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ABSTRACT: We developed a computational method for constructing synthetic signal 

peptides from a base set of signal peptides (SPs) and non-SP sequences. A large number 

of structured “building blocks”, represented as m-step ordered pairs of amino acids, are 

extracted from the base. Using a straightforward procedure, the building blocks enable the 

construction of a diverse set of synthetic SPs that could be utilized for industrial and 

therapeutic purposes. We have validated the proposed methodology using existing 

sequence prediction platforms such as Signal-BLAST and MULocDeep. In one experiment, 

9,555 protein sequences were generated from a large randomly selected set of “building 

blocks”. Signal-BLAST identified 8,444 (88%) of the sequences as signal peptides. In 

addition, the Signal-BLAST tool predicted that the generated synthetic sequences 

belonged to 854 distinct eukaryotic organisms. Here, we provide detailed descriptions and 

results from various experiments illustrating the potential usefulness of the methodology 

in generating signal peptide protein sequences. 

 

Signal peptides (SPs) are protein sequences that play a role in protein secretion, transport, 

and trafficking within the cell1. SPs, sometimes referred to as a localization or targeting 

sequences, are short chains of 10 – 70 amino acids (AAs) that are typically present at the N-

terminus of newly synthesized proteins and participate in the cellular localization or transport of 

the protein. Over the past twenty years, numerous software tools have been developed to identify 

such peptide sequences, but only recently have researchers started to develop computational 

methods to generate synthetic signal peptides (SSPs)2-5. The ability to generate novel signal 

peptides could advance synthetic protein development for industrial and pharmaceutical 

applications. An example of the utility of generating SSPs to target proteins to specific cellular 

organelles was observed with the successful targeting of an antioxidant protein to the 

mitochondria to alleviate oxidative stress within the organelle that otherwise leads to the 

development of neurodegenerative disorders such as Parkinson’s Disease6.  
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The vast majority of existing methods designed to generate SSPs are based on a neural 

network learning algorithm2-5. Limitations of these current algorithms include opaqueness in the 

generation of the SSPs (i.e. not knowing how or why a particular SSP was generated) and the 

requirement for large training datasets. In response, we have developed a computational method 

that is able to construct SSPs from small sets of known base SP and non-SP sequences. The 

method is significant in three ways. First, the building blocks (BBs) used to construct sequences 

are simply a combination of the twenty canonical AAs and as such are easily recognized by 

biologists and other scientists. Second, there is a high probability that a constructed sequence is 

classified as an SP by existing prediction platforms (Signal-BLAST, MULocDeep)7, 8. Third, the 

process facilitates the construction of large numbers of SSPs that collectively have a measurable 

degree of similarity with a wide range of organisms.  

 

RESULTS and DISCUSSION 

The current method is based on the previously developed Multi-Layer Vector Space 

(MLVS) model9. It consists of three main steps: 1) discovery of candidate BBs, 2) selection of 

candidate BBs satisfying a threshold requirement (i.e., qualified BBs), and 3) assembly of qualified 

BBs to create new SSPs (Fig. 1). These steps are performed in the context of a base set of SP 

and non-SP sequences. First, we identify m-step ordered pairs of AAs that occur at least one time 

in a base sequence, where m represents the number of spaces between AAs. All the ordered 

pairs made up of consecutive AAs form the 1-step ordered pair, P1. A MLVS is the set of m-step 

ordered pairs, P1,P2,…,Pk. For instance, the ASLGV sequence contains the 3-step ordered pair 

[S, V] where S represents the anchor AA occurring at location 2 and V represents the tail AA 

occurring 3 locations to the right of S. Informally, the number of m-step ordered pairs of AAs that 

can be derived from a set of protein sequences is a function of the length of the sequences and 

number of distinct AAs contained within those sequences.      
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Next, we identify a subset of candidate BBs used to construct new SSPs. We filter 

candidate BBs based on the absolute difference in the normalized frequency of occurrence of an 

m-step ordered pair across the SP and non-SP base sequences. The normalized frequency of a 

BB with respect to non-SP and SP sequences is equal to its frequency of occurrence divided by 

the number of non-SP and SP sequences, respectively. Those candidate BBs having an absolute 

difference value greater than a user-defined threshold between 0 and 1 are selected. The 

resulting set of qualified BBs are those that occur frequently in the SP base sequences and 

infrequently in the non-SP sequences, and vice-versa, allowing for increased diversity. This 

approach is inspired by the data mining concept of contrast patterns10.  For example, assume we 

have a base set of 10 SP sequences and a base set of 12 non-SP sequences; further assume 

the user specified BB difference threshold is 0.6. If the 3-step ordered pair [S,V] occurs 7 times in 

the SP base set and 1 time in the non-SP base set, it then has a normalized frequency of 0.7 and 

0.083, respectively. The absolute difference is 0.617, which is higher than the given threshold 

(0.6) and hence the 3-step ordered pair [S,V] would represent a qualified BB.   

Finally, we use the qualified BBs to generate new SSPs. In constructing an SSP sequence 

S of length n, denoted as (s1, s2,…, sn), each location si (1 £ i £ n) is assigned all qualified m-step 

ordered pairs of AAs where the upper bound on the step size m is (n - i). The qualified BBs at 

each location si are sorted in non-decreasing order based on their frequency of occurrence across 

the base SPs. The frequency of a BB with a step size of m at location si is the number of SP base 

sequences that contain the BB anchored at location si (Fig. 1). Assembling a new SSP starts with 

the selection of a BB at sequence location 1, followed by location 2, and terminating at location 

(n – 1). BBs are selected at each location based on an input parameter, called the rank-position 

range, which represents a range of integer numbers from a specified lower to an upper bound. 

For each sequence location i, a value v within the given rank-position range is randomly chosen 

and the BB listed at position v is selected. Once a BB of step size m is selected at location i, its 

inclusion in the SSP is determined by the following conditions: If an AA already exists at location 
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i and it matches the anchor AA of the selected BB, then the tail AA is assigned to the location (i + 

m) if it is currently unoccupied. If the location i is unoccupied, then the anchor AA is assigned to 

location i; in this case, the tail AA is also inserted at location (i + m) if the tail location is currently 

unoccupied. In all other cases, the anchor and/or tail AAs of the BB are not inserted into the 

evolving sequence.         

We conducted a set of experiments to determine the accuracy and diversity provided by 

our method in generating SSPs (Fig. 2). Candidate BBs were discovered from 2,311 SP and 

7,384 non-SP eukaryotic base sequences. The MULocDeep prediction tool identified 98% of the 

base SP sequences as being secreted to the extracellular space 8. A total of 27,213 qualifying 

BBs were generated based on an absolute difference value greater than zero. We generated 

different sets of sequences from these BBs using rank-position ranges [1,1000], [1001,2000], 

[2001,3000], and [3001,4000]. For each range, 500 sequences of 70 AAs were generated. For 

each range, we display the percentage of generated sequences defined by Signal-BLAST as 

SSPs (Fig. 2a) over 5 separate experiments. The MULocDeep tool identified 98% of the SSPs 

also as being secreted to the extracellular space8. The accuracy (i.e., likelihood of generating an 

SSP) of higher-ranked positions is greater because the BBs are more likely to be found in the 

base SPs. We conclude from the experimental results that accuracy is dependent on the rank-

position.  We also calculated the accuracy of a naive method for generating SSPs that uses single 

AAs as BBs (Fig. 2a). The overall accuracy of this alternative method is much lower and the 

number of SSPs that can be generated is quite small in comparison.  

Next, we evaluated the entropy for the SSPs generated by our proposed method in each 

rank-position using the standard Shannon entropy measure for unigrams and bigrams. SSP were 

plotted as the mean entropy in “nats” for the 5 runs displayed as mean ± standard deviation (Fig. 

2b), with values for base sequences included for comparison. Each rank position displayed low 

standard deviation, demonstrating batch consistency. Fig. 2b demonstrates that entropy 

increases as the rank-position value increases for unigrams and bigrams, with the [3001,4000] 
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set having similar entropy to the base sequences. We concluded that the randomness of 

sequences is a function of the rank-position parameter, and that a user could “tune” this parameter 

to optimize accuracy at the expense of randomness and novelty. Extended entropy statistics are 

provided in Table 1. Lastly, we generated 9,555 sequences using a rank-position range of [1, 

3000]. According to Signal-BLAST, a total of 8,444 (88.37%) are defined as SSPs and covered a 

diverse range of organisms similar to that of the base SPs (Fig. 2c-d).  

The described method allows a flexible, transparent, and clear way to generate novel 

SSPs. We demonstrated that the method produces similar entropy in sequences as the base set 

while still preserving accuracy as indicated by Signal-BLAST and MULocDeep. This method could 

generate peptides with higher yields in synthetic biology or greater uptake of a peptide drug by 

cells. We believe this method is distinguished from other methods due to its transparent nature. 

Future work plans include extending the method to create synthetic sequences having multiple 

biological properties of interest such as targeting of proteins to particular cellular organelles.   

 

METHODS 

Base sequence data 

The base protein sequences used to discover the BBs were obtained from SignalP-5.0 11. 

Specifically, a total of 2,311 and 7,384 signal and non-signal protein sequences were used, 

respectively. Each sequence consisted of 70 AAs.   

 

MLVS model 

The method for generating SSPs is based on the previously described MLVS model. The 

MLVS model represents a protein sequence S as a multi-layered collection of ordered m-step 

pairs (i,j) ∈ ∑, denoted by Pm|(i,j), m = 1,2,...,k. The parameter m stands for the number of spaces 

between the elements of the pair, downstream in the flow (left to right) of the sequence, and k is 

the maximum admissible value of m. The elements of an ordered pair (i,j) are referred to as the 
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anchor and tail, respectively, and the location where the anchor element occurs in the sequence 

is referred to as the anchor location. The elements of the alphabet ∑ are the AAs belonging to a 

protein sequence. Ordered pairs made up of consecutive elements of the sequence are said to 

form the family of 1-step pairs, P1|(i,j). Allowing multiple spaces between the elements of the 

ordered pair generates a multitude of m-step pairs (families) P1,P2,...,Pm,…,Pk, creating a multi-

layered k-clustering Ck made up of sets Pm|(i,j), m = 1,2,...,k.  

𝐶! =	∪"∪($,&) 	𝑃"|($,&) 

The binding factor between the elements of a particular set Pm|(i,j) is the step size m, 

common for all ordered pairs making up the family. The total number of ordered pairs that can be 

drawn from the alphabet is |S|2 and the maximum size of Ck is reached for k = |S| - 1, where the 

maximum m-step ordered pair (m=k=|S| -1) spans the entire sequence. Hence, a sequence, S, 

can be represented as the union of all such ordered pairs at k distinct layers.  

 In the context of generating SSP sequences, two distinct families of m-step pairs P1, P2, 

..., Pm, …, Pk, are created; one family, P1, P2,..., Pm,…, Pk, with respect to the base SP sequences 

and another family, P’
1,P’

2,...,P’
m,…,P’

k, with respect to the base non-SP sequences. The 

candidate BBs are identified based on the absolute difference in the frequency of occurrence of 

individual m-step ordered pairs of AAs (i,j) ∈ ∑ between corresponding sets Pm and P’
m, for m = 

1,2,...,k. The selection of qualified BBs from the candidate BBs and the subsequent process of 

assembling new SSP sequences follows the steps described above in the main section of the 

paper.    

 

Alternative Method for Generating SSPs 

An alternative method for generating SSP sequences is to use single AAs as BBs instead 

of m-step ordered pairs of AAs. The twenty canonical AAs (i.e., BBs) are sorted in non-decreasing 

order based on their frequency of occurrence in the given base SP sequences at each location. 
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Assembling a new SSP starts with the selection of a BB at sequence location 1, followed by 

location 2, and terminating at location (n – 1). BBs are selected at each location based on an input 

parameter, called the rank-position range, which represents a range of integer numbers from a 

specified lower to an upper bound. With respect to the alternative method, the upper bound cannot 

exceed 20. The rank-position range value selected at a given location i determines the BB (i.e., 

AA) at that location.  

 

Entropy calculations 

Entropy and accuracy data were plotted using Prism 8 (for macOS, GraphPad software, 

San Diego, California USA, www.graphpad.com). To determine if SSP’s were composed of a 

diverse set of residues, the Shannon entropy formula was applied to the 20 AA alphabet and 

202=400 set of bigrams7.  In each case, the empirical fraction of residues or bigrams was 

calculated for an input sequence and entered into the function. We elected to use a base 2 

logarithm, so entropy units were “nats”.  

 

Data availability 

All data are displayed in the main will be provided in GitHub (https://github.com/) upon acceptance 

of the manuscript for publication.  

 

Acknowledgements 

We would like to recognize Can Akkoc for his work on the development of the MLVS model and 

Marlo K. Thompson for her assistance with generating Fig. 1. AP is supported by a National 

Institutes of Environmental Health Sciences R01 grant #R01ES030084 to AP, and a subcontract 

of an R35 grant #R35ES031708 to Dr. Joann Sweasy (U. of Arizona). 

 

Author contributions 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469281doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469281


TJ designed the method specifics and implemented the code. RGB assisted with reviewing and 

updating program source code. GTD performed the entropy calculations. AP assisted with data 

interpretation and generation of figures. All authors assisted with manuscript preparation and 

editing.  

 

 

Competing interests 

None.  

 

 

 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469281doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469281


References 
 
1. Owji, H.;  Nezafat, N.;  Negahdaripour, M.;  Hajiebrahimi, A.; Ghasemi, Y., A 

comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 
2018, 97 (6), 422-441. 

2. Wu, Z.;  Yang, K. K.;  Liszka, M. J.;  Lee, A.;  Batzilla, A.;  Wernick, D.;  Weiner, D. P.; 
Arnold, F. H., Signal Peptides Generated by Attention-Based Neural Networks. ACS Synth 
Biol 2020, 9 (8), 2154-2161. 

3. Repecka, D.;  Jauniskis, V.;  Karpus, L.;  Rembeza, E.;  Rokaitis, I.;  Zrimec, J.;  
Poviloniene, S.;  Laurynenas, A.;  Viknander, S.;  Abuajwa, W.;  Savolainen, O.;  Meskys, 
R.;  Engqvist, M. K. M.; Zelezniak, A., Expanding functional protein sequence spaces 
using generative adversarial networks. Nature Machine Intelligence 2021, 3 (4), 324-333. 

4. Madani, A.;  McCann, B.;  Naik, N.;  Keskar, N. S.;  Anand, N.;  Eguchi, R. R.;  Huang, 
P.-S.; Socher, R., ProGen: Language Modeling for Protein Generation. 

5. Costello, Z.; Garcia Martin, H., How to Hallucinate Functional Proteins. arXiv e-prints 
2019, arXiv: 1903.00458. 

6. Kang, Y. C.;  Son, M.;  Kang, S.;  Im, S.;  Piao, Y.;  Lim, K. S.;  Song, M. Y.;  Park, K. S.;  
Kim, Y. H.; Pak, Y. K., Cell-penetrating artificial mitochondria-targeting peptide-
conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson's disease 
models. Exp Mol Med 2018, 50 (8), 1-13. 

7. Frank, K.; Sippl, M. J., High-performance signal peptide prediction based on sequence 
alignment techniques. Bioinformatics 2008, 24 (19), 2172-6. 

8. Jiang, Y.;  Wang, D.;  Yao, Y.;  Eubel, H.;  Kunzler, P.;  Moller, I. M.; Xu, D., 
MULocDeep: A deep-learning framework for protein subcellular and suborganellar 
localization prediction with residue-level interpretation. Comput Struct Biotechnol J 2021, 
19, 4825-4839. 

9. Akkoç, C.;  Johnsten, T.; Benton, R. G. In Multi-layered Vector Spaces for Classifying and 
Analyzing Biological Sequences, BICoB, 2011; pp 160-166. 

10. Dong, G. B., James. , Contrast Data Mining: Concepts, Algorithms, and Applications. . 
CRC Press: 2013. 

11. Almagro Armenteros, J. J.;  Tsirigos, K. D.;  Sonderby, C. K.;  Petersen, T. N.;  Winther, 
O.;  Brunak, S.;  von Heijne, G.; Nielsen, H., SignalP 5.0 improves signal peptide 
predictions using deep neural networks. Nat Biotechnol 2019, 37 (4), 420-423. 

 

 
 
 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469281doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469281


Fig. 1: Overview of SSP generation. The process takes a set of SP and non-SP base sequences 

and constructs a knowledge base of BBs. The BBs are defined in terms of m-step ordered pairs 

of AAs, where m represents the number of spaces between AAs. Within each bracket two AAs 

are represented, followed by two numbers where the first number represents the location (loc) of 

the second AA from the first AA, while the second number represents the frequency with which 

this pair occurs. Colored diamonds represent the five broad classifications of AAs. BBs are 

discovered for each loc across the length of the base SPs. Novel SSPs are generated by selecting 

a BB for each loc. Created with BioRender.com.  
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Fig. 2: Validation of obtained SSPs. a. Accuracy assessment (5 replicates) for generated SSPs 

by rank-position range that were deemed SPs by Signal-BLAST. Accuracy results for the 

proposed method are given for ranges [1,1000], [1001,2000], [2001,3000], and [3001,4000]  and 

accuracy results for the naive method are given for ranges [1,5], [1,10], and [1,15]. b. Entropy of 

single AAs (black) and bigrams (grey), represent the complexity of the base data and the 

generated SSPs. c-d. Organism diversity of the base SPs (c) and the generated SSPs (d) created 

using wordclouds.com. All organisms are displayed by shrinking the word cloud such that no 

words were omitted.  
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Table 1: Entropy Statistics for SSPs 

 Entropy Statistics 
 # Residues # Runs Mean (nats) std 

1-1000 
 
 

1 5 2.439357 0.004858 
2 5 3.649838 0.005875 

1001-2000 
 

1 5 2.550365 0.003772 
2 5 3.816099 0.003658 

2001-3000 
 

1 5 2.617792 0.003151 
2 5 3.903525 0.003077 

3001-4000 
 

1 5 2.665958 0.003725 
2 5 3.951362 0.005157 

Base-Seqs 
 

1 1 2.682886 N/A 
2 1 3.925006 N/A 
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