDo for DBD scores, indicating that the domain boundary 

predicted by ConDo is much worse than those of ThreaDomEx and FUpred. For DoBo, it performs 

the worst in domain boundary prediction because DoBo tends to recognize most proteins as multi-

domain proteins. 
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Table 3. Summary of prediction results of multi-domain proteins in the test set. 

Methds NDO (P-value) DBD (P-value) 

DomBpred 0.824 (NA) 0.523 (NA) 
FUpred 0.791 (1.95E-06) 0.498 (4.14E-02) 
ThreaDomEx 0.760 (2.28E-15) 0.471 (3.53E-04) 
ConDo 0.742 (8.66E-21) 0.376 (3.08E-18) 
DoBo 0.568 (1.43E-128) 0.205 (7.66E-87) 
Note: The values in parentheses are P-values between the DomBpred results 
and the other comparison methods results calculated using one-sided 
Student’s t-tests. Bold values indicate the best performer in each category. 

 

These methods represent a representative set of methods on homology and machine learning based 

approaches, where the results demonstrate the advantage and efficiency of the DomBpred on 

accurately predicating the protein domain boundaries. 
 

 
Figure 4. Comparison of protein quantity under different NDO cut-off. The y-axis represents the number of proteins 
whose NDO scores predicted by different predictors on 849 proteins meet the threshold. 
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Figure 5. Comparison of protein quantity under different DBD cut-off. The y-axis represents the number of proteins 
whose DBD scores predicted by different predictors on 849 proteins meet the threshold. 

 

3.4 Prediction of discontinuous domain proteins 

Discontinuous domains, which comprise segments from separated sequence regions, are more 

difficult to predict than continuous domains. Here, the prediction performance of DomBpred and the 

other four methods are tested on 133 discontinuous multidomain proteins in the test data set, and the 

results are shown in Supplementary Table S5, and the detail information is shown in Supplementary 

Table S6. 

 

As shown in Table S5, amongst the 133 discontinuous multi-domain proteins, DomBpred and FUpred 

detect 76.7% and 70.7% of the targets containing discontinuous domains, respectively. The overall 

accuracy of DomBpred is lower than that of FUpred, but the NDO and DBD scores of DomBpred 

and that of FUpred are not significant, with P-value > 0.05. In terms of domain number prediction, 

the results of DomBpred, FUpred and ThreaDomEx are 3.05, 2.95 and 3.45, respectively. Compared 

with the actual number of 2.81, FUpred and DomBpred have no tendency to over-predict. The 

performance of DomBpred and FUpred are comparable in the discontinuous domain. The detailed 

NDO and DBD scores comparison between DomBpred and the other four methods is shown in Figure 

6 and 7. 
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Figure 6. Comparison between NDO scores of DomBpred and that of other four methods on 133 discontinuous 
multi-domain proteins. (a) shows the comparison between DomBpred and FUpred, where the x coordinate of the 
red circle represents the NDO score obtained by DomBpred, and the y coordinate represents the NDO score obtained 
by FUpred. Similarly, (b), (c) and (d) represent the comparison between the NDO scores of DomBpred and those 
of ThreaDomEx, ConDo and DoBo, respectively. 
 

 
Figure 7. Comparison between DBD scores of DomBpred and that of other four methods on 133 discontinuous 
multi-domain proteins. 
 

As mentioned above, unlike FUpred detecting domain boundary by traversing each residue of the 

input sequence, DomBpred detects the boundary of the domain by clustering close residues in the 

distance map to obtain potential cut points. Therefore, DomBpred may lose some key cut points, 

leading to a slight decrease in the prediction accuracy of the discontinuous domain, but reducing the 

computational cost of the detection domain boundary. Moreover, ConDo and DoBo cannot detect any 

proteins containing discontinuous domains. 
 

3.5 Dynamic radius 

We compare the performance of DomBpred under different neighbourhood cut-off radius on the test 

set, and the results are shown in Table 4. The dynamic radius achieves better results in all cases. It is 

because DomBpred can cluster relatively reasonable compact regions under the dynamic radius 

strategy, which can detect better potential cut points. Here, the protein (PDB ID: 1L5JA) with a length 

of 862 residues is taken as an example to illustrate the relationship between clustering of close 
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residues and the detection of potential cut points under different radius. 

 

Table 4. Summary of the prediction results of multi-domain proteins in the test set under different radius. 

Different radius (Å) NDO DBD 
Dynamic ([10,16]) 0.8335 0.5510 

10 0.8262 0.5390 
11 0.8286 0.5346 
12 0.8292 0.5421 
13 0.8286 0.5442 
14 0.8318 0.5451 
15 0.8302 0.5488 
16 0.8231 0.5384 

 

The different decomposition results of 1L5JA are shown in Figure 8. The number of potential cut 

points for fixed radius 10, 11, 12, 13, 14 ,15, 16 and dynamic radius are 30, 21, 22, 24, 13, 3, 7 and 

11, respectively. DomBpred with a radius of 10 detects 30 potential cut points, resulting that the three-

domain protein is divided into six-domain proteins. By contrast, DomBpred with a radius of 16 detects 

7 potential cut points, and there is no cut point for the second domain, resulting that the three-domain 

protein has the wrong domain boundary. DomBpred with dynamic radius detects 11 potential cut 

points. Finally, the protein is divided into four-domain proteins, in which the third domain determined 

by SCOPe is divided into two domains by DomBpred. However, it is also appropriate to divide into 

two domains from the perspective of compactness. Although it does not completely agree with the 

annotations, it also achieves the highest scores compared with fixed radius. This shows that the 

dynamic radius can also balance the ability to detect potential cut points whilst clustering compact 

areas as much as possible, rather than tending to one side. 
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Figure 8. Case study of domain prediction of E. coli aconitase protein (PDB ID: 1L5JA) under different radius. 
Under different radius, the NDO and DBD scores of the domain prediction results are listed on the left side of the 
3D structure diagram, and the specific decomposition results are listed at the bottom of the 3D diagram. 
 

3.6 What went right and wrong 

On one hand, the homology-based methods can have a high accuracy of predictions when close 

templates are identified. Accordingly, DomBpred is inspired by ideas from this homology-based 

method, and then constructs a SDSL to initially identify the classification of input sequence. As a 

result, 1564 single-domain sequences of 1700 are correctly classified. The 25 sequences of the 

remaining 136 single-domain sequences are further correctly classified in the following process of 
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DomBpred. Finally, DomBpred achieves precision with 98.2% in 1700 single-domain sequences, as 

shown in Table 2. On the other hand, the accuracy of the sequence-based method using machine 

learning is improved with the development of the machine learning. Compared to contact information, 

the distance information may better contribute to predict the domain boundary. Therefore, DomBpred 

uses the distance map information to detect the boundary of the structure domain. DomBpred detects 

the domain boundary by clustering close residues in the distance map to obtain potential cut points. 

This may make DomBpred filter out some pseudo cut point residues. Therefore, DomBpred better 

performs on 849 multi-domain proteins. 

 

In the 133 discontinuous proteins amongst 849 proteins, the NDO and DBD of DomBpred are lower 

than those of FUpred, but no significant difference exists between them. The results may be due to 

the fact that some potential cut points at key positions are omitted because DomBpred obtains 

potential cut points by clustering close residues in the distance map, leading to decreased prediction 

accuracy of the discontinuous protein. However, FUpred traverses every residue, which may explain 

why the accuracy of DomBpred is not as good as that of FUpred in discontinuous proteins. 

 

4. Conclusion 

We developed a sequence-based protein domain predictor, named DomBpred, using inter-residue 

distance and domain-residue level clustering inspired by Ising model to predict the protein domain 

boundary. In DomBpred, we construct a comprehensive domain sequence database based on SCOPe 

and CATH databases, and an effective sequence metric is proposed to detect the classification of input 

sequence. At the same time, a clustering method inspired by Ising model is proposed to cluster the 

close residues in the distance map to form a cluster, in which the residues are considered to be located 

in a compact region. For the unclassified residues in the clustering results and the residues at the edge 

of the compact regions, these residues are further evaluated using the designed domain boundary 

scoring function to identify the domain boundary. Furthermore, the dynamic radius strategy is used 

to determine the range of close residues, which can avoid the irrationality caused by the fixed radius 

to some extent. 

 

DomBpred is compared with FUpred, ThreaDomEx, ConDo and DoBo in 2549 test set proteins. The 

experimental results on the given test set show that the overall performace of DomBpred is better 
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than those of existing approaches. In 2549 test proteins, DomBpred generated correct single- and 

multi-domain classifications with a Matthew’s correlation coefficient of 0.882. In 849 multi-domain 

proteins, the DBD and NDO scores of DomBpred are 0.523 and 0.824, respectively, which are 5.0% 

and 4.2% higher than those of the best comparison method. Notably, the proposed method depends 

to some extent on the accuracy of distance map. With the advancement of machine learning in 

distance map prediction, a higher-accuracy distance map may further improve the prediction accuracy 

of DomBpred. 

 

Key points 

 We design a clustering method for target sequence, which uses inter-residue distance and 

domain-residue level clustering algorithm inspired by Ising model to cluster spatially close 

residues into compact regions. 

 We construct a single-domain sequence library (SDSL) and propose an effective sequence metric 

to identify single-domain and multi-domain proteins. 

 Based on domain independence and compactness, a domain boundary score function is designed 

to select the boundary points. 

 Results of the comparison of test set proteins suggest that our proposed domain boundary 

prediction method outperforms four other state-of-the-art full-version methods. 

 

Supplementary Data 

Supplementary data are available online at BIB. 
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All data needed to evaluate the conclusions are present in the paper and the Supplementary Materials. 

The additional data and code related to this paper can be downloaded from https://github.com/iobio-
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