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Abstract

Wild bee communities persist in cities despite major disruption of nesting and food resources by 

urban development. Bee diversity and abundance is key for urban agriculture and maintenance of

plant diversity, and assessing what aspects of cities enhance bee populations will promote our 

capacity to retain and provision bee habitat. Here, we assessed how variation in land cover and 

neighborhood development history affected bee communities in the midwestern US urban 

landscape of Madison, Wisconsin. We sampled bee communities across 38 sites with relatively 

high (> 55%) or low (< 30%) levels of impervious surface, and assessed effects of land use and  

neighborhood development history on bee abundance and species richness. We show abundance 

and richness of bees was lower in recently developed neighborhoods, with particularly strong 

negative effects on soil nesting bees. Soil nesting bees and bee community richness decreased as 

cover of impervious surface increased, but above ground nesting bees were minimally impacted. 

Bee community similarity varied spatially and based on dissimilar local land cover, only for soil 

nesting bees, and the overall bee community. Impervious surface limited bee abundance and 

diversity, but new neighborhoods were associated with greater negative effects. We suggest that 

enhancing the structural diversity of new neighborhoods in urban ecosystems may imitate the 

structural benefits of older neighborhoods for bee populations. 

Keywords: Urban ecosystems, bee community, habitat guilds, habitat filtering, impervious 

surface, development history
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Introduction

Urban development is rapidly transforming the Earth’s surface. Impervious surfaces and 

fragmented patches of vegetation that typify urban ecosystems threaten species diversity (Rebele 

1994). In urban ecosystems, ecological communities are also exposed to loss of food and nesting 

resources, despite cultivated gardens adding diversity (Rebele 1994, Rosenzweig 2003). Urban 

habitat fragmentation often leads to the loss of plants and associated pollinators, especially plants

reliant on animal pollination (Biesmejer et al. 2006; Theodorou et al. 2020). However, organisms

differ in their sensitivity to urbanization, and certain pollinators thrive in urban ecosystems 

despite high disturbance. More research is thus needed to assess relationships between ecological

community structure and land use in urban landscapes to protect biodiversity and ecosystem 

services in ecosystems supporting most of the human population (Daily et al. 1997).

Native bees promote diversity of urban ecosystems by pollinating native, ornamental, and 

agricultural plants across seasons (Hoehn 2008, Garibaldi 2013). As urban development expands,

urban agriculture is growing, emphasizing the need to maintain urban pollinators to produce food

where people live (Hodgson et al. 2011). Habitat simplification and high density of honey bee 

apiaries in urban systems can negatively affect wild bees (Gonzales et al. 2013, Martins et al. 

2013; Renner et al. 2021), but high bee diversity has also been observed in cities like New York 

and Chicago, US (McFrederick and LeBuhn 2006; Matteson et al. 2008; Fetridge et al. 2008). 

This shows urban land can provide diverse floral resources, especially when gardens provide 

flowers for a longer duration than other ecosystems (Goddard et al 2010, Threlfall et al. 2015). 

Urbanization may have different impacts on bees with different ecology, however. 
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Within urban ecosystems, variation in pollinator nesting strategy may predict sensitivity of 

species to the high levels of disturbance in urban systems. In many cases, below-ground nesting 

cavity bees are expected to be more affected by urbanization than bees that nest aboveground 

given the prevalence of impervious surfaces (Larsen 2005, Cane et al. 2006; Jha and Kremen 

2013). For example, many bees excavate or construct their own nesting cavities using mud, 

wood or pithy stems, or dig cavities in the soil, and these habitats are often less available in 

urban compared to natural or rural landscapes. However, man-made structures can in some cases 

supplement nesting habitat, by providing stone walls, wooden structures, and various other 

cavities, as well as bare ground and loosened soil. By investigating what aspects of land cover 

and land use underlie trends in species filtering, we can increase our capacity to restore the 

resources that are lost along with associated taxa.

Here we assessed effects of land cover and neighborhood development on the urban bee 

communities associated with the growing urban cityscape of Madison, Wisconsin, United States.

Our study tested three main hypotheses. First, we predicted that property development would 

increase the amount of impervious surface area, disturbing bee habitat and reducing abundance 

and species richness of bee communities. In particular, we expected stronger effects of property 

development on below-ground cavity nesting bees that require already excavated cavity spaces, 

often underground. Second, we predicted that bee community composition would be more 

dissimilar with greater geographic distance across the city, especially for small soil-nesting bees 

with limited dispersal capacity. Third, we predicted that property development would decrease 

similarity in the composition of bee communities. By assessing effects of land cover, property 

development, and spatial scale on species richness and species composition of bee communities, 
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our study contributes to the empirical foundations of pollination ecology as it relates to 

conservation and restoration efforts in urban ecosystems.

Materials and methods

Study area and sampling design

Madison, Wisconsin is an urban state capital surrounded by agricultural land in one of the 

fastest growing counties in the US. The primary transition type occurring in the Madison area for

the past century is the conversion of agricultural to urban land around the city edge (Wegener 

2001; Carpenter et al. 2007; Riera et al. 2001). The dominant urban area is typified by mixed 

residential and commercial zones with small forest patches and city parks. The 123 km2 central 

urban zone of Madison includes 46 km2 (37%) of impervious surface, 30 km2 (24%) of vegetated

space, with the remaining landscape covered by lakes. The city receives semi-frequent rain and 

severe thunderstorms throughout the summer months that supports abundant flowering prairie 

plants in city parks or where native grasslands have been conserved or restored around the city.

Flower-visiting insects were sampled across Madison using a spatially stratified survey to 

account for changing regional species pools. To select sites, a grid of 2.5  2.5km squares was 

laid across Madison and cells dominated by lake or agriculture were excluded, leaving 19 cells 

dominated by high-density residential and urban land (Fig. 1). In each of these cells we used a 

paired design and selected two sites characterized by either (1) high (> 55%) or (2) low (< 30%) 

impervious surface area within the surrounding 200 m based on a lower resolution classified land

cover surface (USDA-NASS 2013). Within each cell, paired sites with high or low impervious 

surface area were separated by at least 400 m. These 38 sites were selected in a stratified-random
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manner, and permission from property owners (identified from a city database) was requested 

until appropriate locations were identified. Sample sites included primarily residential properties,

as well as commercial properties, urban storm water management areas, and city parks.

Bee community sampling

Bees were sampled six times between early June and late August 2013. Pan traps were 

distributed every two weeks during clear, sunny days when bees were foraging. All traps were 

distributed across the same evening to early morning period (after 17:00-dark and before dawn-

8:00), and collected 4 d later. Six bee traps were placed at least 5 m apart within a 40 m area in 

each site, with two dark blue, two canary yellow, and two white; bees were also trapped in 0.5 L 

pan traps suspended 20 cm or 2.5 m from the ground to match the height of flowering vegetation.

Bees were identified to species using the discover life online key and a comprehensive 

dichotomous key available for Lasioglossum (Ascher & Pickering 2013; Gibbs 2011).

We classified bee taxa as soil-nesting, below-ground cavity-nesting, and above-ground 

nesting bees, based on available observations. The below ground cavity-nesting bees included 7 

species of bumble bees (Apidae: Bombus). Above-ground nesting bees included small carpenter 

bees (Ceratina spp.), yellow faced bees (Hylaeus spp.), carder, mason, and leafcutter bees 

(Megachilidae), and two sweat bees that nest in decaying wood, Lasioglossum cressonii 

(Mitchell 1960) and L. oblongum (Sakagami & Michener 1962). Above-ground nesting bees 

included 22 species. The rest of the bees were classified as soil nesting bees, which included 69 

species across several groups: (i) long-horned bees (Tribe Eucerini), (ii) mining bees (Andrena 

7

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469286doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469286
http://creativecommons.org/licenses/by/4.0/


spp.), (iii) green bees, (iv) all of the other sweat bees, and (v) any others were classified as soil 

nesting bees, although natural history observation of many species could not be located.

Measuring land cover and neighborhood development around study sites

Six-inch resolution digital aerial images were used to classify impervious surfaces such as 

roads, parking lots, and structures. Unsupervised classification was initiated with 30 classes that 

were clumped into land cover types. The impervious surface layer from this classification was 

added to the City of Madison building footprint and road layer to recover impervious surface 

obscured by tree canopy. Natural vegetation was identified visually within 1000 m of each site 

and included open canopy, perennial grasses and forbs in greenways, parks, or transportation 

corridors. Closed canopy forest was also digitized around sites. Each land cover variable was 

measured as a percent of the landscape, then variables were standardized with a mean of zero 

and standard deviation of 1 for comparison in analyses. The three land cover types were also 

consolidated in a distance matrix at each scale. To characterize neighborhood development 

history, publicly accessible tax assessment data was obtained and property development year was

extracted for parcels located within a 200 m radius of each site, from which we extracted an area-

weighted average development year for each site. A Bray-Curtis distance matrix was constructed

to contrast sites based on the variability of the area-weighted average, median development year, 

and most recent property development year within the 200m buffer.

Data analysis 
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Individual-based rarefaction curves were constructed for each site using the ‘vegan’ R package, 

and rarefaction-based species richness estimates were compared to observed richness (Oksanen 

et al. 2018). Rarefied richness did not reach an asymptote, so raw abundance and richness values 

were used as sampling effort was standardized (Fig. 2). We used linear regression models to test 

whether land cover and neighborhood development (median property development year) affected

bee species richness (α-diversity); separate analyses were conducted for the overall community 

and three bee guilds. All variables were scaled to a mean of 0 and standard deviation of 1 and top

models were selected using stepwise AIC model selection using the ‘MASS’ R package (Ripley 

et al. 2018). For purposes of comparison we discuss “old” neighborhoods as those with a median 

development year prior to 1960 and “new” neighborhoods as those with a median development 

year after 1960. Bee abundance and richness seemed to drop off after this time point, reflecting a

qualitative difference rather than a gradual, linear decline. The Moran’s I test was used to check 

for spatial autocorrelation in model fit for each full and final models, applied using the ‘car’ R 

package (Fox et al. 2018).

We used multiple regression on distance matrices (MRM) to assess effects of the various 

explanatory variables on bee community composition at the landscape scale (β-diversity), which 

was implemented through the R package ‘ecodist’ (Legendre and Legendre 1998; Goslee and 

Urban 2017). This allowed us to capture the various multifaceted explanatory variables reflecting

heterogeneity of land cover and land use history. MRMs measure the effect magnitude of each 

explanatory distance matrix using a non-parametric framework and pseudo t-tests are used to 

assess significance of explanatory variables (Goslee and Urban 2017). 
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Results

We captured 1331 bees at the 38 sites. Across families, 31% were Apidae, 3% Andrenidae, 

55% Halictidae, 8% Megachilidae, and 3% Collitidae. Sites were surrounded by 0 to 43% natural

vegetation (Mean = 10.3; SD = 9.1) and 0 to 28% forest (Mean = 5.0; SD = 6.3) with median 

property development varying between 1920 and 2003 (Mean = 1947; SD = 22). All full bee 

community and soil nesting bee community analyses were performed across all sites (n = 38). 

Above ground nesting bee and below ground cavity nesting bee analyses were performed across 

sites where bees from the nesting guild were present, 32 and 17 sites, respectively.

Effects of recent property development on bee abundance and diversity

The average bee abundance decreased from 41.7 to 20.8 (t = -2.77, df = 25.98, P = 0.01), 

and average species richness from 17.4 to 11.3 (t = -2.76, df = 24.16, P = 0.01), in pre-1960 

compared to post-1960 median development year neighborhoods (Fig. 3). This was driven 

mainly by decreases in soil-nesting bees, which decreased in abundance from 28.7 to 13.6 bees, 

and 11.3 to 7.6 species, from old (n = 29) to new (n = 9) neighborhoods. The abundance and 

richness of above-ground nesting bees, and below-ground cavity nesting bees, were similarly 

abundant and rich in old and new neighborhoods (P > 0.24 for all four metrics). In multiple 

variate linear regression models including development and land cover variables, a negative 

influence of recent property development was the strongest predictor of overall bee and soil 

nesting bee species richness, and the term was included with the negative influence of 

impervious surface in top models (Tables 1, 2).
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Effects of surrounding land cover on bee species diversity

In addition to effects of neighborhood development, the proportion of impervious surface 

also reduced the species richness (α-diversity) of the overall bee community, soil-nesting bees, 

and above-ground nesting bees (Tables 1, 2). The negative influence of impervious surface on 

the overall richness of bee species and soil-nesting bees were each about half the magnitude of 

the property development effect in the scaled regression model. For the overall bee community, 

the regression model indicates a 2.9 factor decrease in bee species richness per 23% increase in 

the proportion of impervious surface. The below-ground cavity-nesting bee species richness was 

negatively associated with surrounding forest cover with a 1.0 factor decrease in bumble bee 

species with each 12% increase in surrounding forest cover.

Variation in bee community composition across the study extent

The final multiple regression on distance matrix model (MRM) for the full bee community 

composition included only the land cover effect (P = 0.03) (Table 3). For the soil nesting bee 

community, there was a clear influence of geographic distance on community dissimilarity (P = 

0.040) and a land cover effect (P = 0.04) (Table 3). The below-ground cavity nesting community

composition included a weakly significant influence of geographic distance (P = 0.07) (Table 3). 

And there were no observed effects of geographic distance or land cover on the above-ground 

bees (Table 3). None of the bee community final models included significant effects of property 

development on community composition (Table 3).

Discussion
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Bees from each nesting guild were observed throughout the City of Madison at both low 

and high impervious surface sites. This result suggests that in general, bees are able to use small 

patches of habitat within the most urbanized landscapes of the city (Theodorou 2016; Hall et al. 

2016, Daniels et al. 2020). Our observation of an association between impervious surface and 

reduced bee community richness, especially for soil nesting bees, reflected patterns reminiscent 

of a 60-year study in Brazil, which documented an increase of impervious surface and decrease 

in soil bee nests, abundance, and declines of species richness and phylogenetic diversity (Pereira 

et al. 2020). The negative influence of impervious surface on soil-nesting bees, above-ground 

cavity-nesting bees, and the entire bee community, may stem from a loss of exposed soil used for

nesting habitat, and associated decreases in flowering forbs that bees use as a food resource.

Our finding that more recently developed neighborhoods exhibited lower bee abundance 

and diversity was not based on our initial expectations of mechanistic associations between land 

cover transformation and bee habitat provisioning. A negative influence of recent development 

was observed for the full bee community and soil-nesting bees. While this negative effect may be

due to disturbance and soil compaction, we also observed a reduction of structural complexity in 

recently developed neighborhoods surrounded by more grass lawn and less gardens that may 

provision diverse types of bee habitat. More established neighborhoods more frequently offered 

more complex built habitat including rock walls and gardens rather than simple lawn land cover.

While we expected that below-ground cavity nesting bees would be the most impacted by 

urbanization and impervious surface, we did not observe that result. Bumble bees that comprised 

this nesting habitat guild can forage long distances, and other studies have observed bumble bee 

foraging presence to be strongly influenced by floral resources (Turo et al. 2019, Reeher et al. 
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2020, Cohen et al. 2020) In fact, greater urban cover can sometimes increase the abundance of 

urban bumble bees in urban gardens, and promote higher in-garden foraging, alongside plant 

richness as another contributing factor (O’Connell et al. 2020). Another study of urban bumble 

bees in the American Midwest found that bumble bee abundance and richness were unaffected 

by the amount of impervious surface across several cities (Reeher et al. 2020).

While geographic distance did not explain the dissimilarity of the full bee community, it 

contributed to the dissimilarity in soil-nesting and below-ground cavity-nesting bee community 

composition. This confirmed our hypothesis that generally smaller, soil-nesting bee communities

would vary more across the urban study extent. Past studies have confirmed that bee foraging 

distances are correlated with body size, contributing to patchy distributions of small bee species 

(Steffan-Dewenter et al. 2002; McKinney 2008). A recent study of pollinators around cotton 

farms in Texas found no geographic pattern of isolation by distance for bees, but these patterns 

were observed for beetles and other more movement limited insect taxa (Cusser et al. 2018).

Urbanization can also filter bee community composition, with some evidence that urban 

bee communities are more homogenous subsets of nearby rural bee communities (Banaszak-

Cibicka 2020). In the models for the species composition of the full bee community as well as 

each nesting habitat guild, property development did not appear to filter the species composition.

Surrounding land cover did affect the full bee and soil-nesting bee community dissimilarity. 

While the influence of land cover significantly influenced the dissimilarity of species 

assemblages, these factors did not explain much of the variation overall.  High species richness 

of bees was observed across the city, as well as patchy distributions of rare species.
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Research documenting responses of bee communities to urbanization is on the rise, but a 

recent meta-analysis only discovered three published studies assessing the relationships between 

bee traits and urbanization (Buchholz and Egerer 2020). As urbanization processes continue to 

transform landscapes around the world, improving our understanding of habitat provisioning and

ecosystem services in urban ecosystems is of great importance. Globally, urban bee research is 

heavily biased towards cities in developed countries with temperate climates (Silva et al. 2021). 

Improving the targeted nature of urban pollinator research and accomplishing this research in 

diverse urban landscapes will bolster our capacity to integrate habitat that supplies pollination 

services and biodiversity to cityscapes around the world. 
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Figure 1. Map of urban bee community sampling sites selected in a spatially stratified design 

across the City of Madison, (a) surrounded by 200m buffers, filled with impervious land cover 

and (b) overlaid on kriged property development year surface.
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Figure 2. Species accumulation curves for overall site species richness with site numbers.
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Figure 3. Average bee abundance and species richness for older neighborhoods and recently 

developed neighborhoods with median property development year in the surrounding 200m 

landscape sector before or after 1960.
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Table 1. Results of top AICc-selected multiple linear regression models for species richness of a.

the full bee community, b. soil-nesting bees, c. cavity-nesting bees, and d. above-ground bees.
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Table 2. Model average coefficients for the 95% confidence model set of AICc-selected multiple

linear regression models for species richness of a. the full bee community, b. soil-nesting bees, c.

cavity-nesting bees, and d. above-ground bees.
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Table 3. Multiple regression on distance matrices to assess the influence of geographic distance, 

neighborhood development, and land cover on the full bee community, soil-nesting bees, above-

ground nesting bees, and d. below-ground cavity nesting bees.
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Supplemental Table 1

Bee species 
Agapostemon sericeus
Agapostemon virescens
Andrena bisalicis
Andrena crataegi
Andrena erythronii
Andrena milwaukensis
Andrena nasonii
Andrena nigrae
Andrena nuda
Andrena phaceliae
Andrena wellesleyana
Anthidium maculifrons
Anthidium manicatum
Anthidium oblongatum
Apis mellifera
Augochlora pura
Augochlorella aurata
Augochlorella persimilis
Augochlorella sp 
Augochloropsis fulgada 
Bombus affinis
Bombus bimaculatus
Bombus fervidus
Bombus griseocollis
Bombus impatience
Bombus rufosphinctus
Bombus sandersoni
Ceratina calcarata
Ceratina dupla
Ceratina mikmaqi
Ceratina strenua
Coelioxys spp
Colletes spp 
Eucera atriventris
Florilegus condiginus
Halictus confusus
Halictus ligatus
Halictus parallelus
Halictus rubicundus
Hylaeus affinus
Hylaeus annulatus
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Hylaeus floridanus
Hylaeus mesillae
Hylaeus rudbeckiae
Lasioglossum albepenne
Lasioglossum anomalum
Lasioglossum atwoodi
Lasioglossum atwoodii
Lasioglossum bruneri
Lasioglossum cattelae
Lasioglossum coreopsis
Lasioglossum corerulevum
Lasioglossum coriaceum
Lasioglossum cressoni
Lasioglossum divergens
Lasioglossum egregium
Lasioglossum hartii
Lasioglossum illinosese
Lasioglossum imatatum
Lasioglossum leucozonium
Lasioglossum lineatulum
Lasioglossum michiganense
Lasioglossum nigrovirde
Lasioglossum nymphacorum
Lasioglossum obscurum
Lasioglossum paraforbesii
Lasioglossum pilosum
Lasioglossum pruinosum
Lasioglossum spp 
Lasioglossum tegulare
Lasioglossum timothyi
Lasioglossum versans
Lasioglossum weems
Lasioglossum weemsi
Lasioglossum zephyrum
Lasioglossum zonulum
Megachile inimica
Megachile latimanus
Megachile melanophoea
Megachile mendica
Megachile relativa
Melissodes agilis
Melissodes bimaculatus
Melissodes boltonae
Melissodes comunis
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Melissodes dentiventris
Melissodes druriellus
Melissodes rustica
Melissodes tinctus
Melissodes trinodis
Nomada affabilis
Nomada articulata
Nomada cressoni
Nomada illinoensis pygmaea
Osmia sp.
Sphecodes sp.
Stelis louisae
Stelis nitida
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