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Abstract 

We introduce the Reset model, a composition of neural networks - typically several 

levels of convolutional neural networks - whose outputs at one level are gathered and 

reshaped into a spatial input for the next level. We show that units in Reset networks self-

organize into clusters when trained on MNIST, Fashion MNIST, CIFAR-10 and CIFAR-100. 

We then show that a stronger type of self-organization, reminiscent of the topography found 

for numbers in parietal cortex, arises when number images are mapped onto developmentally 

realistic number codes. We outline the implications of this model for theories of the cortex and 

developmental neuroscience. 
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Introduction 

Convolutional Neural Network (CNN hereafter) classifiers have now been shown 

beyond any reasonable doubt to predict activity in human visual cortex. However, a very salient 

aspect of the latter is the clustering, observed in ventral Occipitotemporal cortex (vOTC 

hereafter), of units selective for faces, houses and other prominent visual categories. These 

clusters are often called “categorical areas” [1].  

Categorical areas cannot be explained within the standard CNN classifier framework, 

because they respond to high level features in the stimulus, and yet are spatially extended 

objects in vOTC. On the contrary, CNN classifiers by design trade-off spatial dimensions for 

feature channels as information is fed-forward. In the deepest layers of a standard CNN 

classifier, where features are most complex and would have a chance to capture the responses 

of categorical areas, these features also have little if any spatial arrangement left. 

In this article, we show that requiring of CNN outputs to serve as input to other CNNs 

downstream is sufficient for self-organization to take place. As the input space is in a sense 

reset, we call these models Reset networks. 

 

Reset networks  

Reset networks are compositions of several neural networks - typically several levels 

of CNNs - whose outputs at one level are reshaped into a spatial input for the next level. We 

will show that they implement a sequence of neural spaces where networks performing similar 

computations end-up being neighbors, as do units that are selective to the same input. 
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Figure 1. A Reset network is a differentiable neural system with an arbitrary number of levels, 

where each level itself consists of a spatial arrangement of deep neural networks.  

 

The general form of a Reset network is shown in Figure 1. It has an arbitrary depth of levels, 

each consisting of several networks operating in parallel on the same input. The next three 

requirements can be relaxed, but will be followed in the remainder of this article:  

1. At any level, all networks are independent processors: they do not share any 

weight parameters and do not project to each other laterally.  

2. At any level, all networks receive, as a common input, the reshaped and 

concatenated outputs of all networks from the level below.  

3. The last level of the model is the only output level, where error signals for all 

tasks are received. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.11.19.469308doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469308
http://creativecommons.org/licenses/by-nc-nd/4.0/


Reset networks include in particular the family shown in Figure 2, where level 1 is 

obtained by reshaping and concatenating the outputs of nxn parallel networks into a single 

map, called "grid" hereafter, which then serves as input for a final network. We refer to such 

systems as Reset Networks of depth 2 and width n, or Reset(n), we will sometimes also write 

Reset(n, m) to further specify the grid’s width m in terms of units. 

 

Figure 2. A family of depth 2 Reset networks, with nxn intermediate grids, for increasing n.  
 
 

We demonstrate that Reset networks can perform classification at scale while also exhibiting 

emergent topographic organization. Our code is available on GitHub: 

https://github.com/THANNAGA/Reset-Networks. 

 

Results 

 

Reset networks show clustering for MNIST, Fashion MNIST and CIFAR-10 

We start by training Reset(8) networks on MNIST, Fashion MNIST and CIFAR-10. In 

each case, the networks reached standard performance levels on the test sets, but more 

interestingly, Figure 3 shows the networks’ grids after 20 epochs of training. 
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Figure 3. Reset networks with 8x8 grid and depth 2 are trained on MNIST (A), Fashion MNIST 

(B) and CIFAR-10 (C). (Upper Line) Number preferences on the network grid show 

topography. (Lower Line) Clustering is defined as the average size, over all target classes, of 

the connected components on the grid for this class: it is always higher than that obtained for 

a shuffled map (positive clustering index). 

  

The upper plots in Figure 3 present converged preference maps -the class preference 

of each unit on the 32x32 grid of the trained model- whereas the lower plots quantify the 

amount of clustering on each map, at each point during training. A unit's preference is given 

by the highest d-prime, over each target class, of the unit's responses to this target class 

against all other classes. If this maximum d-prime is below an arbitrary threshold, set to 2 

throughout this article, the unit is said to have no preference (white units on the preference 

map).  
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We also compute clustering as the average size, over all target classes, of the 

connected components present on the map for this class. The final clustering index presented 

Figure 3 is the deviation of clustering from chance: it is obtained by subtracting the clustering 

measured for shuffled maps to that of the true maps. More details can be found in 

Supplementary Material (Figure S1).  

Figure 3 shows that there is clustering for each of the three domains considered, with 

some variations across domains: for instance, CIFAR-10 elicits more clustering, while Fashion 

MNIST produces overall fewer category selective units, and thus less clustering. Figure 3 also 

shows that clustering happens quite quickly: it is essentially in place after the first training 

epoch. 

One might be forgiven to think that clustering in this model only comes from the 

concatenation of outputs. To assess whether this is the case, we measure clustering in the 

family of Reset(n) networks for n = 1, 2, 4 and 8. The grid of Reset(1) has no concatenation, 

while that of Reset(8) is obtained by concatenating the output units of 8x8=64 subnetworks. 

We emphasize that although n varies, the size of the grid remains fixed at 32x32 units. 

 

 

Figure 4. Clustering curves for Reset networks of depth 2 and size 1, 2, 4 and 8 trained on 

MNIST (A), Fashion MNIST (B) and CIFAR-10 (C). Clustering is non-zero for all networks, and 

tends to increase with n. 
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It can be seen on Figure 4 that clustering is always non-zero for all n, and that there is 

an obvious tendency of clustering to increase with n. Therefore, concatenation accounts for a 

significant proportion of clustering, but it is not a necessary condition: the Reset(1) curve shows 

that simply composing two CNN classifiers already will produce clustering. 

 

Reset networks and categorical areas in vOTC 

In vOTC, more than two decades of studies have established the presence of areas 

selective for a few prominent visual categories, in particular faces, body parts, tools, houses, 

and words. There is no shortage of scalable deep learning models that can reproduce complex 

responses in the visual system but lack topography, and conversely, topographic models have 

long been proposed which lack the ability to perform at scale (see for instance [2] for a 

discussion). To our knowledge, as of 2021 only one model, TDANN [3], can claim both 

topography and scale at the same time. We return to this model in the discussion, explaining 

why its treatment of topography is problematic, requiring as it does two disconnected concepts 

of space to coexist. By contrast, the way Reset networks achieve topography at scale is 

conceptually straightforward. 
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Figure 5. Clustering in Reset networks of depth 2 and sizes 1 (A), 2 (B), 4 (C) and 8 

(D) trained on CIFAR-100. (Upper line) Unit preferences on the network grid show clusters for 

objects, houses and people. (Lower line) As previously observed for other datasets, clustering 

is non-zero for all networks, and has a tendency to increase with n.  

 

The upper line in Figure 5 shows category preferences after training Reset networks of 

sizes 1, 2, 4 and 8. Only 3 macro-categories are considered – objects, houses and people – 

which were obtained by aggregating the relevant Cifar-100 classes (see Supplementary 

Material 1). Though many units have no special preference for these macro-categories, 

clustering is still obvious on the maps. There also appears to be clustering at the subnetwork 

level, which often specialize for specific categories. The phenomenon is particularly obvious in 

the case of Reset(2), as the upper-left subnetwork remains insensitive to any of the 3 

categories, the lower right subnetwork has units specializing for all 3 categories, while the 

lower left and upper right ones specialize for people and objects, respectively.  The lower line 

in Figure 5 also shows that by and large, clustering tends to increase with the number of 

epochs and with the size of the Reset network.  

 

Reset networks and topography for numbers in parietal cortex 

So far we have investigated clustering, which in the context of classification can be 

defined as the spatial proximity of units that respond to the same class. Though related a 

notion, clustering is not exactly synonymous with topography. 

Cortical topography in the strict sense is the notion that "nearby neurons in the cortex 

have receptive fields at nearby locations in the world" [4]. However, the term has come to take 

a wider meaning: it is often understood as applying also to local fields or voxels as well as to 

neurons, and to refer to any kind of selectivity, not just location selectivity. In this wider sense, 

topography is a widespread phenomenon in brain imaging, observed throughout the visual 

cortex as well as in some associative areas. 
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In parietal cortex, voxels selective for similar numbers are more likely to be contiguous: 

such a number topography is not yet well understood [5], though some models have provided 

partial answers [6]. Although we have just seen that Reset networks will self-organize when 

trained to classify the hand-written digits of MNIST, this task is not entirely satisfying from a 

developmental and neuroscientific point of view: it is very likely that kids map written digits not 

onto one-hot labels, but onto pre-existing number representations that have a quite specific 

format. 

The nature of these codes has been studied in [6]: a lot of experimental data could be 

explained if number codes were sparsely distributed vectors, with a larger overlap between 

successive number codes as numbers increase. Therefore, it would be more convincing if 

Reset networks could reproduce number topography by mapping digit images onto these 

realistic number codes. 
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Figure 6. Self-organization for numbers in Reset networks of sizes 1 (A), 2 (B), 4 (C) and 8 

(D). (Upper line) Number preferences on the networks’ grids. (Middle line) Clustering takes 

place in all networks, with a systematic sharp increase early in training, and a tendency to 

increase with network size. (Bottom line) Topography is close to absent in Reset (1), but 

otherwise measurable in Reset(2), Reset(4) and Reset(8), increasing with network size and 

training epochs. 

 

As Figure 6 shows, a sequence of Reset(1), (2), (4) and (8) networks -all with the same grid 

size of 32x32 units- can be trained to map images of digits onto number codes, and succeeds 

in reproducing topographic organization.  

 

Number topography is visible Figure 6 (upper line) in the maps of number preferences, and is 

quantified in the clustering curves (middle line), where it can also be seen to emerge quickly 

during training. Clustering is always quite significantly above what it is for a shuffled selectivity 

map (positive clustering index). Notably, there is a tendency of subnetworks to specialize for 

specific numbers, or numbers in the same ballpark.  

 

Consider in this respect the grid of Reset(2), whose lower left quadrant specializes for numbers 

in the higher range (between 6 and 8), while its lower right quadrant specializes for small 

numbers like 0 and 1. This type of modularity at the subnetwork level can also be seen in the 

evolution of reset network preferences during training (see 

https://github.com/THANNAGA/Reset-Networks/tree/main/Topography%20for%20numbers 

for time-lapses of grid maturation in Reset(2) and Reset(4)). 

 

Because in this task, the codes onto which number images are mapped have non-degenerate 

similarities, unlike the binary similarities of one-hot labels used in the previous tasks, one can 

expect not only clustering, but also topography proper to emerge on the Reset networks' grids.  
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We now introduce a topographic index for our preference maps. We define topography as the 

average, over all units on the grid, of the proximity of a unit's number preference to those of its 

8 immediate neighbors. The topography index presented in bottom line of Figure 6 is then 

simply the deviation of this topography from chance: it is obtained by subtracting the average 

topography measured for shuffled maps to that of actual maps (see Supplementary material 

1). There is topography as soon as the index is reliably above zero. 

 

The lower plots in Figure 6 show that topography is widespread in Reset networks for this task. 

With the exception of Reset(1), topography is always much higher than the chance level of 0 

(no topography). Two more effects also immediately stand out: topography tends to increase 

with training, as well as with n -the width of the network’s grid. 

 

Pretrained Reset networks are available at https://github.com/THANNAGA/Reset-

Networks/tree/main/Topography%20for%20numbers along with time-lapses showing how 

number topography evolves during training. 

 

Discussion 

The main insight of Reset networks is that during training, local processing at level L exerts a 

pressure on the networks’ output from level L-1 to organize in order to solve the task, 

distributing work in a way that creates clustering or topography. We now discuss some 

outstanding issues, questions and prospects. 

 

Classification performance 

We have shown that Reset networks can classify standard computer vision datasets such as 

CIFAR-100. However and as Figure 7 shows, at this stage their performance remains 

disappointing, only at best matching that of a single Resnet 20, while having many more 

parameters.  
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Figure 7. Top-1 accuracy of Reset Networks on CIFAR-10 (A) and CIFAR-100 (B). Composing 

several CNN classifiers does not destroy classification abilities, though unsatisfyingly, Reset 

networks can currently at best only converge to the same performance as a single Resnet20. 

The notation Reset(n, 32) specifies that the outputs of nxn networks are reshaped into a map 

of 32x32 units.  

 

We also observe that the full resources of the Reset network don't seem to be used: some 

subnetwork units are more active than others.  

This is not entirely due to the over-parameterization of the networks presented here, as it also 

happens with smaller subnetworks (unreported simulations), but the issue can be alleviated to 

some extent by using dropout, or another kind of regularization on the grid. 

 

Regularization by auto-encoding 

In the course of our investigations, we have observed that Reset networks performed much 

better when the second level had 2 subnetworks: one that classified the input, and another 

that tried to reconstruct the input from the grid. We trained Reset networks of widths 1, 2 and 

4 to classify Cifar-100, with and without adding a subnetwork to reconstruct the input. We then 

presented 1000 images from the test set to each of the 6 Reset networks, and collected their 

activations on the grids.  
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Figure 7. Normalized activation on the grid of Reset networks of width 1, 2 and 4, trained to 

classify Cifar-100, with and without input reconstruction from the grid. Reconstruction forces 

the networks to use grid resources more evenly. Activity in the (2d-reshaped) dense layer of 

Resnet20 is shown for comparison. 

 

Figure 7 (upper line) shows that activation is not evenly distributed on a Reset network’s grid. 

Units often become polarized, in the sense that many units are either rarely activated (dark 

purple) or on the contrary very often activated (yellow). This polarization effect becomes 

stronger within some subnetworks, as network width grows. Figure 7 (lower line) also shows 

that polarization can be alleviated by introducing a level 2 subnetwork whose task is to 

reconstruct the input (red arrow on the model’s figure).  

 

Auto-encoding in this situation appears to act as an efficient regularizer for classification, 

forcing activation to be distributed across the whole grid rather than to be drawn by one, or just 

a few subnetworks. Such regularization effects of auto-encoding have been reported before 

for standard classifiers [7]. The novelty in Reset networks is that input reconstruction must be 

accomplished using the information from the whole grid: this suggests that in visual cortex, 

some feedback connections between distal cortical areas actually function as regularizers of 

cortical spaces. 
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Topography in Reset networks 

Reset networks constitute a novel mechanism for topography to emerge in deep learning. We 

have presented evidence that Reset networks can reproduce examples of clustering and 

topographic organization: in parietal cortex, when mapping number images into number codes, 

and in vOTC, when classifying CIFAR100 images. The fact that self-organization occured for 

different datasets suggests that it is specific to neither of those, but inherent to the model’s 

architecture.  

Consequently, we would also expect topography, even if a Reset network was trained to 

classify natural images into number classes. It would also be interesting to find out whether 

topography for numbers could emerge in an auto-encoding Reset network, in absence of any 

teaching signal explicitly related to number. 

 

Alternative to Reset networks  

Despite the aforementioned tension between CNNs and vOTC, recent innovative work has 

shown that categorical areas can indeed be simulated in Topographic Deep Artificial Neural 

Networks, or TDANNs [3]. In TDANNs, topography is achieved by invoking a separate entity – 

a “cortical tissue map” – and assigning arbitrary locations on this map to units in the dense 

layer of the network, before introducing a loss regularizer that penalizes wiring length on the 

map during training.  

Since the mechanism realizing this mapping is unspecified, the ontological status of space in 

the model is problematic.  Two different notions of space exist here that can in principle 

contradict each other: the spatial coordinates of units in the model’s convolutional feature 

maps, and the spatial coordinates of the cortical tissue map.  

This issue is not brought to the forefront in extant TDANNs, because cortical tissue maps are 

restricted to the upper dense layers of the model, where locality is lost and units don’t have 

coordinates. However, there is no reason why cortical tissue maps couldn’t also be invoked 

for the lower, convolutional levels of the network, with much less interpretability.  
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By contrast, Reset networks achieve topography with a single concept of space. 

 

Adding networks when necessary: the width and depth of Reset networks 

A limit of the current CNN-to-visual-cortex mapping endeavor is that most if not all studies 

attempt to predict cortical responses from a single deep CNN classifier, trained on a single 

task. Though understandable, these two simplifications nevertheless make the model 

qualitatively quite different from the visual system, which is shaped by many different tasks 

other than classification (e.g. visual tracking, naming), and involves different processing 

streams.  

 

Reset networks align well with a view of neural development in which, in addition to recycling 

neural material, new resources can be recruited if needed. Learning a new task could require 

only to widen the system by adding a network at the current level, with different networks 

possibly trained on different tasks. If expertise from previously learned tasks is required, the 

system could be made deeper by reshaping network outputs at the current level and creating 

a new level. In order to really contribute to continual learning theory, it is now necessary to 

better specify the mechanisms of network growth within the Reset network approach, that 

would prevent interference between functions, old and new. 

 

Conclusion 

Reset networks show that deep CNN classifiers can self-organize when they are composed 

with one another. This finding bears on the twin phenomena of clustering and topography, 

which pervade the cortex. In this view, the cortex should not be modeled as a single classifier, 

however deep and richly organized, but as a sequence of levels of neural network classifiers. 

This in turn rests on the premise that the cortex has the ability to compose networks when 

necessary, an operation that remains to be observed experimentally. 
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S1. Quantifying clustering and topography  
 

Clustering index 

Our procedure to quantify clustering is the following: 

• Collect average activations for categories A and B on the grid. 

• Possibly smooth this activation using a 2d Gaussian kernel (this step was skipped in 

our analyses). 

• Compute the d-prime of A over B for each unit on the grid.  

• Threshold the resulting map of d-primes. 

• Clustering for a given category is the average number of units in the connected 

components of this map. 

The procedure is illustrated on Figure S1 for the animal vs objects contrast. 

 
 

 

 

 

 

 

 

 

 

Figure S1. Quantifying clustering using d-primed maps of activations. After thresholding of the 

map of d-primes, we compute its connected components (color coded in the rightmost plot). 

Clustering is then defined as the average number of units in the clusters. The divergence of 

this quantity from that obtained for shuffled preference maps gives our final index. 
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We call CM the mean, over all contrasts of interest, of the clustering measures obtained by the 

procedure above.  We also perform exactly the same computations, averaged over 20 random 

permutations of M, to obtain a control clustering score for shuffled maps, Cs(M). Our final 

topographic index is then given by |CM − Cs(M)|. 

 
 

Topography index 

Consider a unit x and its neighborhood v(x) on a preference map M over n classes. Define 

𝑝(𝑥) as the class preference of unit x, and <.> as the average operator. The topography of 

map M, noted 𝑇𝑀, is given by the average over x of the similarity in preferences between x and 

all units in v(x): 

 𝑇𝑀 = 〈𝑛 −  〈|𝑝(𝑥) − 𝑝(𝑦)|〉𝑦∈𝑣(𝑥)〉𝑥∈𝑀  

The control quantity  𝑇𝑠(𝑀) is obtained in the same way, but further averaged over 20 random 

permutations of M. Our final topographic index is then given by  |𝑇𝑀 − 𝑇𝑠(𝑀)|. 

 

Definition of test classes for the clustering simulations on CIFAR-100 

 Class index in 

Cifar-100 

Class name in 

Cifar-100 

 

 

People 

2 

11 

35 

46 

98 

baby  

boy  

girl  

man  

woman 

 

Houses 

17 

37 

76 

castle  

house  

skyscraper 

 

 

Objects 

9 

10 

16 

20 

22 

bottle 

bowl 

can 

chair  

clock 

Table S1. Macro-classes defined from CIFAR100 and used during test. 
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S2. Modeling Number topography  

Dataset 

Our custom-made dataset comprised 6000 exemplars of number images between 0 and 9, 

paired with as many number codes from [4]. Number images were black on white 32x32 pixel 

images, in 9 possible fonts (arial, lato, openSans, ostrich, oswald, PTN57F, raleway, roboto 

and tahoma), 6 x-locations and 24 y-locations. The dataset is available as numpy arrays at 

https://github.com/THANNAGA/Reset-

Networks/blob/main/Topography%20for%20numbers/dataset_number_topography.zip  

The 10 number codes onto which those images were classified were 100 dimensional vectors 

taken from [3], obtained by power iteration of a randomly and locally connected matrix. 

Figure S2. Input and labels of the number dataset used for our number topography  

These number codes are sparse, overlapping and real-valued: this implies that the networks 

trained on this dataset realize a multi-label classification with soft labels. 

Models and training 

The networks had the following number of parameters: 

 # Parameters 

Reset(1) 610918 

Reset(2) 1418134 

Reset(4) 4646998 

Reset(8) 17562454 

Resnet20 275572 

Table S3. Number of parameters in the networks trained on the number task. 
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All models were trained for 20 epochs using a Binary Cross-Entropy loss, the Adam optimizer 

with a learning rate of 0.001, and a dropout of 0.5 applied to the grid.  
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	Reset Networks: Emergent Topography by Composition of Convolutional Neural Networks
	Abstract
	We introduce the Reset model, a composition of neural networks - typically several levels of convolutional neural networks - whose outputs at one level are gathered and reshaped into a spatial input for the next level. We show that units in Reset netw...
	Introduction
	Convolutional Neural Network (CNN hereafter) classifiers have now been shown beyond any reasonable doubt to predict activity in human visual cortex. However, a very salient aspect of the latter is the clustering, observed in ventral Occipitotemporal c...
	Categorical areas cannot be explained within the standard CNN classifier framework, because they respond to high level features in the stimulus, and yet are spatially extended objects in vOTC. On the contrary, CNN classifiers by design trade-off spati...
	In this article, we show that requiring of CNN outputs to serve as input to other CNNs downstream is sufficient for self-organization to take place. As the input space is in a sense reset, we call these models Reset networks.
	Reset networks
	Reset networks are compositions of several neural networks - typically several levels of CNNs - whose outputs at one level are reshaped into a spatial input for the next level. We will show that they implement a sequence of neural spaces where network...
	Figure 1. A Reset network is a differentiable neural system with an arbitrary number of levels, where each level itself consists of a spatial arrangement of deep neural networks.
	The general form of a Reset network is shown in Figure 1. It has an arbitrary depth of levels, each consisting of several networks operating in parallel on the same input. The next three requirements can be relaxed, but will be followed in the remaind...
	1. At any level, all networks are independent processors: they do not share any weight parameters and do not project to each other laterally.
	2. At any level, all networks receive, as a common input, the reshaped and concatenated outputs of all networks from the level below.
	3. The last level of the model is the only output level, where error signals for all tasks are received.
	Reset networks include in particular the family shown in Figure 2, where level 1 is obtained by reshaping and concatenating the outputs of nxn parallel networks into a single map, called "grid" hereafter, which then serves as input for a final network...
	We demonstrate that Reset networks can perform classification at scale while also exhibiting emergent topographic organization. Our code is available on GitHub: https://github.com/THANNAGA/Reset-Networks.
	Results
	Reset networks show clustering for MNIST, Fashion MNIST and CIFAR-10
	We start by training Reset(8) networks on MNIST, Fashion MNIST and CIFAR-10. In each case, the networks reached standard performance levels on the test sets, but more interestingly, Figure 3 shows the networks’ grids after 20 epochs of training.
	Figure 3. Reset networks with 8x8 grid and depth 2 are trained on MNIST (A), Fashion MNIST (B) and CIFAR-10 (C). (Upper Line) Number preferences on the network grid show topography. (Lower Line) Clustering is defined as the average size, over all targ...
	The upper plots in Figure 3 present converged preference maps -the class preference of each unit on the 32x32 grid of the trained model- whereas the lower plots quantify the amount of clustering on each map, at each point during training. A unit's pre...
	We also compute clustering as the average size, over all target classes, of the connected components present on the map for this class. The final clustering index presented Figure 3 is the deviation of clustering from chance: it is obtained by subtrac...
	Figure 3 shows that there is clustering for each of the three domains considered, with some variations across domains: for instance, CIFAR-10 elicits more clustering, while Fashion MNIST produces overall fewer category selective units, and thus less c...
	One might be forgiven to think that clustering in this model only comes from the concatenation of outputs. To assess whether this is the case, we measure clustering in the family of Reset(n) networks for n = 1, 2, 4 and 8. The grid of Reset(1) has no ...
	Figure 4. Clustering curves for Reset networks of depth 2 and size 1, 2, 4 and 8 trained on MNIST (A), Fashion MNIST (B) and CIFAR-10 (C). Clustering is non-zero for all networks, and tends to increase with n.
	It can be seen on Figure 4 that clustering is always non-zero for all n, and that there is an obvious tendency of clustering to increase with n. Therefore, concatenation accounts for a significant proportion of clustering, but it is not a necessary co...
	Reset networks and categorical areas in vOTC
	In vOTC, more than two decades of studies have established the presence of areas selective for a few prominent visual categories, in particular faces, body parts, tools, houses, and words. There is no shortage of scalable deep learning models that can...
	Figure 5. Clustering in Reset networks of depth 2 and sizes 1 (A), 2 (B), 4 (C) and 8 (D) trained on CIFAR-100. (Upper line) Unit preferences on the network grid show clusters for objects, houses and people. (Lower line) As previously observed for oth...
	The upper line in Figure 5 shows category preferences after training Reset networks of sizes 1, 2, 4 and 8. Only 3 macro-categories are considered – objects, houses and people – which were obtained by aggregating the relevant Cifar-100 classes (see Su...
	Reset networks and topography for numbers in parietal cortex
	So far we have investigated clustering, which in the context of classification can be defined as the spatial proximity of units that respond to the same class. Though related a notion, clustering is not exactly synonymous with topography.
	Cortical topography in the strict sense is the notion that "nearby neurons in the cortex have receptive fields at nearby locations in the world" [4]. However, the term has come to take a wider meaning: it is often understood as applying also to local ...
	In parietal cortex, voxels selective for similar numbers are more likely to be contiguous: such a number topography is not yet well understood [5], though some models have provided partial answers [6]. Although we have just seen that Reset networks wi...
	The nature of these codes has been studied in [6]: a lot of experimental data could be explained if number codes were sparsely distributed vectors, with a larger overlap between successive number codes as numbers increase. Therefore, it would be more ...
	Figure 6. Self-organization for numbers in Reset networks of sizes 1 (A), 2 (B), 4 (C) and 8 (D). (Upper line) Number preferences on the networks’ grids. (Middle line) Clustering takes place in all networks, with a systematic sharp increase early in t...
	As Figure 6 shows, a sequence of Reset(1), (2), (4) and (8) networks -all with the same grid size of 32x32 units- can be trained to map images of digits onto number codes, and succeeds in reproducing topographic organization.
	Number topography is visible Figure 6 (upper line) in the maps of number preferences, and is quantified in the clustering curves (middle line), where it can also be seen to emerge quickly during training. Clustering is always quite significantly above...
	Consider in this respect the grid of Reset(2), whose lower left quadrant specializes for numbers in the higher range (between 6 and 8), while its lower right quadrant specializes for small numbers like 0 and 1. This type of modularity at the subnetwor...
	Because in this task, the codes onto which number images are mapped have non-degenerate similarities, unlike the binary similarities of one-hot labels used in the previous tasks, one can expect not only clustering, but also topography proper to emerge...
	We now introduce a topographic index for our preference maps. We define topography as the average, over all units on the grid, of the proximity of a unit's number preference to those of its 8 immediate neighbors. The topography index presented in bott...
	The lower plots in Figure 6 show that topography is widespread in Reset networks for this task. With the exception of Reset(1), topography is always much higher than the chance level of 0 (no topography). Two more effects also immediately stand out: t...
	Pretrained Reset networks are available at https://github.com/THANNAGA/Reset-Networks/tree/main/Topography%20for%20numbers along with time-lapses showing how number topography evolves during training.
	Discussion
	The main insight of Reset networks is that during training, local processing at level L exerts a pressure on the networks’ output from level L-1 to organize in order to solve the task, distributing work in a way that creates clustering or topography. ...
	Classification performance
	We have shown that Reset networks can classify standard computer vision datasets such as CIFAR-100. However and as Figure 7 shows, at this stage their performance remains disappointing, only at best matching that of a single Resnet 20, while having ma...
	Figure 7. Top-1 accuracy of Reset Networks on CIFAR-10 (A) and CIFAR-100 (B). Composing several CNN classifiers does not destroy classification abilities, though unsatisfyingly, Reset networks can currently at best only converge to the same performanc...
	We also observe that the full resources of the Reset network don't seem to be used: some subnetwork units are more active than others.
	This is not entirely due to the over-parameterization of the networks presented here, as it also happens with smaller subnetworks (unreported simulations), but the issue can be alleviated to some extent by using dropout, or another kind of regularizat...
	Regularization by auto-encoding
	In the course of our investigations, we have observed that Reset networks performed much better when the second level had 2 subnetworks: one that classified the input, and another that tried to reconstruct the input from the grid. We trained Reset net...
	Figure 7. Normalized activation on the grid of Reset networks of width 1, 2 and 4, trained to classify Cifar-100, with and without input reconstruction from the grid. Reconstruction forces the networks to use grid resources more evenly. Activity in th...
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	Auto-encoding in this situation appears to act as an efficient regularizer for classification, forcing activation to be distributed across the whole grid rather than to be drawn by one, or just a few subnetworks. Such regularization effects of auto-en...
	Topography in Reset networks
	Reset networks constitute a novel mechanism for topography to emerge in deep learning. We have presented evidence that Reset networks can reproduce examples of clustering and topographic organization: in parietal cortex, when mapping number images int...
	Consequently, we would also expect topography, even if a Reset network was trained to classify natural images into number classes. It would also be interesting to find out whether topography for numbers could emerge in an auto-encoding Reset network, ...
	Alternative to Reset networks
	Despite the aforementioned tension between CNNs and vOTC, recent innovative work has shown that categorical areas can indeed be simulated in Topographic Deep Artificial Neural Networks, or TDANNs [3]. In TDANNs, topography is achieved by invoking a se...
	Since the mechanism realizing this mapping is unspecified, the ontological status of space in the model is problematic.  Two different notions of space exist here that can in principle contradict each other: the spatial coordinates of units in the mod...
	This issue is not brought to the forefront in extant TDANNs, because cortical tissue maps are restricted to the upper dense layers of the model, where locality is lost and units don’t have coordinates. However, there is no reason why cortical tissue m...
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	A limit of the current CNN-to-visual-cortex mapping endeavor is that most if not all studies attempt to predict cortical responses from a single deep CNN classifier, trained on a single task. Though understandable, these two simplifications neverthele...
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