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Abstract

DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a
super-resolution technique with relatively easy-to-implement multi-target imaging. However,
image acquisition is slow as sufficient statistical data has to be generated from spatio-temporally
isolated single emitters. Here, we trained the neural network (NN) DeepSTORM to predict
fluorophore positions from high emitter density DNA-PAINT data. This achieves image
acquisition in one minute. We demonstrate multi-color super-resolution imaging of
structure-conserved semi-thin neuronal tissue and imaging of large samples. This improvement
can be integrated into any single-molecule microscope and enables fast single-molecule
super-resolution microscopy.

Keywords: super-resolution microscopy, deep learning, single-molecule localization
microscopy, DNA-PAINT, neuronal tissue, DeepSTORM

Introduction

The advent of super-resolution imaging has overcome the diffraction-limited barrier of light
microscopy into obtaining images at nanometer spatial resolution. One powerful
super-resolution technique for imaging cellular samples is single-molecule localization
microscopy (SMLM) which builds on the spatio-temporal isolation of single fluorophores and the
precise determination of their position, leading to the reconstruction of a super-resolved image
(Sauer and Heilemann, 2017). Methods such as (fluorescence) photoactivated localization
microscopy ((F)PALM) (Betzig et al., 2006; Hess, Girirajan and Mason, 2006) and (direct)
stochastic optical reconstruction microscopy ((d)STORM) (Rust, Bates and Zhuang, 2006;
Heilemann et al., 2008) use photoswitchable fluorophores to obtain a temporally and spatially
separated fluorescence signal. Points accumulation for imaging in nanoscale topography
(PAINT) (Sharonov and Hochstrasser, 2006) and DNA-PAINT (Jungmann et al., 2010) employ
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transiently binding, low-affinity fluorophore labels for this purpose. Both concepts generate a
super-resolved image through the localization of a large number of single emitter positions and
achieve a spatial resolution in the range of tens of nanometers.
The tradeoff to acquiring super-resolved images with SMLM is the long image acquisition time.
The requirements for an SMLM experiment are sparse and isolated emitters per image and a
sufficiently high number of emitters detected over time to reconstruct a cellular structure. These
two criteria require a large amount of data generation, hence the long imaging time. Several
SMLM studies are focusing on overcoming this limitation using improved localization software
(Sage et al., 2019), high performance computing and algorithms (Wang et al., 2017; Munro et
al., 2019), or modulating the hybridization times of DNA oligonucleotides (Schueder et al., 2019;
Civitci et al., 2020).
In recent years, various deep learning (DL) tools have emerged to facilitate faster image
acquisition in SMLM. The ANNA-PALM neural network predicts a complete super-resolved
image from a small set of input frames with incomplete structural features (Ouyang et al., 2018).
Other neural networks aim to predict 2D and 3D structures from high-density SMLM raw images
such as Deep-ULM (van Sloun et al., 2021), DECODE (Speiser et al., 2021), DRL-STORM (Yao
et al., 2020), DeepLoco (Boyd et al., 2018), and LSPARCOM (Dardikman-Yoffe and Eldar,
2020). DeepSTORM (Nehme et al., 2018, 2020) is one such convolutional NN that can be
trained to predict single-emitter positions from high-density data to obtain super-resolution
images from shorter SMLM movies. The ease-of-use of DeepSTORM was bolstered with its
implementation into the ZeroCostDL4Mic platform (von Chamier et al., 2021).
DeepSTORM performance is largely dependent on an optimal range of emitter densities. While
(d)STORM and PALM methods were initially used for DeepSTORM, the exponential decrease in
emitter density over acquisition time due to photobleaching reduces the efficiency of the method
as the emitter density is no longer within the optimal performance window of the NN. Here, we
report the integration of DNA-PAINT into image prediction with DeepSTORM, which offers
several advantages. First, the concentration of imager strands can be tailored towards obtaining
a constant emitter density optimized to the performance window of the NN. Second, generating
very low-density emitter data provides true experimental emitters for NN training, which captures
the optical properties of the microscope. Third, low-density and high-density emitter data can be
generated on the same sample to obtain a ground truth image for each prediction, hence
bypassing simulated datasets for NN assessments. Fourth, Exchange-PAINT permits multi-color
imaging by exchanging fluorophore-labeled oligonucleotide strands from the imaging buffer,
which facilitates multi-target prediction with only a single NN model (Jungmann et al., 2014;
Narayanasamy et al., 2021). Finally, the bleaching-independent nature of DNA-PAINT permits
the acquisition of large sample areas in a short time.
Here, we utilize DeepSTORM for the prediction of super-resolution SMLM images from
high-density DNA-PAINT data. NN training is performed with experimental low emitter density
DNA-PAINT data. Using the trained model, we predict cellular structures in semi-thin neuronal
tissue samples with complex structural morphology. Sequential imaging of multiple targets using
different oligonucleotides labeled with the same fluorophore enables aberration-free multi-target
imaging (Exchange-PAINT) (Jungmann et al., 2014) coupled with the use of a single model for
multi-color prediction which facilitates the acquisition of information-rich structural data. The
image prediction quality was assessed using image-based similarity metrics. In summary, this
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approach enables data acquisition for an SMLM image within 1 minute for practical multi-color
and large-ROI imaging in a fraction of the time compared to conventional multi-color SMLM
methods.

Results

DeepSTORM model training and prediction workflow

DNA-PAINT is a variant of SMLM that provides a constant signal over time and enables
aberration-free multi-color imaging (Schnitzbauer et al., 2017). The spatial density of
fluorophores in a DNA-PAINT experiment can be easily adjusted by tuning the imager strand
concentration in the buffer such that the recording of datasets of the same structure with
different fluorophore densities is feasible. These experimental features are ideal for the
implementation into neural networks designed to reconstruct SMLM images from high-density
single-molecule data (Nehme et al., 2018, 2020). To this end, we established a workflow that
harnessed the characteristics of DNA-PAINT SMLM to enhance the useability of DeepSTORM.
On a whole, very low-density, low-density and high-density emitter data were recorded with
DNA-PAINT for model training, ground truth (GT) images, and image prediction, respectively
(Figure 1). In the first step, we recorded experimental training data at very low emitter density
(0.028 emitters/µm2) and localized single emitters using the single-molecule localization
software Picasso (Schnitzbauer et al., 2017) to train a multi-emitter prediction model. This
circumvents the need for simulated single-molecule data, and is in line with the report that the
prediction performance of DeepSTORM is improved with the use of experimental data for
training compared to simulated data (Nehme et al., 2018). To generate high-density emitter data
for network training, small patches of 16 x 16 pixels with on average one-emitter per frame were
generated. These patches were then binned together randomly to output a high-density patch of
2 emitters/µm2. These patches, together with the corresponding coordinates of the emitters,
were used to train a DeepSTORM model (Figure 1A). The trained model was then applied to
predict SMLM images from high-density DNA-PAINT data recorded with high concentrations of
imager strands (Figure 1BC). Concurrently, a single-molecule DNA-PAINT image with low
emitter density was generated for the same ROI which served as the GT image (Figure 1D).
DNA-PAINT data was recorded in semi-thin structurally conserved tissue labeled for α-tubulin
and the mitochondrial protein TOM20 (Narayanasamy et al., 2021). The predicted images were
compared to their respective GT images and the prediction quality was assessed using several
quantitative metrics.

NN-assisted SMLM imaging in neuronal tissue

We applied the trained model to predict multi-color SMLM super-resolution images. Structurally
preserved semi-thin (~350 nm) cryosectioned rat neuronal tissue sections in the medial nucleus
of the trapezoid body (MNTB) region (Klevanski et al., 2020) were stained for α-tubulin and
TOM20 using DNA-labeled antibodies (see Methods; Table 1) and imaged sequentially
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following the Exchange-PAINT protocol (Jungmann et al., 2014; Narayanasamy et al., 2021). A
super-resolution image reconstructed from low emitter density DNA-PAINT data (0.5 nM imager
strands P1, P5; 10000 frames) served as ground truth (Figure 2A). For the same sample, high
emitter density DNA-PAINT data (5 nM imager strands P1, 10 nM P5; 400 frames) was
recorded. Random patches of low-density emitter DNA-PAINT data from an independent sample
were binned to create a high-density training dataset based on experimentally recorded emitters
on which DeepSTORM was trained. The trained DeepSTORM model was applied to the high
emitter density DNA-PAINT data for prediction of the cellular structure (Figure 2B). With an
integration time of 150 ms, the acquisition of the low emitter density dataset took 25 minutes,
whereas the high emitter density dataset took only 1 minute. Visual inspection shows good
agreement between GT and predicted super-resolution images, with structures reconstructed
faithfully (Figure 2CD). The structural features of the five cells (dotted lines in Figure 2AB) were
predicted and nuclear regions within the cells were clearly defined, as observed in the GT
image. Transverse sections of axons (arrow in Figure 2AB) and dense circular tubulin bundles
in the centre of the image were reproduced in the predicted image. The distribution of
mitochondria in the predicted image was correctly reproduced, where mitochondria was found at
a higher density within the cytoplasm of cells (Figure 2AB).
To scrutinize the quality of predicted images at a smaller length scale, magnified regions of the
experimentally super-resolved structures (GT) (Figure 2C) were compared to the predicted
structures (Figure 2D). Tubulin within the MNTB tissue is found as various morphological
structures (Park and Roll-Mecak, 2018; Kelliher, Saunders and Wildonger, 2019), from simple
1-dimensional (1D) to complex 2-dimensional (2D) structures with dense or layered regions. The
magnified images show 1D filamentous structures of α-tubulin in the cytoplasm of the principal
cell, with thin, elongated, or random patterns that are visually well predicted by the NN (Figure
2CDi-ii). Other regions in the tissue show dense and complex 2D arrangements of tubulin
(Figure 2CDiii-vi) which overall are well predicted in their shape but with reduced performance
in their predicted structural density. The structural patterns of TOM20 are mostly uniform and
appear as thin, single layer outlines of mitochondria with oblong shapes that can be categorized
as 1D structures (Figure 2Cv-vii). These structures are predicted very well throughout by the
DeepSTORM model, determined by visual inspection and comparison with the GT images of the
corresponding mitochondrial regions (Figure 2CDv-vii). In summary, we find that our trained
DeepSTORM model has excellent prediction quality for the structural features of the two targets
labeled in the tissue sections, with a slightly better performance for 1D structures over 2D
structures.

Assessment of image prediction quality

To quantify the quality of SMLM image prediction with the trained DeepSTORM model, we
applied image quality metrics and compared the experimental super-resolution data (GT) to the
predicted data. First, we applied the HAWKMAN analysis to compare the structural similarity
between GT and predicted images (Figures 3, S1). HAWKMAN is sensitive to nanoscale
differences between images and to artificial sharpening while also providing confidence maps
for super-resolved structures (Marsh et al., 2021). First, we assessed the quality of structure
prediction from high emitter density data for samples stained with TOM20 that were recorded
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with different imager strand concentrations (5, 10, and 20 nM) (Figure 3A). HAWKMAN
generated a structure map of skeletonized structures that showed the highest overlap between
predicted and GT images for an imager strand concentration of 10 nM (Figure 3B, yellow
arrows). Similarly, the sharpening map reflects highest structural overlap for an imager strand
concentration of 10 nM, whereas at a concentration of 5 nM, the structural envelope of the
mitochondria was not completely reconstructed, and at a concentration of 20 nM hallucination
artefacts at the edge of structures appeared (Figure 3C; arrows). The confidence maps support
these findings and show the highest overlap for an imager strand concentration of 10 nM
(Figure 3D). HAWKMAN analysis of α-tubulin structures in tissue show that structure
dimensionality impacts the prediction quality, in that, while 1D structures were predicted well for
all three imager strand concentrations, 2D structures were incompletely predicted (Figure S1).
For further image comparison metrics, we applied (1) SQUIRREL to calculate the
resolution-scaled Pearson correlation coefficient (RSP), the resolution-scaled root mean
squared error (RSE) and an error map (Culley et al., 2018); (2) the multi-scale structural
similarity index (MS-SSIM) (Wang, Simoncelli and Bovik, 2003; Prieto, Chevalier and
Guibelalde, 2014); and (3) determined the spatial resolution by decorrelation analysis
(Descloux, Grußmayer and Radenovic, 2019) (Figures S2, S3, Supplementary Note 1).

NN-assisted large-ROI super-resolution imaging

The bleaching-independent nature of DNA-PAINT due to the constant replenishment of
fluorophore labels enables the recording of large, multi-field-of-view images (Böger et al., 2019).
We demonstrate this feature in combination with NN-mediated accelerated SMLM imaging of a
large-ROI of MNTB tissue, in which calyx of Held synapses are densely organized (Figure 4A)
(Thomas et al., 2019). In a tissue sample labeled for α-tubulin, 16 full-view patches were
recorded in 1 minute per image, as opposed to hours when using non-NN DNA-PAINT imaging.
This produced a large-view representation of the underlying ultrastructure containing a rich
amount of information from the microscale down to the nanoscale (Figure 4B). Unlike a
confocal image where information breaks down at the nanoscale, or a super-resolution image
where only a fraction of cells are found in one image, our stitched multi-patch image possesses
a top-down approach where a macroscale overview of a tissue section can be magnified many
folds to observe nanoscale details (Figure S4). This demonstration shows the potential of
NN-assisted, multi-emitter image reconstruction with DeepSTORM for imaging large samples. A
straightforward extension to this method is the integration of multiple target labels (Figure 2)
with multi-patch imaging.

Discussion

With the recent developments in artificial intelligence for microscopy, a myriad of tools became
available for SMLM, and with this the challenge of optimizing the interface between image data
and computational treatment (Laine et al., 2021). Here, we present an experimental workflow
that facilitates the use of neural networks for high emitter density image prediction by
introducing the unique imaging features of DNA-PAINT. The complementarity with DNA-PAINT
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imaging makes the application of these networks more robust, extends their capabilities and
removes barriers for their everyday implementation. Key features to this method are (1) a
constant and adjustable emitter density over time, maneuvering the experimental data into the
optimal performance window of a NN; (2) NN training with experimental imaging data without
the need for simulated single-molecule data; (3) sequential imaging rounds of the same sample,
which facilitate the recording of low and high density data from the same structure for robust
quantitative image quality assessment; (4) multi-target prediction with only a single NN-trained
model for various structures; (5) large-ROI imaging by the sequential imaging of multiple regions
within a large sample.
We implemented these experimental features and demonstrated NN-assisted prediction of
super-resolved cellular structures in structure-conserved semi-thin brain tissue, using the
DeepSTORM network (Nehme et al., 2018). Key advantages to using DeepSTORM are (1) its
significant acceleration in image acquisition time, (2) reduced drift due to short image acquisition
time which in turn improves localization precision (Costello and Cox, 2021), and (3) the reduced
need for data storage capacity. In this study, a 1-minute imaging time at 5 - 10 nM imager strand
concentration was sufficient to produce structures comparable to GT images. Previous studies
have compared DeepSTORM prediction to leading multi-emitter algorithms and found that
DeepSTORM computed much faster and with better accuracy to ThunderSTORM (von Chamier
et al., 2021), FALCON and CEL0 (Nehme et al., 2018). Furthermore, DeepSTORM is structure
independent in that one model can be used for predicting various targets/structures without
generating hallucination artefacts stemming from memorizing structural features. For the
implementation of Exchange-PAINT, only a single model is sufficient for predicting multiple
experimental structures, thereby further generalizing and improving the accessibility of the
method. Of note, the workflow we demonstrated is compatible with other high-emitter NNs.
Previous studies evaluated the performance of DeepSTORM in simulated and experimental
data using different analysis metrics (Nehme et al., 2018; von Chamier et al., 2021). Other
studies used DeepSTORM as a benchmark to assess the performance of novel dense-emitter
NNs (Dardikman-Yoffe and Eldar, 2020; Yao et al., 2020). To establish uniformity in analyses for
similar studies, we propose several tools that quantify image similarity to be used to assess the
performance of SMLM-based DL tools. We found that SQUIRREL (Culley et al., 2018) and
HAWKMAN (Marsh et al., 2021) are complementary analysis methods, where the former
expounds intensity discrepancies whereas the latter focuses on nanoscale structural
(dis-)similarities. We also note that other tools for quantitative image comparison are available
(Sage et al., 2019; Chen and Chen, 2021; Speiser et al., 2021). We found that a combination of
visual checks and quality metrics were most suitable for assessing prediction quality (Figures 3,
S2 and S3).
Further to image similarity, spatial resolution is a relevant parameter in predicted and GT
images. We applied decorrelation analysis (Descloux, Grußmayer and Radenovic, 2019) and
found that the spatial resolution in predicted images was, throughout all imaging conditions (5,
10, and 20 nM imager strands), slightly higher (~ 45 nm) than in GT images (~ 35 nm) (Figure
S2E). The difference in spatial resolution could be attributed to a number of reasons such as the
method of rendering by different software, the effect of structure dimensionality, or the local
density of emitters which may impair the quality of a predicted image (Figure 2CD).
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Comparisons between experimental and simulated PSFs showed that DeepSTORM trained on
experimental PSFs had better prediction precision (Nehme et al., 2018). To utilize this to our
advantage, the training dataset used for our model was derived from experimental PSFs on the
same optical setup (Figure 1). The advantage of DNA-PAINT is evident here as the imager
strand concentration can be reduced until a sparse emitter dataset is obtained, suitable for
isolating single-PSF patches. This further reduces the need for parameter analysis for artificial
PSF generation and reduces the PSF error margin between training patches and prediction
datasets.
The performance of a model trained with DeepSTORM has an optimal operation range with
respect to emitter densities, and image prediction might break down above a certain density
threshold. Nehme et al. report good network performance up to 6 emitters/µm2 (Nehme et al.,
2018). In this work, a range of imager stand concentrations were used to determine the best
prediction output. Increasing the imager strand concentration results in an increase in emitter
density, which reduces the number of frames required to obtain a fully formed image, hence
improving temporal resolution. However, beyond this point, one introduces (1) too high emitter
densities which are then predicted with lower accuracy and yield worse spatial resolution, and
(2) higher fluorescence background in the buffer, which reduces frame signal-to-noise ratios
(SNRs), to which DeepSTORM is susceptible (Nehme et al., 2018). These tradeoffs are to be
considered when choosing the right imager strand concentration. The prediction quality is also
dependent on the dimensionality of structures where complex 2D shapes were reconstructed
with lower precision compared to simple 1D structures (Figure 2). Consequently, we found that
an optimal imager strand concentration is structure dependent, with dense structures like tubulin
requiring lower concentrations compared to mitochondria. Using Exchange-PAINT, the optimal
density of emitters can be tailored towards the structures being imaged, thereby maintaining
good image quality and short imaging time. Nevertheless, DeepSTORM prediction was found to
be very robust as the model was able to handle a range of emitter densities, from 5 to 10 nM
imager strand concentrations (Figures 3, S2 and S3). At 20 nM, DeepSTORM performance
deteriorated, likely due to lower SNR and locally excessively overlapping emitters. High emitter
density is not only an issue in high-density DL tools but also in conventional SMLM methods
where the reconstructed image appears sharp or smooth and contains artefacts (Costello and
Cox, 2021). The blob-like appearance of predicted images is also a feature of DeepSTORM,
which becomes more evident at very high imager strand concentrations.
In conclusion, the combination of DNA-PAINT SMLM with a multi-emitter NN has proven to be a
robust method for super-resolution structure prediction in neuronal tissue. The model was able
to generalize well for a range of emitter densities. Furthermore, the concurrent use of
DNA-PAINT and DeepSTORM allows for more control over emitter densities and further
enhances DeepSTORM efficiency as the whole dataset is at its optimal working range. With the
constant emitter density and photostability of DNA-PAINT, a large-ROI can be imaged in a
matter of minutes. Before the incorporation of DL tools into super-resolution microscopy, there
had been a tradeoff between image size and image resolution. Based on the proof-of-concept
shown here, it is possible to overcome this tradeoff using DL tools to be able to get a bird’s eye
view of the sample while also magnifying down to the nanoscopic details of individual proteins.
This, coupled with Exchange-PAINT to visualize multiple protein targets that can be predicted
with a single model, will develop into a powerful tool for biomedical imaging.
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Methods
Tissue preparation

All experiments that involved the use of animals were performed in compliance with the relevant
laws and institutional guidelines of Baden–Württemberg, Germany (protocol G-75/15). Animals
were kept under environmentally controlled conditions in the absence of pathogens and ad
libitum access to food and water. Preparation of brain sections containing the MNTB was
performed according to an established protocol (Klevanski et al., 2020) with slight modifications.
Briefly, Sprague-Dawley rats (Charles River) at postnatal day 13 were anaesthetized and
perfused transcardially with PBS followed by 4% PFA (Sigma-Aldrich). Brains were dissected
and further fixed in 4% PFA overnight at 4°C. The next day, 200 µm thick vibratome (SLICER
HR2, Sigmann-Elektronik, Germany) sections of the brainstem containing MNTB were prepared.
MNTB were excised and infiltrated in 2.1 M sucrose (Sigma-Aldrich) in 0.1 M cacodylate buffer
overnight at 4°C. Tissue was mounted on a holder, plunge-frozen in liquid nitrogen in 2.1 M
sucrose and semi-thin sections (350 nm) were cut using the cryo ultramicrotome (UC6, Leica).
Sections were picked up with a custom made metal loop in a droplet of 1% methylcellulose and
1.15 M sucrose and transferred to 35 mm glass bottom dishes (MatTek, USA) pre-coated with
30 µg/ml of fibronectin from human plasma (Sigma-Aldrich) and nanodiamonds (100 nm;
Adamas Nanotechnologies, USA) as fiducials. Dishes containing sections were stored at 4°C
prior to their use.

Antibody-DNA conjugation

Secondary antibodies of donkey anti-mouse (715-005-151) and donkey anti-rabbit
(711-005-152) were purchased from Jackson ImmunoResearch. DNA strands were purchased
from Metabion with a thiol modification on the 5′ end for each docking strand and a Cy3B dye on
the 3′ end for the imager strands (Table 1).The antibody to DNA docking strand conjugation was
prepared using a maleimide linker as previously reported in detail (Schnitzbauer et al., 2017).
The thiolated DNA strands were reduced using 250 mM DTT (A39255, ThermoFisher Scientific).
The reduced DNA was purified using a Nap-5 column (17085301, GE Healthcare) to remove
DTT and concentrated with a 3 kDa Amicon spin column (UFC500396, Merck Milipore).
Antibodies (>1.5 mg/mL) were reacted with the maleimide-PEG2-succinimidyl ester crosslinker
in a 1:10 molar ratio, purified with 7K cutoff Zeba desalting spin columns (89882, ThermoFisher
Scientific) and concentrated to >1.5 mg/mL.The DNA and antibody solutions were cross-reacted
at a 10:1 molar ratio overnight and excess DNA was filtered through a 100 kDa Amicon spin
column (UFC510096, Merck Milipore). The antibody-DNA solution was stored at 4°C.
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Table 1: Sequences of docking and imager strands.

Name Sequence Modification

P1 docking strand TTATACATCTA 5‘ - Thiol

P5 docking strand TTTCAATGTAT 5‘ - Thiol

P1 imager strand TAGATGTAT 3‘ - Cy3B

P5 imager strand CATACATTGA 3‘ - Cy3B

Tissue labeling

Tissue samples were labeled with primary antibodies against α-tubulin-mouse (T6199,
Sigma-Aldrich) and TOM20-rabbit (sc-11415, Santa Cruz Biotechnology). Tissue samples in
dishes were washed with PBS three times for 10 min each to remove the
sucrose-methylcellulose layer and blocked with 5% fetal calf serum (FCS) for 30 min. The
primary antibodies were diluted in 0.5% FCS and applied to the tissue section for 1 h at room
temperature (rt) and washed off three times with PBS. The conjugated secondary antibody-DNA
docking strand in 0.5% FCS was applied onto tissue for 1 h at rt and washed 3 times with PBS.
The tissue was then stained with Alexa Fluor 488-conjugated WGA (WGA-A488) (W11261,
Thermo Fisher Scientific) in PBS for 10 min and washed off three times with PBS.

SMLM setup

DNA-PAINT microscopy was performed on a home-built SMLM setup with an Olympus IX81
inverted microscope frame equipped with an Olympus 150x TIRF oil immersion objective (UIS2,
1.49NA). The samples were illuminated in TIRF mode using a 561 nm laser line (Coherent
Sapphire LP) at an illumination density of 0.88 kW/cm2 through a 4L TIRF filter (TRF89902-EM,
Chroma Technology) and ET605/70 M nm bandpass filter (Chroma Technology). Signals were
detected with an Andor iXon EM+ DU-897 EMCCD camera (Andor, Ireland). SMLM frames were
acquired using multi-dimensional acquisition (MDA) mode in Micro-Manager 2.0 (Edelstein et
al., 2014).

DNA-PAINT imaging

DNA-PAINT imaging was performed in Buffer C (2.5 M NaCl; S7653, Sigma-Aldrich in 5x PBS;
14200-059, Gibco Fisher Scientific) supplemented with 1 mM ethylenediaminetetraacetic acid
(EDTA; E6758, Sigma-Aldrich), 2.5 mM 3,4-dihydroxybenzoic acid (PCA; 03930590,
Sigma-Aldrich), 10 nM protocatechuate 3,4-dioxygenase pseudomonas (PCD; P8279,
Sigma-Aldrich), and 1 mM ( ± )-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid
(Trolox; 238813-5G, Sigma-Aldrich). To obtain images for training the DeepSTORM model, 20
pM P5 imager strands were imaged in TOM20 labeled tissue samples. For conventional
DNA-PAINT imaging with Picasso software (v0.2.8) analysis to obtain a GT super-resolution
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image, P strands (P1 and P5) were imaged at an imager strand concentration of 0.5 nM for
10000 frames and acquisition rate of 150 ms for both α-tubulin and TOM20. High-density emitter
DNA-PAINT datasets for DeepSTORM image prediction were obtained by imaging α-tubulin and
TOM20 at imager strand concentrations of 5 nM, 10 nM, and 20 nM for 400 frames.
Exchange-PAINT was performed manually by adding the imaging buffer to the sample chamber
and acquiring camera images. The buffer was then removed and the sample washed five times
with 1× PBS to remove all imager strands. The subsequent imaging buffer containing the
second imager strand was then added and the procedure repeated to image the second target.

Raw DNA-PAINT frames imaged with 0.5 nM imager strands were processed and rendered
using Picasso software (Schnitzbauer et al., 2017). Events in each frame were localized by
fitting using the Maximum Likelihood Estimation for Integrated Gaussian parameters (Smith et
al., 2010). The localized events were then filtered by their width and height of the Point Spread
Function (sx, sy). The resulting localizations were drift-corrected using redundant
cross-correlation (RCC), rendered using the ‘One Pixel Blur’ function and further processed
using the ‘linked localizations’ function to merge localizations that appeared in multiple
consecutive frames. Rendered images were oversampled to match the pixel size of
DeepSTORM images. Images were merged in Fiji (Schindelin et al., 2012) using the ‘merge
channels’ tool and aligned by linear transformation using nanodiamonds as registration
reference. The individual channels were assigned pseudocolors.

Super-resolution large sample imaging on α-tubulin was performed using DNA-PAINT imaging
with 10 nM P1 imager strands. Four hundred DNA-PAINT frames per imaging area were
acquired in a grid-like fashion of 4x4 with an overlap of ~10% between images. The images
were registered using Inkscape software based on structural similarity. The whole image is
available on https://doi.org/10.5281/zenodo.5576100. Confocal microscopy for α-tubulin was
performed on a Nikon C2 Plus with a Nikon Plan Fluor 40x oil immersion objective (NA 1.30).
The tissue sample was imaged on 300 nM P1 imager strands in Buffer C 1x with a 561 nm
excitation laser.

Image binning

DeepSTORM model training required an artificially binned dataset generated from experimental
DNA-PAINT data. This data set contains overlapping point spread functions of single emitters
together with their precise localization coordinates. A custom script was written for this task and
is available at https://github.com/JohannaRahm/ImageBinner (ImageBinner version 210408,
Python 3.9.2). Patches from the sparse frames and their localization coordinates from Picasso
localization software were randomly selected and merged to create high-density emitter patches
with matching localization lists. The binning of n number of patches introduces camera noise
which was corrected by subtracting the value of the camera noise n-1 times from the
high-emitter density patches. The camera noise was estimated as the average pixel intensity of
frames acquired with a closed shutter.
A low emitter density DNA-PAINT dataset of tissue labeled for TOM20 was recorded using an
imager strand concentration of 20 pM to obtain sparse and isolated single events at a density of

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.20.469366doi: bioRxiv preprint 

https://paperpile.com/c/KbyX4A/sJZy
https://paperpile.com/c/KbyX4A/Ra7a
https://paperpile.com/c/KbyX4A/Ra7a
https://paperpile.com/c/KbyX4A/d8rR
https://doi.org/10.5281/zenodo.5576100
https://github.com/JohannaRahm/ImageBinner
https://doi.org/10.1101/2021.11.20.469366
http://creativecommons.org/licenses/by-nc/4.0/


0.028 emitters/µm2. To generate training patches, 5000 DNA-PAINT frames of 512 x 512 pixels
were input into the Image Binner software. A minimum of 1 emitter per patch (17 x 17 pixels)
was produced. These patches were binned randomly to generate 30000 high-density emitter
patches at a mean emitter density of 1.9 emitters/µm2 with a 17 x 17 pixel patch size and its
corresponding localization coordinate list.

DeepSTORM training and prediction

DeepSTORM model training was performed on Google Colab. The resources allocated for
DeepSTORM on Colab was NVIDIA-SMI 460.56 with CUDA version 11.2 and Tensorflow
version 2.4.1 or 2.5.0. The model used for prediction was trained with 30000 binned patches
and a density of 1.9 emitter/µm². Training took 35 minutes with ColabPro.
Raw images with low emitter density, high emitter density binned patches used for NN training,
and model metadata are available at https://doi.org/10.5281/zenodo.5704569. Binned image
patches along with the localization list served as input for the ZeroCostDL4Mic Colab notebook
(von Chamier et al., 2021). To directly use the binned image patches as input, the number of
patches per frame was set to 1 and the patch size to 16. The maximum number of patches was
set to 30000, minimum number of patches to 1, and default values were used for other
parameters. Training parameters were set with a number of epochs of 100, batch size of 256,
number of steps of 0, percentage validation of 15, and initial learning rate of 10-5.
For high emitter density image prediction, 512 x 512 pixels of 400 frames were input into
DeepSTORM. A batch size of 1 was used with default values for other parameters. Predictions
were performed on DNA-PAINT frames with imager strand concentrations of 5 nM, 10 nM, and
20 nM. Prediction took 7 to 25 minutes depending on the resources allocated by Colab
(Colab/ColabPro).

Image analysis

Picasso-rendered ground truth (GT) and DeepSTORM predicted super-resolution images were
visualized and analyzed in Fiji (Schindelin et al., 2012). The spatial resolution was calculated for
GT and DeepSTORM predicted images using an ImageJ plugin for decorrelation analysis
(Descloux, Grußmayer and Radenovic, 2019). For each target (α-tubulin and TOM20), GT
image and the three predicted images were merged and registered using the Register Channels
tool in the NanoJ Core plugin (Descloux, Grußmayer and Radenovic, 2019; Laine et al., 2019).
Multi-scale structural similarity index was measured using the MS-SSIM plugin in Fiji (Wang,
Simoncelli and Bovik, 2003; Prieto, Chevalier and Guibelalde, 2014). GT and predicted images
were intensity-normalized and registered. Each predicted image was compared to GT to obtain
the multi-scale structural similarity index between two images. Exchange-PAINT images
(α-tubulin and TOM20 in a single ROI) for GT were registered using fiducial markers and
DeepSTORM-Exchange-PAINT images were registered with GT as a reference.

For SQUIRREL analysis (Culley et al., 2018), predicted images (with imager strand
concentrations of 5 nM, 10 nM, 20 nM) were used as reference images against GT images (with
imager strand concentration of 0.5 nM, rendered with Picasso) as the test images. A
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magnification factor of 1 was used. The GT images were intensity-normalized and Point Spread
Function (PSF) convolved by SQUIRREL, and an error map, Resolution Scaled Error (RSE),
and Resolution Scaled Pearson (RSP) was output. SQUIRREL was also used to compare GT
images with diffraction-limited images. Raw DNA-PAINT frames were z-projected with ‘average
intensity’ for the number of frames used to render the final super-resolution image, i.e. 10000
frames for 0.5 nM GT image, and 400 frames for the 5, 10, and 20 nM DeepSTORM predicted
images. The z-projected image was input into SQUIRREL as a reference image and compared
to its corresponding super-resolution image, yielding an error map, RSE, and RSP as output.
For HAWKMAN analysis (Marsh et al., 2021), super-resolution GT and predicted images were
registered and converted to 8-bit. The images were input into HAWKMAN with GT as reference
images and DeepSTORM prediction as test images. The calculated length scale was 23
nm/pixel. A pixel scale of 3 corresponding to a 69 nm length scale was chosen for the analysis
based on the upper bounds of decorrelation resolution of predicted images.
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Figure 1: NN-assisted DNA-PAINT imaging. (A) Very low emitter density DNA-PAINT images
(20 pM imager strands) were binned into high emitter density images, and together with the
single-molecule localizations served as input for the DeepSTORM U-Net architecture to train a
DeepSTORM model. (B) DNA-PAINT imaging of tissue samples was performed with different
concentrations of fluorophore-labeled imager strands (5, 10, and 20 nM) yielding varying emitter
densities. (C) High emitter density DNA-PAINT datasets were input into the trained
DeepSTORM and super-resolution images were predicted. (D) For the same sample, a ground
truth (GT) image was generated with low emitter density DNA-PAINT (0.5 nM imager strands)
and used to assess the quality of the predicted super-resolution image. Scale bars: 0.5 µm (A),
2 µm (B, C & D)
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Figure 2: Comparison between Exchange-PAINT super-resolution images and predicted
SMLM images in MNTB sections. (A, B) Tissue sample labeled for α-tubulin and TOM20
containing 5 cells (dotted lines) rendered as a (A) GT image (0.5 nM imager strands P1, P5;
10000 frames, 25 minutes acquisition time) and (B) predicted image (5 nM P1, 10 nM P5; 400
frames, 1 minute acquisition time). (C, D) Magnified regions of (C i - vii) GT compared to (D i-vii)
predicted images. Scale bars: 5 µm (A & B), 1 µm (C & D i - vii).
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Figure 3: Quantitative analysis of image similarity between ground truth and predicted
super-resolution images using HAWKMAN. (A) GT and DeepSTORM predicted images of a
TOM20-labeled structure recorded for imager strand concentrations of 5, 10, and 20 nM. (B)
Structure map and Pearson correlation coefficient (PCC) indicating regions of good overlap
(yellow), denser GT structures (cyan) or denser DeepSTORM predicted structures (magenta).
(C) Sharpening map indicating regions of artificial sharpening with the same color scheme as
the structure map. (D) Confidence map highlighting structures of high confidence (cyan) and low
confidence (red). Scale bars: 1 µm.
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Figure 4: Accelerated large-sample imaging. (A) Confocal microscopy image of an MNTB
tissue section and a graphical representation of calyces organized within the MNTB region
(inset). (B) Large-ROI super-resolution image recorded for the tissue area defined by the white
frame in A. The α-tubulin super-resolution image was obtained by imaging 55 µm x 55 µm
patches recorded with 10 nM imager strand P1 in a 4 x 4 grid-like fashion with 400 frames per
patch, obtaining high-density DNA-PAINT frames in 1 minute and a total imaging time of 16
minutes. Scale bar 50 µm (A), 20 µm (B).
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