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Abstract Inspiratory breathing rhythms arise from synchronized neuronal activity in a9

bilaterally distributed brainstem structure known as the preBötzinger complex (preBötC). In in10

vitro slice preparations containing the preBötC, extracellular potassium must be elevated above11

physiological levels (to 7 − 9mM ) to observe regular rhythmic respiratory motor output in the12

hypoglossal nerve to which the preBötC projects. Reexamination of how extracellular K+ affects13

preBötC neuronal activity has revealed that low amplitude oscillations persist at physiological14

levels. These oscillatory events are sub-threshold from the standpoint of transmission to motor15

output and are dubbed burstlets. Burstlets arise from synchronized neural activity in a16

rhythmogenic neuronal subpopulation within the preBötC that in some instances may fail to17

recruit the larger network events, or bursts, required to generate motor output. The fraction of18

subthreshold preBötC oscillatory events (burstlet fraction) decreases sigmoidally with increasing19

extracellular potassium. These observations underlie the burstlet theory of respiratory rhythm20

generation. Experimental and computational studies have suggested that recruitment of the21

non-rhythmogenic component of the preBötC population requires intracellular Ca2+ dynamics22

and activation of a calcium-activated non-selective cationic current. In this computational study,23

we show how intracellular calcium dynamics driven by synaptically triggered Ca2+ influx as well as24

Ca2+ release/uptake by the endoplasmic reticulum in conjunction with a calcium-activated25

non-selective cationic current can explain all of the key observations underlying the burstlet26

theory of respiratory rhythm generation. Thus, we provide a mechanistic basis to unify the27

experimental findings on rhythm generation and motor output recruitment in the preBötC.28

29

Introduction30

The complex neurological rhythms produced by central pattern generators (CPG) underlie numer-31

ous behaviors in healthy and pathological states. These activity patterns also serve as relatively32

experimentally accessible instances of the broader class of rhythmic processes associated with33

brain function. As such, CPGs have been extensively studied using a combination of experimental34

and computational approaches. The inspiratory CPG located in the preBötzinger complex (pre-35

BötC) in the mammalian respiratory brainstem is perhaps one of the most intensively investigated36

CPGs. Despite decades of research, the mechanisms of rhythm and pattern generation within this37

circuit remain unresolved and highly controversial; however, it appears that the pieces may now38

be in place to resolve this controversy.39
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Much of the debate in contemporary research into themechanisms of preBötC rhythm and pat-40

tern generation revolves around the roles of specific ion currents, such as INaP and ICAN (Koizumi41

and Smith, 2008; Thoby-Brisson and Ramirez, 2001; Del Negro et al., 2002a; Koizumi and Smith,42

2008; Koizumi et al., 2018; Picardo et al., 2019), and whether the observed rhythm is driven by an43

emergent network process (Rekling and Feldman, 1998; Del Negro et al., 2002b, 2005; Rubin et al.,44

2009; Sun et al., 2019; Ashhad and Feldman, 2020) and/or by intrinsically rhythmic or pacemaker45

neurons (Johnson et al., 1994; Koshiya and Smith, 1999; Peña et al., 2004). This debate is fueled46

by seemingly contradictory pharmacological blocking studies (Del Negro et al., 2002a; Peña et al.,47

2004; Del Negro et al., 2005; Pace et al., 2007b; Koizumi and Smith, 2008) and by new experimental48

studies (Kam et al., 2013a; Feldman and Kam, 2015; Kallurkar et al., 2020; Sun et al., 2019; Ashhad49

and Feldman, 2020) that challenge existing conceptual and computational models about the gen-50

eration of activity patterns in the preBötC and underlie the so-called burstlet theory of respiratory51

rhythm generation.52

The conceptual framework of burstlet theory posits that inspiratory oscillations arise from an53

emergent network process in a preBötC sub-population dedicated to rhythm generation and that a54

secondary pattern generating sub-populationmust be recruited in order to generate a full network55

burst capable of elicitingmotor output. This hypothesis is supported by experimental preparations56

that compared local preBötC neuronal activity and motor output at the hypoglossal (XII) nerve in57

medullary slices. These studies found that in a low excitability state (controlled by the bathK+ con-58

centration (Kbatℎ)), the preBötC generates a regular rhythm featuring a mixture of large and small59

amplitude network oscillations, dubbed bursts and burstlets, respectively, with only the bursts elic-60

iting XII motor output (Kam et al., 2013a). Moreover, the fraction of low amplitude preBötC events61

(burstlet fraction) sigmoidally decreases with increasingKbatℎ and only a subset of preBötC neurons62

are active during burstlets (Kallurkar et al., 2020). Importantly, preBötC bursts can be blocked by63

application of cadmium (Cd2+), a calcium channel blocker, without affecting the ongoing burstlet64

rhythm (Kam et al., 2013a; Sun et al., 2019), supporting the idea that rhythm generation occurs65

in a distinct preBötC subpopulation from pattern generation and demonstrating that conversion66

of a burst into a burstlet is a Ca2+-dependent process. Finally, rhythm generation in the burstlet67

population is hypothesized to result from an emergent network percolation process. This last idea68

was developed to explain holographic photostimulation experiments, which found that optically69

stimulating small subsets (4 − 9) of preBötC inspiratory neurons was sufficient to reliably evoke70

endogenous-like XII inspiratory bursts with delays averaging 255 ± 45ms (Kam et al., 2013b). The71

small number of neurons required to evoke a network burst and the extended duration of the72

delays both differ from what would be predicted by existing computational preBötC models. Ad-73

ditionally, these delays are on a similar timescale to the ramping pre-inspiratory neuronal activity74

that precedes network-wide inspiratory bursts, leading to the hypothesis that stimulation of this75

small set of preBötC neurons kicks off an endogenous neuronal percolation process underlying76

rhythm generation, which could be initiated by the near-coincident spontaneous spiking of a small77

number of preBötC neurons.78

The experimental underpinning of burstlet theory challenges current ideas about inspiratory79

rhythm and pattern generation. However, the proposed mechanisms of burst and burstlet gener-80

ation remain hypothetical and, to date, there has not been a quantitative model that provides a81

unified, mechanistic explanation for the key experimental observations or that validates the con-82

ceptual basis for this theory. Interestingly, key components of burstlet theory, namely that inspi-83

ratory rhythm and pattern are separable processes and that large amplitude network-wide bursts84

depend on calcium-dependent mechanisms are supported by recent experimental and computa-85

tional studies. Specifically, Koizumi et al. (2018); Picardo et al. (2019) showed that the amplitude86

(i.e. pattern) of preBötC and XII bursts is controlled, independently from the ongoing rhythm, by87

the transient receptor potential channel (TRPM4), a calcium-activated non-selective cation current88

(ICAN ). These findings are consistent with burstlet theory, as they demonstrate that rhythm and89

pattern are separable processes at the level of the preBötC. Moreover, these experimental obser-90
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vations are robustly reproduced by a recent computational modeling study (Phillips et al., 2019),91

which shows that pattern generation can occur independently of rhythm generation. Consistent92

with burstlet theory, this model predicts that rhythm generation arises from a small subset of93

preBötC neurons, which in this model form a persistent sodium (INaP ) dependent rhythmogenic94

kernel, and that rhythmic synaptic drive from these neurons triggers post-synaptic calcium tran-95

sients, ICAN activation, and amplification of the inspiratory drive potential, which drives bursting96

in the rest of the network.97

These recent results suggest that conversion of burstlets into bursts may be Ca2+ and ICAN de-98

pendent, occurring when synaptically triggered calcium transients in non-rhythmogenic preBötC99

neurons are intermittently large enough for ICAN activation to occur and to yield recruitment of100

these neurons into the network oscillation. The biophysical mechanism responsible for periodic101

amplification of Ca2+ transients is not known, however. In this computational study, we put to-102

gether and build upon these previous findings to show that periodic amplification of synaptically103

triggered ICAN transients by calcium induced calcium release (CICR) from intracellular stores pro-104

vides a plausible mechanism that can produce the observed conversion of burstlets into bursts105

and can explain all of the key observations underlying the burstlet theory of respiratory rhythm106

generation, thus providing a sound mechanistic basis for this conceptual framework.107

Results108

Calcium induced calcium release periodically amplifies intracellular calcium tran-109

sients110

Our first aim in this work was to test whether calcium induced calcium release from ER stores could111

repetitively amplify synaptically triggered Ca2+ transients. To address this aim, we constructed a112

cellular model that includes the endoplasmic reticulum. The model features a Ca2+ pump, which113

extrudes Ca2+ from the intracellular space, a sarcoendoplasmic reticulum calcium transport AT-114

Pase (SERCA) pump, which pumps Ca2+ from the intracellular space into the ER, and the Ca2+ ac-115

tivated inositol trisphosphate (IP3) receptor (Fig 1A). To simulate calcium transients synaptically116

generated from a rhythmogenic source (i.e., burstlets), we imposed a square wave Ca2+ current117

into the intracellular space with varied frequency and amplitude but fixed duration (250ms) and we118

monitored the resulting intracellular Ca2+ transients. Depending on parameter values used, we119

observed various combinations of low and high amplitude Ca2+ responses, and we characterized120

how the fraction of Ca2+ transients that have low amplitude depends on values selected within the121

2D parameter space parameterized by Ca2+ pulse frequency and amplitude. We found that the122

fraction of low amplitude Ca2+ transients decreases as either or both of the Ca2+ pulse frequency123

and amplitude are increased (Fig. 1B and example traces C1-C4).124

Bursts and burstlets in a two-neuron preBötC network.125

Next we tested whether the CICR mechanism (Fig. 1) could drive intermittent recruitment in a re-126

ciprocally connected two neuron network that includes one intrinsically rhythmic and one non-127

rhythmic neuron, as a preliminary step towards considering the rhythm and pattern generating128

sub-populations of the preBötC suggested by burstlet theory (Kam et al., 2013a; Cui et al., 2016;129

Kallurkar et al., 2020; Ashhad and Feldman, 2020) and recent computational investigation (Phillips130

et al., 2019). In this network, neuron 1 is an INaP -dependent intrinsically bursting neuron, with a131

burst frequency that is varied by injecting an applied current, IAPP (Fig. 2 A2-A3). The rhythmic132

bursting from neuron 1 generates periodic postsynaptic currents (ISyn) in neuron 2, carried in part133

by Ca2+ ions, which are analogous to the square wave Ca2+ current in Fig 1. The amplitude of the134

postsynaptic Ca2+ transient is determined by the number of spikes per burst (Fig. 2A4) and by the135

parameter PSynCa, which determines the percentage of ISyn carried by Ca2+ ions (see materials and136

methods for a full description of these model components). Conversion of a burstlet (isolated neu-137

ron 1 burst) into a network burst (recruitment of neuron 2) is dependent on CICR (see Fig. 2-Figure138
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Figure 1. A periodic input in the form of a calcium current drives intermittent calcium induced calciumrelease from ER stores. (A) Schematic diagram of the model setup showing square wave profile of Ca2+current input into the intracellular space, uptake of Ca2+ into the ER by the SERCA pump, Ca2+ releasethrough the IP3 receptor, and extrusion of Ca2+ through a pump in the cell membrane. (B) Fraction of lowamplitude intracellular Ca2+ transients as a function of the Ca2+ pulse frequency and amplitude. Pulseduration was fixed at 250ms. (C1-C4) Example traces showing several ratios of low and high amplitude Ca2+transients and the dynamics of the ER stores Ca2+ concentration. Inset in C2 highlights the delay betweenpulse onset and CICR. The pulse amplitude and frequency for each trace are indicated in panel B.

Supplement 1), which increases intracellular calcium above the threshold for ICAN activation.139

In the reciprocally connected network, we first quantified the dependence of the burstlet frac-140

tion, which was defined as the number of burstlets (neuron 1 bursts without recruitment of neuron141

2) divided by the total number of burstlets and network bursts (bursts in neuron 1with recruitment142

of neuron 2), on IAPP and PSynCa. Increasing IAPP increases the burst frequency in neuron 1 and143

decreases the number of spikes per neuron 1 burst (Fig. 2A3,A4), consistent with past literature144

(Butera et al., 1999). These changes do not strongly impact the burstlet fraction until IAPP grows145

enough, at which point the shorter, more rapid bursts of neuron 1 become less effective at re-146

cruiting neuron 2 and thus the burstlet fraction increases (Fig. 2B2). In general, increasing PSynCa147

decreased the burstlet fraction (i.e., increased the frequency of neuron 2 recruitment) by causing148

a larger calcium influx with each neuron 1 burst; see Fig. 2B2 & C1-C4.149

The burst frequency in neuron 2 is determined by the burst frequency of neuron 1 and the150

burstlet fraction. These effects determine the impact of changes in PSynCa and IAPP on neuron 2151

burst frequency (Fig. 2 B3). As IAPP increases, the rise in burstlet frequency implies that neuron 2152

bursts in response to a smaller fraction of neuron 1 bursts, yet the rise in neuron 1 burst frequency153

means that these bursts occur faster. These two effects can balance to yield a relatively constant154

neuron 2 frequency, although the balance is imperfect and frequency does eventually increase.155

Increases in PSynCa more straightforwardly lead to increases in neuron 2 burst frequency as the156

burstlet fraction drops.157

Finally, the number of spikes per burst in neuron 2 is not strongly affected by changes in IAPP158

and PSynCa (Fig. 2 B4), suggesting an all-or-none nature of recruitment of bursting in neuron 2. In-159

terestingly, the period between network bursts (i.e., time between neuron 2 recruitment events)160
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Figure 2. Bursts and burstlets in a two neuron preBötC network. (A1) Schematic diagram of the synapticallyuncoupled network. The rhythm and pattern generating components of the network are represented byneuron 1 and 2, respectively. (A2) Example trace showing intrinsic bursting in neuron 1 and quiescence inneuron 2. (A3) Burst frequency and (A4) the number of spikes per burst in neuron 1 as a function of anapplied current (IAPP ). Neuron 2 remained quiescent within this range of IAPP . (B1) Schematic diagram of thesynaptically coupled network. (B2-B4) 2D plots characterizing the (B2) burstlet fraction, (B3) neuron 2 (burst)frequency, and (B4) neuron 2 spikes per burst (burst amplitude) as a function of IAPP and PSynCa. (C1-C4)Example traces for neuron 1 and 2 for various IAPP and PSynCa values indicated in (B2-B4). Notice the scalebar is 100 s in C1 and 10 s in C2-C4. Inset in C1 shows the burst shape not visible on the 100 s time scale. Themodel parameters used in these simulations are: (neuron 1 & 2) KBatℎ = 8mM , gLeak = 3.35 nS,
W12 = W21 = 0.006 nS; (Neuron 1) gNaP = 3.33 nS, gCAN = 0.0 nS, (Neuron 2) gNaP = 1.5 nS, gCAN = 1.5 nS.

can be on the order of hundreds of seconds (e.g., Fig. 2 C1). This delay is consistent with some of161

the longer timescales shown in experiments characterizing bursts and burstlets (Kallurkar et al.,162

2020).163

CICR supports bustlets and bursts in a data-constrained preBötC network model164

Next, we testedwhether the CICRmechanismpresented in Figs.1 & 2 could underlie the conversion165

of burstlets into bursts in a larger preBötCmodel network including rhythmand pattern generating166

subpopulations and whether this network could capture theKbatℎ-dependent changes in the burst-167

let fraction characterized in Kallurkar et al. (2020). Kbatℎ sets the extracellular K+ concentration,168

which in turn determines the driving force for any ionic currents that flux K+. In preBötC neurons169

these currents include the fastK+ current, which is involved in action potential generation, and the170

K+-dominated leak conductance, which primarily affects excitability (Fig. 3A). In our simulations,171

we modeled the potassium (EK ) and leak (ELeak) reversal potentials as functions of Kbatℎ using the172

Nernst and Goldman–Hodgkin–Katz equations. The resulting curves were tuned to match existing173

data from Koizumi and Smith (2008), as shown in Fig. 3B. In our simulations, we found that intrinsic174

bursting is extremely sensitive to changes inKbatℎ. However, with increasingKbatℎ, intrinsic bursting175
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could be maintained over a wide range of K+ concentrations when accompanied by increases in176

gLeak (Fig. 3C). Additionally, the number of spikes per burst in the bursting regime increases with177

Kbatℎ (Fig. 3 Figure Supplement 1). This Kbatℎ-dependence of gLeak is consistent with experimental178

data showing that neuronal input resistance decreases with increasing Kbatℎ (Okada et al., 2005).179

To construct a model preBötC network, we linked rhythm and pattern generating subpopula-180

tions via excitatory synaptic connections within and between the two populations (Fig. 3D). We dis-181

tinguished the two populations by endowing them with distinct distributions of persistent sodium182

current conductance (gNaP ), as documented experimentally (Del Negro et al., 2002a; Koizumi and183

Smith, 2008). In both populations, we maintained the dependence of gLeak on Kbatℎ (see Fig. 3C and184

E).185
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For the full preBötC networkmodel, we first characterized the impact of changes inKbatℎ on net-186

work behavior without calcium dynamics by setting PSynCa = 0. This network condition is analogous187

to in vitro preparations where allCa2+ currents are blocked byCd2+ and the preBötC can only gener-188

ate burstlets (Kam et al., 2013a; Sun et al., 2019). Not surprisingly, with calcium dynamics blocked,189

we found that the network can only generate small amplitude network oscillations (burstlets) that190

first emerge at approximately Kbatℎ = 5mM (Fig. 4A). Moreover, under these conditions, increasing191

Kbatℎ results in an increase in the burstlet frequency and amplitude (Fig. 4B & C), which is consistent192

with experimental observations (Kallurkar et al., 2020).193

In the full network with calcium dynamics (PSynCa > 0), burstlets generated by the rhythmogenic194

subpopulationwill trigger postsynaptic calcium transients in the pattern generating subpopulation.195

Therefore, in this set of simulations the burstlet activity of the rhythm generating population plays196
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an analogous role to the squarewaveCa2+ current in Fig. 1 and to bursts of the intrinsically rhythmic197

neuron in Fig. 2. In this case, the frequency of the postsynaptic Ca2+ oscillation is again controlled198

by Kbatℎ and the Ca2+ amplitude is determined by the burstlet amplitude and PSynCa. Therefore, for199

this network, we characterized the burstlet fraction, burst frequency and burst amplitude – with200

a burst defined as an event in which a burstlet from the rhythm generating population recruits a201

burst in the pattern generating population – in the full preBötC model network as a function of202

Kbatℎ and PSynCa (Fig. 4E-G). We found that increasing PSynCa orKbatℎ generally decreases the burstlet203

fraction, increases burst frequency, and slightly increases the burst amplitude (Fig. 4E-G and H1-204

H4). The decrease in the burstlet fraction with increasing Kbatℎ or PSynCa is caused by the increase205

in the burstlet amplitude (Fig. 4C) or in Ca2+ influx with each burstlet, respectively, both of which206

increase the Ca2+ transient in the pattern generating subpopulation. The increase in burst fre-207

quency with increases inKbatℎ or PSynCa is due to the decreased burstlet fraction (i.e., the burstlet to208

burst transitions occurs on a greater proportion of cycles) and, in the case of Kbatℎ, by an increase209

in the burstlet frequency (Fig. 4B). The slight increase in burst amplitude with increasing Kbatℎ is210

largely due to the increase in the burstlet amplitude (Fig. 4 C). Fig. 4I highlights the relative shape211

of burstlets and bursts as well as the delay between burstlet generation and recruitment of the212

pattern generating population and simulated hypoglossal output. Experimentally, it is likely that213

postsynapticCa2+ transients will increasewith increasingKbatℎ due to the change in the resting Vm in214

non-rhythmic preBötC neurons (Tryba et al., 2003) relative to the voltage-gated activation dynam-215

ics of post-synaptic calcium channels (Elsen and Ramirez, 1998); see Discussion for a full analysis of216

this point. Interestingly, in our simulations, increasing PSynCa (i.e. the amplitude of the postsynap-217

tic calcium transients) with Kbatℎ (Fig. 4 traces H1-H4) generated Kbatℎ-dependent changes in the218

burstlet fraction that are consistent with experimental observations (Kallurkar et al., 2020); see219

Fig. 4J.220

Note that our model includes synaptic connections from pattern generating neurons back to221

rhythm generating neurons. These connections prolong activity of rhythmic neurons in bursts, rel-222

ative to burstlets, which in turn yields a longer pause before the next event (e.g., Fig. 4H1). This223

effect can constrain event frequencies somewhat in the fully coupled network relative to the feed-224

forward case (e.g., frequencies in Fig. 4B exceed those in Fig. 4F for comparable Kbatℎ levels).225

Calcium and ICAN block have distinct effects on the burstlet fraction.226

Next, we further characterized the calcium dependence of the burstlet to burst transition in our227

model by simulating calcium blockade or ICAN blockade by a progressive reduction of PSynCa or228

gCAN , respectively. We found that complete block of synaptically triggered Ca2+ transients or ICAN229

block eliminates bursting without affecting the underlying burstlet rhythm (Fig.5 A,B). Interestingly,230

progressive blockades of each of these two mechanisms have distinct effects on the burstlet frac-231

tion: blocking postsynaptic Ca2+ transients increases the burstlet fraction by increasing the num-232

ber of burstlets required to trigger a network burst, whereas ICAN block only slightly increases the233

burstlet fraction (Fig. 5C). In both cases, however, progressive blockade smoothly decreases the234

amplitude of network bursts, (Fig. 5D). The decrease in amplitude in the case of ICAN block is due235

to derecruitment of neurons from the pattern forming subpopulation and a decrease in the firing236

rate of the neurons that remain active, whereas in the case of Ca2+ block the decrease in amplitude237

results primarily from derecruitment (Fig. 5E & F). These simulations provide mechanism-specific238

predictions that can be experimentally tested.239

Dose dependent effects of opioids on the burstlet fraction240

Recent experimental results by Baertsch et al. (2021) showed that opioid application locally within241

the preBötC decreases burst frequency but also increases the burstlet fraction. In the preBötC,242

opioids affect neuronal dynamics by binding to the �-opioid receptor (�OR). The exact number of243

preBötC neurons expressing �OR is unclear; however, the number appears to be small, with esti-244

mates ranging from 8 − 50% (Bachmutsky et al., 2020; Baertsch et al., 2021; Kallurkar et al., 2021).245

7 of 31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469304
http://creativecommons.org/licenses/by-nc-nd/4.0/


* *

4
5
6
7
8
9

10
11

5 6 7 8 9
Kbath (mM)

 0

 0.2

 0.4

 0.6

 0.8

 1

Bu
rs

tle
t F

ra
ct

io
n

H1

H2

H3 H4

5 6 7 8 9
Kbath (mM)

H1

H2

H3 H4

5 6 7 8 9
Kbath (mM)

H1

H2

H3 H4

H1

10s

H2

H3

H4

-60

-55

-50

-45

-40

-35

 0  1  2  3  4  5

M
ea

n 
Po

p.
 P

ot
en

tia
l (

m
V)

time (s)

Simulated XII
Burst

Burstlet

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  4  5  6  7  8  9

Bu
rs

tle
t F

ra
ct

io
n

Kbath (mM)

Experiment

10s

10 spks/s/N

Kb
at

h

4mM

5mM

6mM

7mM

8mM

9mM
 0

 0.1

 0.2

 0.3

 0.4

 4  5  6  7  8  9

Fr
eq

ue
nc

y 
(H

z)

Kbath (mM)

 0

 5

 10

 15

 20

 4  5  6  7  8  9

A
m

pl
itu

de
 (s

pk
s/

s/
N

)

Kbath (mM)

A B C
Network Rhythm without Calcium Dynamics (PsynCa=0) 

Network Rhythm with Calcium Dynamics 

E F G

Ps
yn

Ca
 (%

)

I

J

Simulation

* * * * * *

* * * * * *

* * * *

* *

20 spks/s/N

*

 0

 0.1

 0.2

 0.3

Bu
rs

t F
re

qu
en

cy
 (H

z)

 0

 20

 40

 60

 80

 100

Bu
rs

t A
m

pl
itu

de
 (s

pk
s/

s/
N

)

Figure 4. Burstlets and bursts in a 400 neuron preBötC network model with and without calcium dynamics.(A) Rhythmogenic output of the simulated network without calcium dynamics (PSynCa = 0) as a function of
KBatℎ. These oscillations are considered burstlets as they are incapable of recruiting the pattern generatingpopulation without calcium dynamics. (B) Frequency and (C) amplitude of the burstlet oscillations as afunction of Kbatℎ. (E-G) 2D plots characterizing the (E) burstlet fraction, (F) the burst frequency, and (G) theburst amplitude as a function of Kbatℎ and PSynCa (note that the PSynCa range shown does not start at 0).(H1-H4) Example traces illustrating a range of possible burstlet fractions generated by the network. Burstletsare indicated by asterisks. (I) Overlay of the average population voltage during burst and burstlets. Thehypoglossal output is calculated by passing the mean population through a sigmoid function
f = −60.5 + 60∕[1 + e−(x+45)∕2.5]. (J) Burstlet fraction as a function of Kbatℎ for the four example traces indicatedin panels A-C. Experimental data is adapted from Kallurkar et al. (2020).

Additionally, �OR is likely to be selectively expressed on neurons involved in rhythm generation,246

given that opioid application in the preBötC primarily impacts burst frequency rather than ampli-247

tude (Sun et al., 2019; Baertsch et al., 2021). Importantly, within the preBötC, opioids ultimately248
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Figure 5. Effect of Ca2+ and CAN current blockade on burstlets and bursts. Network traces showing the affectof (A) Calcium current blockade (PSynCa reduction) and (B) CAN current blockade (gCAN reduction) on theperiod and amplitude of bursts. Effects of calcium or ICAN blockade on (C) the burstlet fraction, (D) theamplitude of bursts and (E) the number of recruited and (F) peak firing rate of recruited neurons in patterngenerating subpopulation during network bursts as a function of the blockade percentage.

impact network dynamics through two distinct mechanisms: (1) hyperpolarization, presumably249

via activation of a G protein-gated inwardly rectifying potassium (GIRK) channel, and (2) decreased250

excitatory synaptic transmission, presumably via decreased presynaptic release (Baertsch et al.,251

2021).252

Taking these considerations into account, we tested if our model could explain the experimen-253

tal observations. Specifically, we simulated opioids as having a direct impact only on the neurons254

within the rhythmogenic population and their synaptic outputs (Fig. 6A). To understand how pre-255

BötC network dynamics are impacted by the two mechanisms though which opioids have been256
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shown to act, we ran separate simulations featuring either activation of GIRK channels or block257

of the synaptic output from the rhythmogenic subpopulation (Fig. 6B-F). We found that both GIRK258

activation and synaptic block reduced the burst frequency (Fig. 6D) and slightly increased burst259

amplitude (Fig. 6E). The decreased frequency with synaptic block comes from an increase in the260

burstlet fraction, whereas GIRK activation kept the burstlet fraction constant while reducing the261

burstlet frequency (Fig. 6F). Finally, combining these effects, we observed that simultaneously in-262

creasing the GIRK channel conductance and blocking the synaptic output of �OR-expressing neu-263

rons in our simulations generates slowing of the burst frequency and an increase in the burstlet264

fraction consistent with in vitro experimental data (Fig. 6D-G).265
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Simultaneous stimulation of subsets of preBötC neurons elicits network bursts266

with long delays267

Simultaneous stimulation of 4-9 preBötC neurons in in vitro slice preparations has been show to268

be sufficient to elicit network bursts with similar patterns to those generated endogenously (Kam269
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et al., 2013b). These elicited bursts occur with delays of several hundred milliseconds relative to270

the stimulation time, which is longer than would be expected from existing models. Interestingly,271

in the current model, due to the dynamics of CICR, there is a natural delay between the onset of272

burstlets and the recruitment of the follower population that underlies the transition to a burst.273

Therefore, we investigated if our model could match and explain the observations seen in Kam274

et al. (2013b).275

In our model, we first calibrated our stimulation to induce a pattern of spiking that is compa-276

rable to the patterns generated in (Kam et al., 2013b) (10-15 spikes with decrementing frequency,277

Fig. 7A). We found that stimulation of 3-9 randomly selected neurons could elicit network bursts278

with delays on the order of hundreds of milliseconds (Fig. 7B & C). Next we characterized (1) the279

probability of eliciting a burst, (2) the delay in the onset of elicted bursts, and (3) the variability in280

delay, each as a function of the time of stimulation relative to the end of an endogenous burst281

(i.e., a burst that occurs without stimulation) and of the number of neurons stimulated (Fig. 7D-F).282

In general we found that increasing the number of stimulated neurons increases the probability283

of eliciting a burst and decreases the delay between stimulation and burst onset. Moreover, the284

probability of elicting a burst increases and the delay decreases as the time after an endogenous285

burst increases (Fig. 7G,H). Additionally, with its baseline parameter tuning, ourmodel had a refrac-286

tory period of approximately 1 s following an endogenous burst during which stimulation could not287

evoke a burst (Fig. 7). The refractory period in our model is longer than measured experimentally288

(500ms) (Kam et al., 2013b).289

To conclude our investigation, we examined how changes in the connection probability within290

the pattern forming population (PPP ) affect the refractory period, probability, and delay of evoked291

bursts following simultaneous stimulation of 3-9 randomly selected neurons in the preBötC popula-292

tion. We focused on the pattern forming population because it comprises 75% of the preBötC popu-293

lation and, therefore, neurons from this population are most likely to be stimulated and the synap-294

tic projections from these neurons aremost likely to impact the properties of evoked bursts. These295

simulations were conducted with fixed network synaptic strength, defined as S = NP ⋅ PPP ⋅WPP ,296

whereWPP is adjusted to compensate for changes in PPP to keep S constant.297

With this scaling, we found that decreasing/increasing PPP decreased/increased the refractory298

period (Fig. 8A-C) by impacting the probability of eliciting a burst in the period immediately after299

an endogenous burst (Fig. 8D-E). More specifically, the change in the probability of evoking a burst,300

with decreased/increased PPP , is indicated by a leftward/rightward shift in the probability vs stimu-301

lation time curves relative to a control level of PPP (PPP = 2%); see Fig. 8D,E. That is, relatively small302

connection probabilities with large connection strengths lead to network dynamics with a shorter303

refractory period when stimulation cannot elicit a burst and a higher probability that a stimulation304

at a fixed time since the last burst will evoke a new burst.305

It may seem surprising that networks with smaller connection probabilities exhibit a faster306

emergence of bursting despite their larger connection weights, since intuitively, with lower connec-307

tion probabilities, fewer neurons could be recruited by each action potential, resulting in longer,308

more time-consuming activation pathways. A key point, however, is that when connection weights309

are larger, fewer temporally overlapping inputs are needed to recruit each inactive neuron. For ex-310

ample, fix NP andWPP , take PPP to scale as 1∕NP , and assume that with thisWPP , at least r inputs311

from active neurons are needed to activate an inactive neuron. We can approximate the expected312

number of neurons receiving r or more inputs from A active neurons by the expected number313

receiving r inputs, given by314
(

A
r

)

(

1
NP

)r(

1 − 1
NP

)A−r

.

If we double PPP , halveWPP , and assume that now at least 2r inputs are needed for activation, then315
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Figure 7. Evoked population bursts by simulated holographic stimulation of 3-9 preBötC neurons. (A) Rasterplot of neuronal spiking triggered by simulated holographic stimulation of 6 preBötC neurons shortly after anendogenous burst and resulting failure to evoke a network burst. Black line represents the integratedpopulation activity. Scale bar indicates 20 spikes/s/N. (Bottom panel) shows the spiking activity triggered inindividual neurons by the simulated holographic stimulation. Panel duration is 1 s. (B) Example simulationwhere stimulation of 9 preBötC neurons evokes a network burst. Gray curve indicates timing of the nextnetwork burst if the network was not stimulated. (Bottom panel) Expanded view of the percolation processthat is triggered by holographic stimulation on a successful trial. Panel duration is 1.75 s. (C) Example tracesshowing the delay between the stimulation time and the evoked bursts as a function of the number ofneurons stimulated for the (top) integrated preBötC spiking and (bottom) simulated hypoglossal activity. (D-F)Characterization of (D) the probability of evoking a burst, (E) the mean delay of evoked bursts, and (F) thestandard deviation of the delay as a function of the time after an endogenous burst and the number ofneurons stimulated. (G) Probability and (H) delay as a function of the stimulation time for stimulation of 3, 6or 9 neurons. Error bars in (H) indicate SD. (I) Histogram of evoked and endogenous bursts relative to thetime of stimulation (t = 0 s) for all successful trials in all simulations; notice a 1 s refractory period.

the corresponding approximation becomes316
(

A
2r

)

(

2
NP

)2r(

1 − 2
NP

)A−2r

.

This is a smaller quantity than the first one for relevant parameter values (such as NP = 300 and317

small r as indicated by the stimulation experiments), showing that increasing PPP and proportion-318

ally scaling down WPP reduces the chance of successful recruitment of inactive neurons by active319

neurons.320

Interestingly, our simulations suggest that the connection probability in the pattern generating321

population must be between 1% and 2% to match the approximately 500ms refractory period mea-322

sured experimentally (Kam et al., 2013b) (Fig. 8F). Surprisingly, the mean and distribution of delays323

from stimulation to burst for all successfully elicited bursts are not strongly affected by changes324

in PPP (Fig. 8F). For a given stimulation time and number of neurons stimulated, however, decreas-325

ing PPP decreases the delay of elicited bursts (Fig. 8G). Finally, because the neurons in the pattern326
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generating population appear to play a dominant role in determining if stimulation will elicit a net-327

work burst, we characterized how the number of pattern generating neurons stimulated, out of328

a total set of 9 stimulated neurons, affects the probability of eliciting a network burst as a func-329

tion of stimulation time (Fig. 8H). These simulations were carried out under a baseline condition of330

PPP = 2%. In general, we found that stimulating a relatively larger proportion of pattern generating331

neurons increased the probability of eliciting a network burst for all times after the approximately332

1 s refractory period, as indicated by the positive slope in Fig. 8H.333
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Discussion334

Recent experiments have revealed a decoupling of respiratory rhythm generation and output pat-335

terning in the preBötC, which has given rise to the conceptual framework of burstlet theory. To336

date, however, this theory lacks the quantitative basis, grounded in underlying biophysical mecha-337

nisms, needed for its objective evaluation. To address this critical gap, in this computational study338

we developed a data-constrained biophysical model of the preBötC that generates burstlets and339

bursts as proposed by burstlet theory, with a range of features that match experimental observa-340

tions. To summarize, we first show that calcium induced calcium release (CICR) from intracellular341

stores is a natural mechanism to periodically amplify postsynaptic calcium transients needed for342

ICAN activation and recruitment of pattern-forming neurons into network bursts (Fig. 1). Next,343

we demonstrate that in a two-neuron network, CICR can convert baseline rhythmic activity into344

a mixture of bursts and burstlets, where the burstlet fraction depends largely on the magnitude345

of postsynaptic calcium transients (Fig. 2). In a larger preBötC network containing rhythm- and346

pattern-forming subpopulations with experimentally constrained intrinsic properties, population347

sizes and synaptic connectivity probabilities (Fig. 3), similar butmore realistic activity patterns arise348

(Fig. 4). Moreover, we show that this model canmatch all of the key experimental underpinnings of349

burstlet theory, including the dependence of the burstlet fraction on extracellular potassium con-350

centration (Fig. 4 I), the Ca2+ dependence of the burstlet-to-burst transition (Fig. 5), the effects of351

opioids on burst frequency and burstlet fraction (Fig. 6), and the long delay and refractory period352

of bursts evoked by holographic photostimulation of small subsets of preBötC neurons (Fig. 7 & 8).353

Insights into the mechanisms of burst (pattern) and burstlet (rhythm) generation354

in the inspiratory preBötC355

Burstlet theory to date has largely been an empirical description of the observed features of bursts356

and burstlets. One idea that has been suggested is that rhythm generation is driven by a stochastic357

percolation process in which tonic spiking across the rhythm-generating population gradually syn-358

chronizes during the inter-burst-interval to generate the burstlet rhythm. Subsequently, a burst359

(i.e. motor output) only occurs if the burstlet is of sufficient magnitude, resulting from sufficient360

synchrony, to trigger all-or-none recruitment of the pattern-forming subpopulation (Kam et al.,361

2013a,b; Feldman and Kam, 2015; Cui et al., 2016; Kallurkar et al., 2020; Ashhad and Feldman,362

2020). This theory, however, does not identify or propose specific biophysical mechanisms capa-363

ble of generating a quantitative explanation of the underlying cellular and network level dynam-364

ics, fails to capture the Ca2+ dependence of the burst-to-burstlet transition, and cannot explain365

how extracellular potassium concentration impacts the burstlet fraction. Our simulations support366

an alternative view that builds directly from previous computational studies (Jasinski et al., 2013;367

Phillips et al., 2019; Phillips and Rubin, 2019; Phillips et al., 2021), which robustly reproduce a368

wide array of experimental observations. Specifically, in this study we show that amplification of369

postsynaptic calcium transients in the pattern-generating subpopulation (triggered by burstlets)370

provides a natural mechanism capable of explaining the Ca2+ dependence of the burstlet-to-burst371

transition.372

Importantly, we find that the burstlet fraction is determined by the probability that a burstlet373

will trigger CICR in the pattern forming subpopulation. In the model, this probability is determined374

by the magnitude of postsynaptic calcium transients as well as the activation dynamics of the IP3375

receptor and the SERCA pump. Therefore, to explain the decrease in the burstlet fraction with376

increasing extracellular Kbatℎ, the magnitude of the burstlet-triggered postsynaptic calcium tran-377

sients must increase with Kbatℎ. Some of this rise can result directly from the increase in burstlet378

amplitude with increasing Kbatℎ (see (Kallurkar et al., 2020) and Fig. 4 C). To fully match the exper-379

imentally observed relationship between Kbatℎ and the burstlet fraction (Fig. 4 J), we also explicitly380

increased the parameter PSynCa, which sets the proportion of the postsynaptic calcium current car-381

ried byCa2+. Thus, ourmodel predicts that themagnitude of postsynapticCa2+ transients triggered382

16 of 31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469304
http://creativecommons.org/licenses/by-nc-nd/4.0/


by EPSPs should increase as Kbatℎ is elevated.383

This same prediction arises from considering the voltage-dependent properties of Ca2+ chan-384

nels characterized in preBötCneurons and the changes in themembranepotential of non-rhythmogenic385

(i.e. pattern-forming) neurons as a function of Kbatℎ. Specifically, it is likely that voltage-gated386

calcium channels are involved in generating the postsynaptic Ca2+ transients, as dendritic Ca2+387

transients have been shown to precede inspiratory bursts and to be sensitive to Cd2+, a calcium388

channel blocker (Del Negro et al., 2011). Consistent with this idea, Cd2+-sensitive Ca2+ channels in389

preBötC neurons appear to be primarily localized in distal dendritic compartments (Phillips et al.,390

2018). Voltage-gated calcium channels in the preBötC start to activate at approximately −65mV391

(Elsen and Ramirez, 1998) and importantly, the mean somatic resting membrane potential of non-392

rhythmogentic preBötC neurons increases from −67.034mV to −61.78mV when extracellular potas-393

sium concentration is elevated from 3mM to 8mM (Tryba et al., 2003). Moreover, at KBatℎ = 9mM ,394

EPSPs in the preBötC are on the order of 2 − 5mV (Kottick and Del Negro, 2015; Morgado-Valle395

et al., 2015; Baertsch et al., 2021) and the amplitude of EPSCs has been shown to decrease asKbatℎ396

is lowered (Okada et al., 2005). Putting together these data on resting membrane potential and397

EPSP sizes, we deduce that when KBatℎ = 3mM , the magnitude of EPSPs may not reach voltages398

sufficient for significant activation of voltage-gated Ca2+ channels. As Kbatℎ is increased, however,399

increases in the membrane potential of pattern-forming neurons and EPSP magnitude are pre-400

dicted to increase the magnitude of EPSPs triggered by postsynaptic calcium transients. This is401

exactly the effect that is captured in the model by an increase in PSynCa.402

The idea that dendritic post-synaptic Ca2+ transients and ICAN activation play a critical role in403

regulating the pattern of preBötC dynamics is well supported by experimental and computational404

studies. Specifically, the dendritic Ca2+ transients that precede inspiratory bursts (Del Negro et al.,405

2011) have been shown to travel in a wave to the soma, where they activate TRPM4 currents (ICAN )406

(Mironov, 2008). Moreover, the rhythmic depolarization of otherwise non-rhythmogenic neurons407

(inspiratory drive potential) depends on ICAN (Pace et al., 2007a), while the inspiratory drive poten-408

tial is not dependent on Ca2+ transients driven by voltage-gated calcium channels expressed in the409

soma (Morgado-Valle et al., 2008). Finally, pharmacological blockade of TRPM4 channels, thought410

to represent the molecular correlates of ICAN , reduces the amplitude of preBötC motor output411

without impacting the rhythm. These experimental findings were incorporated into and robustly412

reproduced in a recent computational model (Phillips et al., 2019). Consistent with these findings,413

this previous model suggests that rhythm generation arises from a small subset of preBötC neu-414

rons, which form an INaP -dependent rhythmogenic kernel (i.e. burstlet rhythm generator), and415

that rhythmic synaptic drive from these neurons triggers post-synaptic calcium transients, ICAN416

activation, and amplification of the inspiratory drive potential, which spurs bursting in the rest of417

the network. The current study builds on this previous model by explicitly defining rhythm- and418

pattern-generating neuronal subpopulations (see Fig. 3) and by incorporating the mechanisms re-419

quired for CICR and intermittent amplification of post-synaptic calcium transients.420

Calcium-induced calcium release mediated by the SERCA pump and the IP3 receptor has long421

been suspected to be involved in the dynamics of preBötC rhythm and/or pattern generation (Pace422

et al., 2007a; Crowder et al., 2007;Mironov, 2008; Toporikova et al., 2015) and has been explored423

in individual neurons and network models of the preBötC (Toporikova and Butera, 2011; Jasinski424

et al., 2013; Rubin et al., 2009; Wang and Rubin, 2020). Experimental studies have not clearly es-425

tablished the role of CICR from ER stores in respiratory circuits, however. For example, Mironov426

(2008) showed that the transmission of calciumwaves that travel from the dendrites to the soma is427

blocked by local application of thapsigargin, a SERCA pump inhibitor. In a separate study, however,428

block of the SERCA pump by bath application of thapsigargin (2−20�M ) or cyclopiazonic acid (CPA)429

(30 − 50�M ) did not significantly affect the amplitude or frequency of hypoglossal motor output in430

in vitro slice preparations containing the preBötC. It is possible that the negative results presented431

by the latter work occur due to the failure of pharmacological agents to fully penetrate the slice432

and diffuse across the cell membranes to reach their intracellular targets. Alternatively, the role of433
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CICR may be dynamically regulated depending on the state of the preBötC network. For example434

the calcium concentration at which the IP3 receptor is activated is dynamically regulated by IP3435

(Kaftan et al., 1997) and therefore, activity- or neuromodulatory-dependent changes in the cyto-436

plasmic Ca2+ and/or IP3 concentration may impact ER Ca2+ uptake and release dynamics. Store437

operated Ca2+ dynamics are also impacted by the transient receptor potential canonical 3 (TRPC3)438

channels (Salido et al., 2009), which are expressed in the preBötC, and manipulation of TRPC3 has439

been shown to impacted burst amplitude and regularity (Tryba et al., 2003; Koizumi et al., 2018)440

as would be predicted by this model. It is also possible that calcium release is mediated by the441

ryanodine receptor, an additional calcium activated channel located in the ER membrane (Lanner442

et al., 2010), since bath application of CPA (100�M ) and ryanodine (10�M ) removed large ampli-443

tude oscillations in recordings of preBötC population activity (Toporikova et al., 2015).444

Finally, we note that while variousmarkers can be used to define distinct subpopulations of neu-445

rons within the preBötC, our model cannot determine which of these ensembles are responsible446

for rhythm and pattern generation. Past experiments have examined the impact of optogenetic447

inhibition, applied at various intensities to subpopulations associated with specificmarkers, on the448

frequency of inspiratory neural activity, but this activity was measured bymotor output, not within449

the preBötC itself (Tan et al., 2008; Cui et al., 2016; Koizumi et al., 2016). According to burstlet the-450

ory and our model, slowed output rhythmicity could derive from inhibition of rhythm-generating451

neurons, due to a reduced frequency of burstlets, and from inhibition of pattern-generating neu-452

rons, due to a reduced success rate of burst recruitment. Thus, measurements within the preBötC453

will be needed in order to assess the mapping between subpopulations of preBötC neurons and454

roles in burstlet and burst production.455

Additional comparisons to experimental results456

In our model, a burstlet rhythm first emerges at a Kbatℎ of approximately 5mM , whereas in the ex-457

periments of Kallurkar et al. (2020), the burstlet rhythm continues even down to 3mM . To explain458

this discrepancy, we note that our model assumes that the extracellular potassium concentration459

throughout the network is equal to Kbatℎ. Respiratory circuits appear to have some buffering ca-460

pacity, however, such that for Kbatℎ concentrations below approximately 5mM the extracellular K+461

concentration remains elevated above Kbatℎ (Okada et al., 2005). The Kbatℎ range over which our462

model generates a rhythm would extend to that seen experimentally if extracellular K+ buffering463

were accounted for. This buffering effect can also explain why the burstlet fraction remains con-464

stant in experimental studies whenKbatℎ is lowered from 5mM to 3mM (Kallurkar et al., 2020). Our465

model also does not incorporate short-term extracellular potassiumdynamics thatmay impact the466

ramping shape of burstlet onset (Abdulla et al., 2021).467

Although our model incorporates various key biological features, it does not include some of468

the biophysical mechanisms that are known to shape preBötC patterned output or that are hypoth-469

esized to contribute to the properties described by burstlet theory. For example, the M-current470

associated with KCNQ potassium channels has been shown to impact burst duration by contribut-471

ing to burst termination (Revill et al., 2021). Additionally, intrinsic conductances associated with472

a hyperpolarization-activated mixed cation current (Iℎ) and a transient potassium current (IA) are473

hypothesized to be selectively expressed in the pattern- and rhythm-generating preBötC subpopu-474

lations (Picardo et al., 2013; Phillips et al., 2018). Thus, ourmodel predicts that while these currents475

may impact quantitative properties of burstlets and bursts, they are not critical for the presence of476

burstlets and their transformation into bursts. Finally, the current model does not include a popu-477

lation of inhibitory preBötC neurons. Inhibition is involved in regulating burst amplitude (Baertsch478

et al., 2018), but it does not have a clear role in burst or burstlet generation, and therefore inhibi-479

tion was omitted from this work.480

Importantly, our model does robustly reproduce all of the key experimental observations un-481

derlying burstlet theory. Not surprisingly, block of calcium transients or ICAN in our model elimi-482

nates bursts without affecting the underlying rhythm (Fig. 5), which is consistent with experimental483
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observations (Kam et al., 2013b; Sun et al., 2019). Interestingly, our model also provides the exper-484

imentally testable predictions that blocking calcium transients will increase the burstlet fraction485

while ICAN block will have no effect on this fraction, whereas both perturbations will smoothly re-486

duce burst amplitude. Interestingly, the calcium-dependent mechanisms that we include in our487

model pattern-generating population have some common features with a previous model that488

suggested the possible existence of two distinct preBötC neuronal populations responsible for489

eupneic burst and sigh generation, respectively, which also included excitatory synaptic transmis-490

sion from the former to the latter (Toporikova et al., 2015). In the eupnea-sigh model, however,491

the population responsible for low-frequency, high-amplitude sighs was capable of rhythmic burst492

generation even without synaptic drive, in contrast the pattern-generation population as tuned in493

our model. Also in contrast to the results on bursts considered in our study, sigh frequency in the494

earliermodel did not vary with extracellular potassium concentration and sigh generation required495

a hyperpolarization-activated inward current, Iℎ.496

We also considered the effects of opioids in the context of burstlets and bursts, a topic that497

has not been extensively studied. It is well established that opioids slow the preBötC rhythm in498

in vitro slice preparations; however, the limited results presented to date on effects of opioids on499

the burstlet fraction are inconsistent. Specifically, Sun et al. (2019) found that application of the �-500

opioid receptor agonist DAMGO at 10 nM and 30 nM progressively decreased the preBötC network501

frequency but had no impact on the burstlet fraction before the network rhythm was eventually502

abolished at approximately 100 nM . Similarly, Baertsch et al. (2021) found that DAMGO decreased503

the preBötC network frequency in a dose-dependent fashion; however, in these experiments the504

network was less sensitive to DAMGO, maintaining rhythmicity up to approximately 300 nM , and505

the burstlet fraction increased with increasing DAMGO concentration. The inconsistent effects506

of DAMGO on the burstlet fraction across these two studies can be explained by our simulations507

based on the different sensitivities of these two preparations to DAMGO and the two distinctmech-508

anisms of action of DAMGO on neurons that express �OR – decreases in excitability and decreases509

in synaptic output of neurons – identified by Baertsch et al. (2021). In our simulations we show510

that the decreased excitability resulting from activation of a GIRK channel only impacts frequency,511

whereas decreasing the synaptic output of �OR-expressing neurons results in an increase in the512

burstlet fraction and a decrease in burst frequency (Fig. 6). In experiments, suppression of synap-513

tic output does not appear to occur until DAMGO concentrations are above approximately 50 nM514

(Baertsch et al., 2021). Therefore, it is not surprising that DAMGO application did not strongly515

impact the burstlet fraction before the rhythm was ultimately abolished in Sun et al. (2019), due516

to the higher DAMGO sensitivity of that particular experimental preparation, as indicated by the517

lower dose needed for rhythm cessation.518

Mixed-mode oscillations519

Mixed-mode oscillations, inwhich intrinsic dynamics of a nonlinear systemnaturally lead to alterna-520

tions between small- and large-amplitude oscillations (Del Negro et al., 2002c; Bertram and Rubin,521

2017), are a mechanism that has been previously proposed to underlie bursts and burstlets, under522

the assumption of differences in intrinsic oscillation frequencies across preBötC neurons (Bacak523

et al., 2016). This mechanism was not needed to explain the generation of bursts and burstlets524

in the current model, however. Moreover, systems with mixed-mode oscillations can show a wide525

range of oscillation amplitudes under small changes in conditions and only emerge when Kbatℎ el-526

evated above 9mM (Del Negro et al., 2002c). These properties are not consistent with the burst527

and burstlet amplitudes or Kbatℎ-dependent changes in the burstlet fraction seen experimentally528

(Kallurkar et al., 2020) and in our model.529

Holographic photostimulation, percolation and rhythm generation530

Experimental data supporting burstlet theory has shown that burstlets are the rhythmogenic event531

in the preBötC. However, although burstlet theory is sometimes referenced as a theory of respi-532

19 of 31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469304
http://creativecommons.org/licenses/by-nc-nd/4.0/


ratory rhythm generation, the actual mechanisms of burstlet rhythm generation remain unclear.533

One idea that has been suggested is that rhythm generation is driven by a stochastic percola-534

tion process in which tonic spiking across the rhythm-generating population gradually synchro-535

nizes during the inter-burst-interval to generate the burstlet rhythm (Ashhad and Feldman, 2020;536

Slepukhin et al., 2020). In this framework, a burst (i.e. motor output) only occurs if the burstlet is537

of sufficient magnitude, resulting from sufficient synchrony, to trigger all-or-none recruitment of538

the pattern-forming subpopulation (Kam et al., 2013a,b; Feldman and Kam, 2015; Kallurkar et al.,539

2020; Ashhad and Feldman, 2020; Slepukhin et al., 2020).540

The idea that burstlets are the rhythmogenic event within the preBötC is supported by the ob-541

servation that block of voltage-gated Ca2+ channels by Cd2+ eliminates bursts without affecting the542

underlying burstlet rhythm (Kamet al., 2013a; Sun et al., 2019). However, the rhythmogenicmecha-543

nism based on percolation is speculative and comes from two experimental observations. The first544

is that the duration and slope (i.e., shape) of the burstlet onset are statistically indistinguishable545

from the ramping pre-inspiratory activity that immediately precedes inspiratory bursts (Kallurkar546

et al., 2020). We note, however, that this shape of pre-inspiratory activity can arise through intrinsic547

mechanisms at the individual neuron level (Abdulla et al., 2021). The second observation evoked548

in support of the percolation idea is that holographic photstimulaton of small subsets (4 − 9) of549

preBötC neurons can elicit bursts with delays lasting hundreds of milliseconds (Kam et al., 2013b).550

These delays are longer than could be explained with existing preBötC models and have approxi-551

mately the same duration as the pre-inspiratory activity and burstlet onset hypothesized to under-552

lie the rhythm. According to the percolation hypothesis of burstlet rhythm generation, these long553

delays result from the specific topological architecture of the preBötC, recently proposed to be a554

heavy-tailed synaptic weight distribution in the rhythmogenic preBötC subpopulation (Slepukhin555

et al., 2020).556

Interestingly, the model presented here naturally captures the long delays characterized by557

Kam et al. (2013b), and stimulation of small subsets of neurons triggers a growth in population558

activity in the lead up to a burst that could be described as percolation (Fig. 7B). Our model does559

not require a special synaptic weight distribution to generate the long delays, however. Indeed,560

our model suggests that the long delays between simulation and burst generation are due in large561

part to the dynamics of the pattern-forming population, as probabilistically these neurons are the562

most likely to be stimulated and they appear to play a dominant role in setting the timing of the563

elicited burst response (Fig. 8H). Moreover, the dynamics of this population is strongly impacted by564

the CICRmechanismproposed here, which is required for burst generation. Interestingly, tomatch565

the 500ms refractory period following an endogenous burst during which holographic stimulation566

cannot elicit a burst, our model predicts that the connection probability in the pattern generating567

preBötC subpopulationmust be between 1% and 2%, which is consistent with available experimen-568

tal data (Ashhad and Feldman, 2020).569

Thus, taken together, previous modeling and our work offer two alternative, seemingly viable570

hypotheses about the source of the delay between holographic stimulation and burst onset, each571

related to a proposed mechanism for burstlet and burst generation. Yet additional arguments572

call into question aspects of the percolation idea. If the burstlet rhythm is driven by a stochastic573

percolation process, then the period and amplitude of burstlets should be stochastic, irregular,574

and broadly distributed. Moreover, in the proposed framework of burstlet theory, the pattern575

of bursts and burstlets for a given burstlet fraction would also be stochastic, since the burstlet-576

to-burst transition is thought to be an all-or-none process that depends on the generation of a577

burstlet of sufficient magnitude. Example traces illustrating a mixture of bursts and burstlets typi-578

cally show a pattern of multiple burstlets followed by a burst that appears to regularly repeat (Kam579

et al., 2013b; Sun et al., 2019; Kallurkar et al., 2020) and hypoglossal output timing has also been580

found to exhibit high regularity Kam et al. (2013b), however, suggesting that the burstlet-to-burst581

transition is not dependent on the synchrony and hence magnitudes of individual burstlets but582

rather on a slow process that gradually evolves over multiple burstlets. The regularity and pat-583
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terns of burstlets and bursts that arise from such a process in our model match well with those584

observed experimentally.585

We note that the burstlet-to-burst transition mechanism proposed here, based on CICR from586

ER stores, depends on rhythmic inputs from the rhythm-generating to the pattern-generation pop-587

ulation; however, it is independent of the mechanism of rhythm generation. In our simulations,588

rhythm generation depends on the slowly inactivating persistent sodium current (INaP ). The role589

of INaP in preBötC inspiratory rhythm generation is a contentious topic within the field, largely590

due to the inconsistent effects of INaP block. We chose to use INaP in as the rhythmogenic mech-591

anism in the burstlet population for a number of reasons: (1) consideration of the pharmacolog-592

ical mechanism of action and nonuniform effects of drug penetration can explain the seemingly593

contradictory experimental findings relating to INaP (Phillips and Rubin, 2019), (2) INaP -dependent594

rhythm generation is a well-established and understood idea (Butera et al., 1999), (3) recent com-595

putational work on which the current model is based suggests that rhythm generation occurs in a596

small, INaP -dependent rhythmogenic kernel that is analogous to the burstlet population (Phillips597

et al., 2019), and predictions from this model that depend on the specific proposed roles of INaP598

and ICAN in rhythm and pattern formation have been experimentally confirmed in a recent study599

(Phillips et al., 2021). It is important to note, however, that the findings about burstlets and bursts600

presented in this work would have been obtained if the burstlet rhythm was imposed (Fig. 1) or if601

burstlets were generated by some other means, such as by the percolation mechanism proposed602

by burstlet theory.603

Conclusions604

This study has developed the first model-based description of the biophysical mechanism under-605

lying the generation of bursts and burstlets in the inspiratory preBötC. As suggested by burstlet606

theory and other previous studies, rhythm and pattern generation in this work are represented607

by two distinct preBötC subpopulations. A key feature of our model is that generation of network608

bursts (i.e. motor output) requires amplification of postsynaptic Ca2+ transients by CICR in order to609

activate ICAN and drive bursting in the rest of the network. Moreover, the burstlet fraction depends610

on rate of Ca2+ buildup in intracellular stores, which is impacted by Kbatℎ-dependent modulation611

of preBötC excitability. These ideas complement other recent findings on preBötC rhythm genera-612

tion (Phillips et al., 2019; Phillips and Rubin, 2019; Phillips et al., 2021), together offering a unified613

explanation for a large body of experimental findings on preBötC inspiratory activity that offer a614

theoretical foundation on which future developments can build.615

Methods and Materials616

Neuron Model617

Model preBötC neurons include a single compartment and incorporate Hodgkin-Huxley style con-618

ductances adapted from previously described models (Jasinski et al., 2013; Phillips et al., 2019;619

Phillips and Rubin, 2019) and/or experimental data as detailed below. The membrane potential of620

each neuron is governed by the following differential equation:621

C dV
dt

= −INa − IK − INaP − ICa − ICAN − ILeak − ISyn − IGIRK − IHolo + IAPP , (1)
whereC = 36 pF is themembrane capacitance and each Ii represents a current, with i denoting the622

current’s type. The currents include the action potential generating Na+ and delayed rectifying K+623

currents (INa and IK ), persistent Na+ current (INaP ), voltage-gated Ca2+ current (ICa), Ca2+-activated624

non-selective cation (CAN) current (ICAN ), K+ dominated leak current (ILeak), synaptic current (ISyn),625

�-opioid receptor activated G protein-coupled inwardly-rectifying K+ current (IGIRK ), and a holo-626

graphic photostimulation current (IHolo). IAPP denotes an applied current injected from an elec-627

trode. The currents are defined as follows:628

INa = gNa ⋅ m3Na ⋅ ℎNa ⋅ (V − ENa) (2)
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Table 1. Ionic Channel Parameters.
Channel Parameters
INa gNa = 150 nS ENa = 26.54 ⋅ ln(Naout∕Nain) Nain = 15mM Naout = 120mM

m1∕2 = −43.8mV km = 6.0mV �mmax = 0.25ms �m1∕2 = −43.8mV km� = 14.0mV
ℎ1∕2 = −67.5mV kℎ = −11.8mV �ℎmax = 8.46ms �ℎ1∕2 = −67.5mV kℎ� = 12.8mV

IK gK = 220 nS EK = 26.54 ⋅ ln(Kbatℎ∕Kin) Kin = 125 KBatℎ = V AR
A� = 0.011 B� = 44.0mV k� = 5.0mV
A� = 0.17 B� = 49.0mV k� = 40.0mV

INaP gNaP = N(�, �), See Table 2
m1∕2 = −47.1mV km = 3.1mV �mmax = 1.0ms �m1∕2 = −47.1mV km� = 6.2mV
ℎ1∕2 = −60.0mV kℎ = −9.0mV �ℎmax = 5000ms �ℎ1∕2 = −60.0mV kℎ� = 9.0mV

ICa gCa = 0.0065 pS ECa = 13.27 ⋅ ln(Caout∕Cain) Caout = 4.0mM
m1∕2 = −27.5mV km = 5.7mV �m = 0.5ms
ℎ1∕2 = −52.4mV kℎ = −5.2mV �ℎ = 18.0ms

ICAN gCAN = N(�, �), See Table 2 ECAN = 0.0mV Ca1∕2 = 0.00074mM n = 0.97
ILeak gLeak = N(�, �), See Table 2 ELeak = −26.54 ∗ ln[(PNa ∗ Nain + PK ∗ Kin)∕(PNa ∗ Naout + PK ∗ Kbatℎ)]

PNa = 1 PK = 42
ISyn gSyn = V AR, See Eq. 25 ESyn = 0.0mV �Syn = 5.0ms
IGIRK gGIRK = 0 − 0.3 nS EGIRK = EK
IHolo gHolo = 50 nS �Holo = 100ms EHolo = ESyn

IK = gK ⋅ m4K ⋅ (V − EK ) (3)

INaP = gNaP ⋅ mNaP ⋅ ℎNaP ⋅ (V − ENa) (4)

ICa = gCa ⋅ mCa ⋅ ℎCa ⋅ (V − ECa) (5)

ICAN = gCAN ⋅ mCAN ⋅ (V − ECAN ) (6)

ILeak = gLeak ⋅ (V − ELeak) (7)

ISyn = gSyn ⋅ (V − ESyn) (8)

IGIRK = gGIRK ⋅ (V − EK ) (9)

IHolo = gHolo ⋅ (V − ESyn) (10)
where gi is themaximumconductance,Ei is the reversal potential, andmi and ℎi are gating variables629

for channel activation and inactivation for each current Ii. The glutamatergic synaptic conductance630

gSyn is dynamic and is defined below. The values used for the gi and Ei appear in Table 1.631

Activation (mi) and inactivation (ℎi) of voltage-dependent channels are described by the follow-632

ing differential equation:633

�X(V ) ⋅
dX
dt

= X∞(V ) −X; X ∈ {m, ℎ} (11)
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Table 2. Distributed channel conductances.
Type gNaP (nS) gLeak (nS) gCAN (nS)

� � � � � �
Rhythm 3.33 0.75 (KBatℎ − 3.425)∕4.05 0.05 ⋅ �leak 0.0 0.0
Pattern 1.5 0.25 (KBatℎ − 3.425)∕4.05 0.025 ⋅ �leak 2.0 1.0

where X∞ represents steady-state activation/inactivation and �X is a time constant. For INa, INaP ,634

and ICa, the functions X∞ and �X take the forms635

X∞(V ) = 1∕(1 + exp(−(V −X1∕2)∕kX)), (12)

�X(V ) = �Xmax∕ cosh((V − �
X
1∕2)∕k

X
� ). (13)

The values of the parameters (X1∕2, kX , �Xmax, �X1∕2, and kX� ) corresponding to INa INaP and ICa are636

given in Table 1.637

For the voltage-gated potassium channel, the steady-state activation mK∞(V ) and time constant638

�Km (V ) are given by the expressions639

mK∞(V ) = �∞(V )∕(�∞(V ) + �∞(V )), (14)

�Km (V ) = 1∕(�∞(V ) + �∞(V )) (15)
where640

�∞(V ) = A� ⋅ (V + B�)∕(1 − exp(−(V + B�)∕k�)), (16)

�∞(V ) = A� ⋅ exp(−(V + B�)∕k�). (17)
The values for the constants A� , A� , B� , B� , k� , and k� are also given in Table 1.641

ICAN activation depends on the Ca2+ concentration in the cytoplasm ([Ca]Cyto) and is given by:642

mCAN = 1∕(1 + (Ca1∕2∕[Ca]Cyto)n). (18)
The parametersCa1∕2 and n represent the half-activationCa2+ concentration and theHill coefficient,643

respectively, and are included in Table 1 .644

The dynamics of [Ca]Cyto is determined in part by the balance of Ca2+ efflux toward a baseline645

concentration via the Ca2+ pump and Ca2+ influx through voltage-dependent activation of ICa and646

synaptically triggered Ca2+ transients, with a percentage (PSynCa) of the synaptic current (ISyn) car-647

ried by Ca2+ ions. Additionally, the model includes an intracellular compartment that represents648

the endoplasmic reticulum (ER), which impacts [Ca]Cyto. The ER removes Ca2+ from the cytoplasm649

via a sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump, which transports Ca2+ from650

the cytoplasm into the ER (JSERCA), and releases Ca2+ into the cytoplasm via calcium-dependent651

activation of the inositol triphosphae (IP3) receptor (JIP3). Therefore, the dynamics of [Ca]Cyto is652

described by the following differential equation:653

d[Ca]Cyto
dt

= �Ca ⋅ (ICa + PSynCa ⋅ ISyn) + �ER ⋅ (JIP3 − JSERCA) −
([Ca]Cyto − Camin)

�pump
, (19)

where �Ca = 2.5 ⋅ 10−5 mM∕fC is a conversion factor relating current to rate of change of [Ca]Cyto,654

�pump = 500ms is the time constant for the Ca2+ pump, Camin = 5.0 ⋅ 10−6 mM is a minimal baseline655

calcium concentration, and �ER = 2.5 ⋅ 10−5 is the ratio of free to bound Ca2+ in the ER.656
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The flux of Ca2+ from the ER to the cytoplasm through the IP3 receptor is modeled as:657

JIP3 =
(

ERleak + GIP3 ⋅
( [Ca]Cyto
[Ca]Cyto +Ka

⋅
[IP 3]i ⋅ l
[IP 3]i +Kl

)3)

⋅ ([Ca]ER − [Ca]Cyto), (20)
where ERleak = 0.1∕ms represents the leak constant from the ER stores, GIP3 = 77, 500∕ms repre-658

sents the permeability of the IP3 channel, Ka = 1.0 ⋅ 10−4 mM and Kl = 1.0 ⋅ 10−3 mM are dissoci-659

ation constants, and [IP 3]i = 1.5 ⋅ 10−3 mM is the cytoplasm IP3 concentration. Finally, the Ca2+-660

dependent IP3 gating variable, l, and the Ca2+ concentration in the ER, [Ca]ER, are determined by661

the following equations:662

dl
dt
= A ⋅ (Kd − l ⋅ ([Ca]Cyto +Kd)); (21)

[Ca]ER = ([Ca]total − [Ca]Cyto)∕�Ca, (22)
where A = 0.1mM∕ms is a conversion factor, Kd = 0.2 ⋅ 10−3 mM is the dissociation constant for IP3663

inactivation, [Ca]total is the total intracellular calcium concentration and �Ca = 0.185 is the ratio of664

cytosolic to ER volume. The total intracellular calcium concentration is described as:665

d[Ca]T otal
dt

= �Ca ⋅ (ICa + PSynCa ⋅ ISyn) −
(CaCyto − Camin)

�pump
. (23)

Finally, removal of Ca2+ from the cytoplasm by the SERCA pump is modeled as:666

JSERCA = GSERCA ⋅
[Ca]2Cyto

K2
SERCA + [Ca]

2
Cyto

, (24)
where GSERCA = 0.45mM∕ms is the maximal flux through the SERCA pump, and KSERCA = 7.5 ⋅667

10−5 mM is a dissociation constant.668

Whenwe includemultiple neurons in the network, we can index themwith subscripts. The total669

synaptic conductance (gSyn)i of the itℎ target neuron is described by the following equation:670

(gSyn)i = gT onic +
∑

j≠i;n
Wj,i ⋅Dj ⋅ Cj,i ⋅H(t − tj,n) ⋅ e−(t−tj,n)∕�syn , (25)

where gT onic is a fixed or tonic excitatory synaptic conductance (e.g., from respiratory control areas671

outside of the preBötC) that we assume impinges on all neurons, Wj,i represents the weight of672

the synaptic connection from neuron j to neuron i, Dj is a scaling factor for short-term synaptic673

depression in the presynaptic neuron j (described in more detail below), Cj,i is an element of the674

connectivity matrix (Cj,i = 1 if neuron j makes a synapse with neuron i and Cj,i = 0 otherwise),H(.)675

is the Heaviside step function, and t denotes time. �Syn is an exponential synaptic decay constant,676

while tj,n is the time at which the ntℎ action potential generated by neuron j reaches neuron i.677

Synaptic depression in the jtℎ neuron (Dj ) was simulated using an establishedmean-fieldmodel678

of short-term synaptic dynamics (Abbott et al., 1997;DayanandAbbott, 2001;Morrison et al., 2008)679

as follows:680
dDj

dt
=
D0 −Dj

�D
− �D ⋅Dj ⋅ �(t − tj). (26)

Where the parameter D0 = 1 sets the maximum value of Dj , �D = 1000ms sets the rate of recovery681

from synaptic depression, �D = 0.2 sets the fractional depression of the synapse each time neuron682

j spikes and �(.) is the Kronecker delta function which equals one at the time of each spike in683

neuron j and zero otherwise. Parameters were chosen to qualitatively match data from Kottick684

and Del Negro (2015).685

When we consider a two-neuron network (Fig. 2), we takeW1,2 = W2,1 = 0.006 and C1,2 = C2,1 = 1.686

For the full preBötC population model comprising rhythm and pattern generating subpopulations,687

the weights of excitatory conductances were uniformly distributed such that Wj,i = U (0,WMax)688

where WMax is a constant associated with the source and target neurons’ populations; with each689
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such pair, we also associated a connection probability and used this to randomly set the Cj,i values690

(see Table 3). Effects of opioids on synaptic transmission for source neurons in the rhythmogenic691

subpopulation (Fig. 6) were simulated by scaling Wj,i with the parameter �OR which ranged be-692

tween 0 and 0.5 and sets the percent synaptic block.693

Table 3. Maximal synaptic weights and connection probabilities between and within rhythm and patterngenerating preBötC subpopulations (WMax, P ).
Target

Rhythm Pattern
Sou

rce Rhythm (0.15 nS, 0.13) (0.000175 nS, 0.3)
Pattern (0.25 nS, 0.3) (0.0063 nS, 0.02)

Network construction694

The relative proportions of neurons assigned to the rhythm and pattern generating preBötC sub-695

populations were chosen based on experimental data. For example, Kallurkar et al. (2020) found696

that 20 ± 9% of preBötC inspiratory neurons are active during burstlets at KBatℎ = 9mM . Moreover,697

the rhythm and pattern generating neurons are hypothesized to be represented by the subsets of698

Dbx1 positive preBötC neurons that are somatostatin negative (SST −) and positive (SST +), respec-699

tively (Cui et al., 2016; Ashhad and Feldman, 2020). Somatostatin positive neurons are estimated700

to comprise 72.6% of the Dbx1+ preBötC population (Koizumi et al., 2016). Therefore, our preBötC701

network was constructed such that the rhythm and pattern forming subpopulations represent 25%702

and 75% of the N = 400 neuron preBötC population (i.e., NR = 100 and NP = 300). The rhythm and703

pattern generating neurons are distinguished by their INaP conductances.704

The synaptic connection probabilities within the rhythm (PRR = 13%) and pattern (PPP = 2%)705

generating neurons were taken from previous experimental findings (Rekling et al. (2000) and706

Ashhad and Feldman (2020), respectively). The connection probabilities between the rhythm and707

pattern generating populations are not known and in themodel were set at (PRP = PPR = 30%) such708

that the total connection probability in the network is approximately 13% (Rekling et al., 2000).709

Heterogeneity was introduced by normally distributing the parameters gleak, gNaP and gCAN as710

well as uniformly distributing the weights (Wj,i) of excitatory synaptic connections; see Tables 2711

and 3. Additionally, gleak was conditionally distributed with gNaP in order to achieve a bivariate712

normal distribution between these two conductances, as suggested by Del Negro et al. (2002a);713

Koizumi and Smith (2008). In our simulations, this was achieved by first normally distributing gNaP714

in each neuron according to the values presented in Table 2. Then used a property of bivariate715

normal distribution which says that the conditional distribution of gleak given gNaP is itself a normal716

distribution with mean (�∗Leak) and standard deviation (�∗Leak) described as follows:717

�∗Leak = �Leak + � ⋅ (�Leak∕�NaP ) ⋅ (g
i
NaP − �NaP ), (27)

718

�∗Leak =
√

(1 − �2) ⋅ �2Leak. (28)
Where �Leak and �NaP are the mean and, �Leak and �NaP are the standard deviation of the gLeak719

and gNaP distributions. Finally, � = represents the correlation coefficient and giNaP represents the720

persistent sodium current conductance for the itℎ neuron. All parameters are given in Table 2.721

Activation dynamics of IHolo722

Holographic stimulation was simulated by activating IHolo in small sets of randomly selected neu-723

rons across the preBötC population. Activation of this current was simulated by the following equa-724
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tion:725

dmHolo
dt

= −
mHolo
�Holo

+ �(t − tstim). (29)
Where mHolo represents the channel activation and ranges between 0 and 1, �Holo represents the726

decay time constant, and �(.) is the Kronecker delta function which represents the instantaneous727

jump in mHolo from 0 to 1 at the time of stimulation (tstim). Parameters were chosen such that the728

response in stimulated neurons matched those seen in Kam et al. (2013b). All parameters are729

given in Table 1.730

Data analysis and definitions731

Data generated from simulations was post-processed inMatlab (Mathworks, Inc.). An action poten-732

tial was defined to have occurred in a neuron when its membrane potential Vm increased through733

−35mV . Histograms of population activity were calculated as the number of action potentials per734

20ms bin per neuron, with units of APs∕(s ⋅ neuron). Network burst and burstlet amplitudes and fre-735

quencies were calculated by identifying the peaks and the inverse of the interpeak interval from736

the population histograms. The thresholds used for burst and burstlet detection were 30 spk∕s∕N737

and 2.5 spk∕s∕N , respectively. For the simulated holographic stimulation simulations, the start of738

a network burst was defined as the time at which the integrated preBötC population activity in-739

creased through the threshold for burst detection, while the end of a network burst was defined740

as the time at which the integrated preBötC activity returned to exactly zero.741

Integration methods742

All simulations were performed locally on an 8-core Linux-based operating system or on compute743

nodes at the University of Pittburgh’s Center for Research Computing. Simulation software was744

custom written in C++. Numerical integration was performed using the first-order Euler method745

with a fixed step-size (Δt) of 0.025ms. All model codes will be made freely available through the746

ModelDB sharing site hosted by Yale University upon publication of this work.747
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Supplementary Material748
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Figure 2-Figure Supplement 1. Without CICR, the two neuron network fails to generate bursts (re-
cruitment of neuron 2). These simulations are identical to those in Fig. 2 except the conductance
of the IP3 receptor is set to zero (GIP3 = 0∕ms). (A1) Schematic diagram of the synaptically uncou-
pled network. The rhythm and pattern generating components of the network are represented
by neuron 1 and 2, respectively. (A2) Example trace showing intrinsic bursting in neuron 1 and
quiescence in neuron 2. (A3) Burst frequency and (A4) the number of spikes per burst in neuron 1
as a function of an applied current (IAPP ). Neuron 2 remained quiescent within this range of IAPP .(B1) Schematic diagram of the synaptically coupled network. (B2-B4) 2D plots characterizing the
(B2) burstlet fraction, (B3) neuron 2 (burst) frequency, and (B4) neuron 2 spikes per burst (burst
amplitude) as a function of IAPP and PSynCa. (C1-C4) Example traces for neuron 1 and 2 for various
IAPP and PSynCa values indicated in (B2-B4). Notice that neuron 2 is never recruited by the burstingin neuron 1 for any of the conditions tested. The model parameters used in these simulations
are: (neuron 1 & 2) KBatℎ = 8mM , gLeak = 3.35 nS, W12 = W21 = 0.006 nS; (Neuron 1) gNaP = 3.33 nS,
gCAN = 0.0 nS, Neuron 2 gNaP = 1.5 nS, gCAN = 1.5 nS.
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Figure 3-Figure Supplement 1. Dependence of intrinsic cellular dynamics and the number of
spikes per burst on Kbatℎ and gLeak. For these simulations gNaP = 5.0 nS.
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