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ABSTRACT 

CAMO provides a rigorous and user-friendly solution for quantification and mechanistic 

exploration of omics congruence in model organisms and humans. It performs threshold-free 

differential analysis, quantitative concordance/discordance scoring, pathway-centric 

investigation, and topological subnetwork detection. Instead of dichotomous claims of 

“poorly” or “greatly” mimicking humans, CAMO facilitates discovery and visualization of 

specific molecular mechanisms that are best or least mimicked, providing foundations for 

hypothesis generation and subsequent translational investigations. 
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As human studies often encounter numerous recruitment and ethical constraints, model 

organisms have played an indispensable role in pre-clinical research to understand 

pathogenesis and treatment response at the behavioral, cellular, and molecular levels. Their 

clinical validity and translational values are, however, long been debated with controversial 

opinions1-4. A notable example is the contradictory conclusions from two articles analyzing 

an identical transcriptomic response dataset in human and mouse inflammation5,6, with the 

former concluding “poorly mimicking” of the mouse model and the latter reporting “greatly 

mimicking”, which triggered further debates7-9. Although efforts have been made to compare 

or predict model organism responses using association analysis5,6, machine learning10,11, 

pathway enrichment12,13, or meta-analysis14 approaches, methods for exploring mechanistic 

insights are lacking. To meet the gap, we develop a Congruence Analysis of Model 

Organisms (CAMO) framework to evaluate omics congruence of animal models and aid 

mechanistic understanding, hypothesis generation, and translational guidance.  

 

Fig. 1a-b overview CAMO’s pipeline. “Bayesian differential analysis” contrasting case/control 

or treated/non-treated groups are performed in human and mouse cohorts separately and 

“concordance and discordance scores” (abbreviated as c-score and d-score) are calculated 

(Fig. 1a), reflecting degree of cross-species congruence and discrepancy. The threshold-free 

Bayesian differential model transforms p-values obtained from routine pipelines, such as 

LIMMA or DEseq2, into differential posterior probabilities, which in turn are input to cross-

species c-score/d-score calculation based on a stochastic version of confusion matrix and F-

measure in the machine learning setting with p-values assessed by permutation. When 

multiple cohorts are jointly analyzed, c-scores and d-scores are calculated for all pair-wise 

studies in each pathway. Next, the “Mechanistic investigation and hypothesis generation” 

component can perform “pathway knowledge retrieval” and “topological gene module 

detection” (Fig. 1b). In pathway knowledge retrieval, top (concordance or discordance) 

enriched pathways are clustered with similar congruence patterns across studies and a text 
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mining algorithm is implemented to retrieve representative keywords to interpret each 

pathway cluster. In each pathway, a community detection algorithm can further identify 

concordant or discordant subnetworks based on topological regulatory information.  

 

Our first case study re-evaluates the contradicting papers in human-mouse transcriptomic 

response to inflammation. Supplementary Table 1 lists 12 studies in human and mouse 

(Burns, Infection, Trauma , Sepsis, LPS and ARDS), abbreviated as HB, HI, HT, HS, HL and 

HA, and MB, MI, MT, MS, ML and MA (H for human and M for mouse) . Supplementary 

Table 2 summarizes analytical differences and arbitrary thresholds in the two papers that 

may have contributed to the contradicting conclusions. CAMO avoids such subjective 

analytical thresholds and decisions and extends the investigation into pathways and gene 

regulatory modules for insightful mechanistic understanding. Supplementary Table 3 

contains genome-wide c-scores and d-scores of pair-wise studies and the c-score-based 

multidimensional scaling (MDS) plot in Supplementary Fig. 1 shows that four human studies 

HB, HI, HT and HS resemble each other well (c-scores=0.25~0.52). MI, MB and MT are 

relatively similar to the four human studies while MA, ML and MS have almost no genome-

wide congruence to human, implying that cross-species congruence is condition specific. 

Unlike most of the human studies, the six mouse studies generally do not mimic each other, 

implying complexity and high variability of mouse models in inflammatory diseases. We next 

apply consensus tight clustering to 219 concordance enriched pathways and identify four 

pathway clusters (Supplementary Fig. 2-3). For example, the heatmap and text mining 

results show high congruence between human (HB, HS, HT and HI) and mouse models 

(MB, MI and MT) in both innate and adaptive (e.g., B and T cell related) immunity 

(Supplementary Fig. 3 and Supplementary Table 4). Despite the difference in neutrophil and 

lymphocyte abundance, it has been reported that the overall immune system is relatively 

similar in mouse and human15. Cluster IV shows mouse models do not mimic human studies 
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in ribosome and protein translation. Such findings agree with earlier studies that profound 

cross-species differences exist in translation machinery16.  

 

CAMO next provides interactive exploration in the shiny app to select pathways and zoom in 

for regulatory topological visualization. Fig. 1c shows differential expression (DE) evidence 

and c-scores/d-scores of individual pathways in pair-wise comparisons of HB, HS, MB and 

MS. Fig. 1d displays gene-specific concordance or discordance information in two selected 

KEGG pathways. Fig. 2a highlights the KEGG gene-gene regulatory topological plot for 

“Leukocyte transendothelial migration” pathway (hsa04670) with side-by-side display of the 

differential regulation signals (red for up-regulation and green for down-regulation) in HS and 

MS. The community detection algorithm identifies a module of 14 DE genes (RHOA, PTK2B, 

RAC2, RAC1, CDC42, ITGA4, ITGB2, MSN, PXN, NCF2, CYBA, GNAI1, GNAI2 and 

GNAI3) with opposite effect sizes (green in HS and red in MS or vice versa; p = 0.002). The 

co-localized discordant module is directly related to cell motility and direct sensing, a critical 

function that allows leukocytes to attach to the vessel wall to initiate immune response 

during inflammation17. The striking mouse-human discordant result may reflect the 

discrepancy in proportions of different cell types of blood leukocytes between human and 

mouse as pointed out in a previous critique9. The topological plot for “B cell receptor 

signaling pathway” (hsa04662) (Fig. 2b) shows a gene module of 7 discordant genes 

(PTPN6, DAPP1, CD79A, RAC1, RAC2, GRB2, CD19; p=0.009). CD79A and CD19 are 

antigen receptors on B cell membrane to regulate signaling molecules, such as GRB2 and 

RAC family, with important roles in the regulation of cell growth and movement. On the other 

hand, Fig. 2c shows generally concordant DE signals between HB and MB (both red or both 

green) in the B cell membranes receptor and signaling, including CD72, CD79A, CD79B, 

IFITM1, CD19, CR2 and BLNK. Previous literature has pointed out the similarity but also 

significant differences between mouse and human immunology, specifically in B cell 

development15. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.21.469371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.21.469371


6 
 

The second case study evaluates transcriptomic congruence of C. elegans (ce) and D. 

melanogaster (dm) in developmental stages using the modENCODE data18,19, where five 

developmental stages in each species are confirmed by hierarchical clustering 

(Supplementary Fig. 4): early embryo (ce.e0), mid embryo (ce.e1), late embryo (ce.e2), 

larvae (ce.lar), dauer (ce.dau) using C. elegans adult as the reference; early embryo 

(dm.e0), mid embryo (dm.e1), late embryo (dm.e2), larvae (dm.lar), pupae (dm.pup) using 

female Drosophila adult as reference. Supplementary Fig. 5a shows MDS plot of genome-

wide c-scores for the five Drosophila and five C. elegans stages. The y-axis shows a clear 

separation between the two species. The x-axis presents a developmental transition in the 

embryonic stages e0→e1→e2, while the larvae and pupae/dauer stages are not exactly 

ordered. Adjacent developmental stages are found to be more similar within species. ce.e2 

shows some resemblance with all developmental stages in Drosophila except for dm.e0. 

This unintuitive result is better visualized by an intriguing bipartite graph between Drosophila 

and C. elegans stages (Supplementary Fig.5b) by creating solid edges when pair-wise 

genome-wide c-scores are greater than 0.1 (Supplementary Table 5). We first observe 

reasonable within-stage cross-species resemblance (i.e., solid yellow edges: ce.e0—dm.e0, 

ce.e1—dm.e1, ce.e2—dm.e2, and ce.e2—dm.e1; dashed yellow edge: ce.lar—dm.lar) and 

then identify surprising cross-stage resemblance between species (i.e., purple edges: 

ce.dau—dm.e2, ce.e2—dm.lar and ce.e2—dm.pup). Resemblance of ce.dau—dm.e2 has 

been suggested by the original modENCODE paper18,19. Resemblance of ce.e2—dm.lar and 

ce.e2—dm.pup confirms the second large wave of cell proliferation and differentiation in 

Drosophila’s life cycle. 

 

From 269 concordance enriched pathways, consensus tight clustering identifies six pathway 

clusters (Supplementary Fig. 6,7), including Cluster III related to cell cycle and DNA 

replication with cross-species late-stage congruence, Cluster IV related to estrogen and 

hormone in C. elegans, and Cluster II specific to Drosophila developmental stages. 
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Supplementary Fig. 8 shows DE evidence and c-scores/d-scores in ce.e2, ce.dau, dm.e2 

and dm.pup. Pathways “Homologous recombination” (KEGG: cel03440) and “Mismatch 

repair” (KEGG: cel03430) exhibited high concordance between ce.e2 and dm.e2 

(Supplementary Fig. 9), implying similar molecular events taking place in late embryo stage 

for both species. The pathway “Nucleotide-binding domain, leucine rich repeat containing 

receptor (NLR) signaling pathways” (Reactome: R-CEL-168643) exhibits discordance 

between ce.dau and dm.pup (Supplementary Fig. 9). The NOD1/2 and inflammasomes 

components of the pathway are both related to the innate immune system, the first line of 

defense against invading microorganisms that are present in the pupae stage of Drosophila 

but not in the dauer stage of C. elegans20.   

 

Notwithstanding the fact that human and animal studies are both fundamental in disease and 

drug investigation, objective and interactive congruence evaluation to distinguish and 

integrate cross-species omics information is currently lacking. We expect that CAMO and its 

future extension to multi-omics and single cell data will provide profound cross-species 

mechanistic understanding to improve animal models and to accelerate treatment 

development in human diseases. 
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ONLINE METHODS  

Threshold-free Bayesian differential analysis 

CAMO applies a Bayesian mixture (BayesP) model to derive differential expression posterior 

probabilities and to facilitate calculation of c-scores and d-scores in the next section, where 

the input of BayesP can be DE results from any conventional pipeline (e.g., “limma” for 

microarray and “DESeq2” for RNA-seq are used in this paper). Specifically, the one-sided p-

values, 𝑝𝑝𝑔𝑔 for gene 𝑔𝑔, from conventional DE analysis are first transformed to z-scores 𝑍𝑍𝑔𝑔 =

Φ−1(𝑝𝑝𝑔𝑔 ) (Φ−1(∙ ) is inverse CDF of standard normal distribution), which incorporates 

information of both statistical significance and directionality. BayesP adopts the following 

three-component Gaussian mixture model for up-regulated, down-regulated and no-change 

genes similar to Huo et al. 2019 21: 

𝑓𝑓�𝑍𝑍𝑔𝑔�𝛿𝛿𝑔𝑔� = 𝐼𝐼�𝛿𝛿𝑔𝑔 = 0�𝑁𝑁�𝑍𝑍𝑔𝑔; 0,1�+ 𝐼𝐼�𝛿𝛿𝑔𝑔 = 1�𝑁𝑁�𝑍𝑍𝑔𝑔; 𝜇𝜇𝑔𝑔+, 1� + 𝐼𝐼(𝛿𝛿𝑔𝑔 = −1)𝑁𝑁(𝑍𝑍𝑔𝑔;𝜇𝜇𝑔𝑔−, 1), 

where 𝛿𝛿𝑔𝑔  is the DE indicator of gene 𝑔𝑔 (𝛿𝛿𝑔𝑔 = 1 indicates up-regulation, 𝛿𝛿𝑔𝑔 = −1 for down-

regulation and 𝛿𝛿𝑔𝑔 = 0 for no change), and 𝜇𝜇𝑔𝑔+ and 𝜇𝜇𝑔𝑔− are the grand means of z-scores of 

the up-regulated and down-regulated groups. We assume a non-parametric Dirichlet process 

prior on the grand means: 𝜇𝜇𝑔𝑔+~𝐺𝐺+,𝐺𝐺+~𝐷𝐷𝐷𝐷(𝐺𝐺0+, 1); 𝜇𝜇𝑔𝑔−~𝐺𝐺−,𝐺𝐺−~𝐷𝐷𝐷𝐷(𝐺𝐺0−, 1), where 𝐺𝐺0+ (𝐺𝐺0−) 

denotes a left (right) truncated 𝑁𝑁(0, 102) and 1 is the concentration parameter of the Dirichlet 

process. A Chinese Restaurant Process is used to update 𝛿𝛿𝑔𝑔, where we define an auxiliary 

component variable 𝐶𝐶𝑔𝑔 ∈ {… ,−2,−1, 0, 1, 2, … }  such that 𝐶𝐶𝑔𝑔 = 0  indicates 𝛿𝛿𝑔𝑔 = 0 , 𝐶𝐶𝑔𝑔 > 0 

indicates 𝛿𝛿𝑔𝑔 = 1 and 𝐶𝐶𝑔𝑔 < 0 indicates 𝛿𝛿𝑔𝑔 = −1. The prior for 𝛿𝛿𝑔𝑔  is specified as: 𝐷𝐷�𝛿𝛿𝑔𝑔 ≠ 0� =

𝜋𝜋𝑔𝑔,𝐷𝐷�𝛿𝛿𝑔𝑔 = 1|𝛿𝛿𝑔𝑔 ≠ 0� = 𝜌𝜌𝑔𝑔;  𝜋𝜋𝑔𝑔~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 � 𝛾𝛾
𝐺𝐺−𝛾𝛾

, 1� ,𝜌𝜌𝑔𝑔~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �1
2

, 1
2
�, where 1 − 𝜋𝜋𝑔𝑔, 𝜋𝜋𝑔𝑔𝜌𝜌𝑔𝑔 and 𝜋𝜋𝑔𝑔(1 −

𝜌𝜌𝑔𝑔) are the prior probabilities of being no-change, up-regulated and down-regulated genes 

respectively.  

Markov chain Monte Carlo (MCMC) using Gibbs sampling is used to update all parameters 

(𝜋𝜋𝑔𝑔,𝜌𝜌𝑔𝑔, 𝛿𝛿𝑔𝑔) sequentially as follows: 

1. Update 𝜋𝜋𝑔𝑔:  𝜋𝜋𝑔𝑔| ∙ ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 � 𝛾𝛾
𝐺𝐺−𝛾𝛾

+ ∑𝐼𝐼�𝛿𝛿𝑔𝑔 = 1� + ∑𝐼𝐼�𝛿𝛿𝑔𝑔 = −1�,∑𝐼𝐼�𝛿𝛿𝑔𝑔 = 0� + 1� 
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2. Update 𝜌𝜌𝑔𝑔:  𝜌𝜌𝑔𝑔| ∙ ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �1
2

+ ∑𝐼𝐼�𝛿𝛿𝑔𝑔 = 1�, 1
2

+∑𝐼𝐼�𝛿𝛿𝑔𝑔 = −1�� 

3. Update 𝐶𝐶𝑔𝑔:𝐷𝐷�𝐶𝐶𝑔𝑔 = 𝑘𝑘� ∙� ∝ ℎ𝑘𝑘�𝑍𝑍𝑔𝑔�𝐶𝐶−𝑔𝑔��1 − 𝜋𝜋𝑔𝑔�
𝐼𝐼(𝑘𝑘=0)�𝜋𝜋𝑔𝑔𝜌𝜌𝑔𝑔�

𝐼𝐼(𝑘𝑘>0)�𝜋𝜋𝑔𝑔(1 − 𝜌𝜌𝑔𝑔)�𝐼𝐼(𝑘𝑘<0) , 

where ℎ𝑘𝑘�𝑍𝑍𝑔𝑔�𝐶𝐶−𝑔𝑔� is derived according to Neal 2000 22. 

4. Update 𝛿𝛿𝑔𝑔: 𝛿𝛿𝑔𝑔 = 𝑠𝑠𝑔𝑔𝑠𝑠�𝐶𝐶𝑔𝑔� where 𝑠𝑠𝑔𝑔𝑠𝑠(∙) is the sign function. 

The empirical distribution of the posterior probabilities of 𝛿𝛿𝑔𝑔 will be used to derive the cross-

species c-scores and d-scores later. 

 

Deterministic version of cross-species c-scores and d-scores  

The foundation of cross-species c-scores and d-scores comes from a natural definition of 

confusion matrix and F-measure in machine learning (Supplementary Table 7) when human 

and mouse DE status of up-regulation (Ω𝐻𝐻+ and Ω𝑀𝑀+), down-regulation (Ω𝐻𝐻− and Ω𝑀𝑀−) and 

no change (Ω𝐻𝐻0  and Ω𝑀𝑀0 ) are deterministically known, where ΩH+ = {𝑔𝑔: 𝛿𝛿𝑔𝑔𝐻𝐻 = 1} , ΩH- =

�𝑔𝑔: 𝛿𝛿𝑔𝑔𝐻𝐻 = −1� and ΩH0= �𝑔𝑔:𝛿𝛿𝑔𝑔𝐻𝐻 = 0� in human, and similarly for mouse. Denote by 𝐵𝐵, 𝐵𝐵 and 𝑖𝑖 

the number of cross-species DE concordant genes: 𝐵𝐵 = #(Ω𝐻𝐻+ ∩ Ω𝑀𝑀+) (number of concordant 

up-regulated genes), 𝐵𝐵 = #(Ω𝐻𝐻0 ∩ Ω𝑀𝑀0) (number of concordant no-change genes), and 𝑖𝑖 =

#(Ω𝐻𝐻− ∩ Ω𝑀𝑀−) (number of concordant down-regulated genes). The numbers of DE discordant 

genes can be similarly defined for 𝑏𝑏, 𝑐𝑐,𝑑𝑑,𝑓𝑓,𝑔𝑔,ℎ in the contingency table. From the viewpoint of 

machine learning prediction benchmark assuming we use mouse DE status to predict human 

DE status, one can define concordance sensitivityC (a.k.a. recallC)=𝑎𝑎+𝑖𝑖
𝐷𝐷+𝐹𝐹

 , and precisionC=𝑎𝑎+𝑖𝑖
𝐴𝐴+𝐶𝐶

 

when we focus on cross-species concordant DE genes, where 𝐴𝐴 = #(Ω𝑀𝑀+),𝐶𝐶 = #(Ω𝑀𝑀−),𝐷𝐷 =

#(Ω𝐻𝐻+) and 𝐹𝐹 = #(Ω𝐻𝐻−). In sensitivityC, we calculate the number of concordant DE genes (i.e., 

𝐵𝐵 + 𝑖𝑖) among the true human DE genes (i.e., 𝐷𝐷 + 𝐹𝐹). Similarly, precisionC is defined as the 

number of concordant DE genes (i.e., 𝐵𝐵 + 𝑖𝑖) among the claimed mouse DE genes (i.e., 𝐴𝐴 + 𝐶𝐶). 

We define the raw DE concordance score between human and mouse as the F-measure: 𝑐𝑐′ 

=2(precisionC x recallC)/(precisionC+recallC). Similarly, we can focus on DE discordant genes 

(i.e., genes up-regulated in human but down-regulated in mouse or vice versa) and define 
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sensitivityD= 𝑐𝑐+𝑔𝑔
𝐷𝐷+𝐹𝐹

 and precisionD=𝑐𝑐+𝑔𝑔
𝐴𝐴+𝐶𝐶

. The raw DE discordance score between human and 

mouse becomes: 𝑑𝑑′ =2(precisionD x recallD)/(precisionD+recallD). In addition to F-measure, we 

can also use Youden index (=sensitivity+specificity-1) or the geometric mean of sensitivity and 

specificity, where specificityC=𝑒𝑒
𝐸𝐸
 and specificityD=𝑒𝑒

𝐵𝐵
. When there is no reference study specified 

or under the general multi-cohort scenario, the F-measure is a better choice among the three 

because it is symmetric no matter which species is taken as the reference. With simple 

algebraic calculation, one can show that 𝑐𝑐′= 2(𝑎𝑎+𝑖𝑖)
𝐴𝐴+𝐶𝐶+𝐷𝐷+𝐹𝐹

 and 𝑑𝑑′ = 2(𝑐𝑐+𝑔𝑔)
𝐴𝐴+𝐶𝐶+𝐷𝐷+𝐹𝐹

. Similar to Rand index 

used to evaluate clustering similarity and the adjusted Rand index subsequently developed 23, 

although both 𝑐𝑐′-score and 𝑑𝑑′-score range between 0 and 1, their expected value under null 

hypothesis (i.e., no resemblance between mouse and human) is not 0, making the 

interpretation difficult. To account for this pitfall, we adjust the scores to have maximum value 

at 1 for perfect resemblance and expected value at 0 when no resemblance exists using a 

linear transformation: 𝑐𝑐 -score = 𝑐𝑐′−𝐸𝐸(𝑐𝑐′|𝐻𝐻0)
1−𝐸𝐸(𝑐𝑐′|𝐻𝐻0)

 and 𝑑𝑑 -score = 𝑑𝑑′−𝐸𝐸(𝑑𝑑′|𝐻𝐻0)
1−𝐸𝐸(𝑑𝑑′|𝐻𝐻0)

, where 𝐻𝐻0  is the null 

hypothesis when mouse and human have no resemblance, 𝐸𝐸(𝑐𝑐′|𝐻𝐻0) = 2(𝐴𝐴𝐷𝐷+𝐶𝐶𝐹𝐹)
𝐺𝐺(𝐴𝐴+𝐶𝐶+𝐷𝐷+𝐹𝐹)

 and 

𝐸𝐸(𝑑𝑑′|𝐻𝐻0) = 2(𝐴𝐴𝐹𝐹+𝐶𝐶𝐷𝐷)
𝐺𝐺(𝐴𝐴+𝐶𝐶+𝐷𝐷+𝐹𝐹)

 by computing the expected counts from the table margins for each cell 

(e.g. 𝐸𝐸(𝐵𝐵|𝐻𝐻0) = 𝐴𝐴𝐷𝐷
𝐺𝐺

). 

 

Data-driven estimation version of c-scores and d-scores  

In practice, the underlying true DE statuses (Ω𝐻𝐻+,Ω𝐻𝐻0,Ω𝐻𝐻−)  and (Ω𝑀𝑀+,Ω𝑀𝑀0,Ω𝑀𝑀−)  are not 

known and are inferred from data. As previously mentioned, cross-species congruence 

analysis by applying arbitrary p-value/FDR and fold change cutoffs can lead to subjective bias 

and inconsistent conclusions 5,6. In CAMO, we infer Bayesian posterior probabilities and plug 

into the deterministic definition of c-scores and d-scores. Specifically, denote by 𝛿𝛿𝑔𝑔𝑔𝑔𝐻𝐻  the 

simulated estimation of 𝛿𝛿𝑔𝑔𝐻𝐻 in the 𝑏𝑏-th MCMC iteration for gene 𝑔𝑔 in the human study and 

similarly 𝛿𝛿𝑔𝑔𝑔𝑔𝑀𝑀  for the mouse study. The unbiased estimators are obtained as: �̂�𝐴 =
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∑ ∑ 𝜒𝜒�𝛿𝛿𝑔𝑔𝑔𝑔𝑀𝑀 = 1�𝐵𝐵
𝑔𝑔=1𝑔𝑔 /𝐵𝐵 , �̂�𝐶 = ∑ ∑ 𝜒𝜒�𝛿𝛿𝑔𝑔𝑔𝑔𝑀𝑀 = −1�𝐵𝐵

𝑔𝑔=1𝑔𝑔 /𝐵𝐵 , 𝐷𝐷� = ∑ ∑ 𝜒𝜒�𝛿𝛿𝑔𝑔𝑔𝑔𝐻𝐻 = 1�𝐵𝐵
𝑔𝑔=1𝑔𝑔 /𝐵𝐵 , 𝐹𝐹� =

∑ ∑ 𝜒𝜒�𝛿𝛿𝑔𝑔𝑔𝑔𝐻𝐻 = −1�𝐵𝐵
𝑔𝑔=1𝑔𝑔 /𝐵𝐵 , 𝐵𝐵� = ∑ ∑ 𝜒𝜒�𝛿𝛿𝑔𝑔𝑔𝑔𝐻𝐻 = 1 & 𝛿𝛿𝑔𝑔𝑔𝑔𝑀𝑀 = 1�𝐵𝐵

𝑔𝑔=1𝑔𝑔 /𝐵𝐵 , 𝚤𝚤̂ = ∑ ∑ 𝜒𝜒�𝛿𝛿𝑔𝑔𝑔𝑔𝐻𝐻 =𝐵𝐵
𝑔𝑔=1𝑔𝑔

−1 & 𝛿𝛿𝑔𝑔𝑔𝑔𝑀𝑀 = −1� /𝐵𝐵 , 𝑔𝑔� = ∑ ∑ 𝜒𝜒�𝛿𝛿𝑔𝑔𝑔𝑔𝐻𝐻 = 1 & 𝛿𝛿𝑔𝑔𝑔𝑔𝑀𝑀 = −1�𝐵𝐵
𝑔𝑔=1𝑔𝑔 /𝐵𝐵 , �̂�𝑐 = ∑ ∑ 𝜒𝜒�𝛿𝛿𝑔𝑔𝑔𝑔𝐻𝐻 = −1 & �̂�𝛿𝑔𝑔𝑔𝑔𝑀𝑀 =𝐵𝐵

𝑔𝑔=1𝑔𝑔

1� /𝐵𝐵, where 𝐵𝐵 is the number of (post burn-in) MCMC simulations and 𝜒𝜒(∙) is the indicator 

function taking value 1 if the statement is true and 0 otherwise. c-score and d-score are 

estimated by plugging these estimators into their deterministic definitions.     

 

Pathway-specific c-scores and d-scores 

The aforementioned c-score and d-score estimations are calculated in the genome-wide scale. 

Since the cross-species congruence can vary by biological pathways, we analogously define 

pathway-specific c-scores and d-scores by constraining the calculation to each pathway. One 

major modification is when calculating the expected raw score under null hypothesis, a 

subsampled (sample without replacement) gene set with equivalent size of the target pathway 

is used to calculate 𝐸𝐸�(𝑗𝑗)(𝑐𝑐′|𝐻𝐻0)  and 𝐸𝐸�(𝑗𝑗)(𝑑𝑑′|𝐻𝐻0)  in the 𝑗𝑗 -th sampling. We then estimate 

𝐸𝐸�(𝑐𝑐′|𝐻𝐻0) = 1
𝐽𝐽
∑ 𝐸𝐸�(𝑗𝑗)(𝑐𝑐′|𝐻𝐻0)𝐽𝐽
𝑗𝑗=1  and 𝐸𝐸�(𝑑𝑑′|𝐻𝐻0) = 1

𝐽𝐽
∑ 𝐸𝐸�(𝑗𝑗)(𝑑𝑑′|𝐻𝐻0)𝐽𝐽
𝑗𝑗=1  to better represent the 

genome-wide status. 

 

Statistical significance (p-value) assessment of c-score and d-score  

We assess p-values of genome-wide and pathway-specific c-scores and d-scores by 

permutation analysis. Specifically, we randomly permute cross-species ortholog gene 

annotation, so no cross-species congruence exists under the null hypothesis and the 

procedure is repeated for 𝑇𝑇 times. The p-values are calculated as 𝑝𝑝(�̂�𝑐) = �∑ 𝜒𝜒��̂�𝑐(𝑡𝑡) ≥ �̂�𝑐� +𝑇𝑇
𝑡𝑡=1

1�/(𝑇𝑇 + 1) and 𝑝𝑝��̂�𝑑� = �∑ 𝜒𝜒��̂�𝑑(𝑡𝑡) ≥ �̂�𝑑� + 1𝑇𝑇
𝑡𝑡=1 �/(𝑇𝑇 + 1), where �̂�𝑐 and �̂�𝑑 are the calculated c-

score and d-score, and �̂�𝑐(𝑡𝑡)  and �̂�𝑑(𝑡𝑡)  are the derived c-score and d-score in the 𝐵𝐵 -th 

permutation. Note that we count �̂�𝑐 and �̂�𝑑 as one of the permutation observations to avoid 

obtaining zero p-values 24. Benjamini-Hochberg (BH) procedure 25 is applied to adjust for 
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multiple comparisons of testing many pathways. Both pathway specific c-scores and d-scores 

and their associated p-values are essential in CAMO to identify pathways most or least 

mimicked by the animal model and to investigate the underlying mechanism.  

 

Pathway clustering and text mining  

In CAMO, congruence analysis is evaluated in a pair of studies. When we assess M studies, 

CAMO will create 𝑄𝑄 = 𝐶𝐶2𝑀𝑀 congruence analysis results. Depending on selection of pathway 

databases, hundreds or up to thousands of pathways are assessed for c-scores and d-scores, 

and the result can contain high redundancy since different pathway databases may describe 

a related biological function using similar gene sets. Denote by 𝐶𝐶𝐾𝐾×𝑄𝑄 = �𝑐𝑐𝑘𝑘𝑘𝑘� and Θ𝐾𝐾×𝑄𝑄 =

�𝜃𝜃𝑘𝑘𝑘𝑘 = −𝑙𝑙𝑙𝑙𝑔𝑔10𝑝𝑝�𝑐𝑐𝑘𝑘𝑘𝑘��  the matrices of c-scores and associated minus-log-transformed p-

values of the 𝑄𝑄  congruence comparisons in 𝐾𝐾  pathways. Note that large value of 𝜃𝜃𝑘𝑘𝑘𝑘 

represents high concordance in the 𝑞𝑞-th congruence evaluation of pathway 𝑘𝑘 . To further 

decipher and interpret pathway-specific congruence result, We consider dissimilarity 

(Euclidean distance 𝑑𝑑(𝜃𝜃𝑘𝑘,𝜃𝜃𝑘𝑘′) ) between 𝜃𝜃𝑘𝑘 = �𝜃𝜃𝑘𝑘1, … ,𝜃𝜃𝑘𝑘𝑄𝑄�  and 𝜃𝜃𝑘𝑘′ = �𝜃𝜃𝑘𝑘′1, … ,𝜃𝜃𝑘𝑘′𝑄𝑄�  of 

pathways 𝑘𝑘 and 𝑘𝑘′ and cluster the statistically significant pathways (i.e., meta-analyzed q-

values by Fisher’s method across 𝑄𝑄 comparisons ≤ 0.05) using a consensus tight clustering 

algorithm. The algorithm uses the resampling-based consensus clustering 26 for identifying 

stable patterns in data followed by removing the scattered pathways with low silhouette width 

27 iteratively until all pathways’ silhouette widths are above a certain cutoff (e.g., 0.1) to improve 

the tightness of clusters. Pathways with similar concordance patterns across the 𝑄𝑄 pairwise 

comparisons of the 𝑀𝑀  studies are clustered together to reduce redundancy and facilitate 

further investigation. A heatmap of the matrix Θ𝐾𝐾×𝑄𝑄 sorted by pathway clusters is shown to 

visualize the concordance patterns in different clusters (Supplementary Fig.3a,7a). A 

multidimensional scaling (MDS) algorithm is applied to the dissimilarity matrix generated from 

Θ𝐾𝐾×𝑄𝑄 for visualization (Supplementary Fig.3b,7b). Finally, the co-membership heatmaps are 
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used to summarize the proportion of significantly concordant pathways within each pathway 

cluster between each pair of studies (Supplementary Fig.3c,7c). 

We next apply an automated text mining pipeline to extract summary annotations and retrieve 

knowledge from each pathway cluster 28. The method first collects names and summary 

descriptions of all pathways and extract noun phrases after filtering of biologically redundant 

phrases and merging synonyms using R packages spacyr, tm, textstem and wordnet. The 

remaining noun phrases are tested for whether significantly enriched in selected pathway 

clusters by performing a permutation test on a cluster score weighted by length of pathway 

description. The output of text mining includes a list of key phrases most enriched and the 

corresponding permutation p-values for each pathway cluster.  

 

Individual pathway topology and co-localized concordant/discordant gene module 

detection  

Pathway databases such as KEGG 29 and Reactome 30 provide pathway topological graphs 

to visualize involved genes, gene-gene interactions and regulatory information in the pathway. 

In the R-shiny interface of CAMO, we map and incorporate the gene-based 

concordance/discordance inference results in mouse-human comparison to the pathway 

graph to allow users for visual mechanistic investigation of the local concordance/discordance 

pattern. For pathways from KEGG, we use R package “Pathview” 31 to render the topology 

graph and integrate the concordance/discordance information. For pathways from Reactome, 

we developed our own tool to first retrieve and parse the pathway topology (.sbgn file) from 

Reactome database using the Python minidom parser 

(https://docs.python.org/3/library/xml.dom.minidom.html). Then, each node is colored by its 

posterior mean of DE assignment in the two studies side by side using the Python Imaging 

Library (https://pillow.readthedocs.io/en/stable/).  

To avoid visual bias and to further investigate the local concordance/discordance pattern 

inside the pathway, we develop a community detection algorithm to identify closely connected 

concordant or discordant gene modules based on shortest path distance in the graph, where 
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the unweighted graph is constructed using R packages “KEGGgraph” 32 and “xml2”, and the 

shortest path matrix is calculated by R package “igraph” 33. Exhaustive search algorithm is 

implemented to identify the concordant/discordant gene set with the smallest average shortest 

path at a given module size. However, for a pathway with a large number of 

concordant/discordant genes (e.g., size>30), exhaustive search is not feasible and a 

simulated annealing (SA) algorithm is used for fast search. We define the initial temperature 

𝑇𝑇0, the temperature multiplier 𝜇𝜇, the number of iterations for reaching equilibrium 𝑁𝑁, and the 

final temperature 𝑇𝑇𝑓𝑓. Intuitively, 𝑇𝑇0 controls the acceptance of a trial assignment, 𝑁𝑁 controls 

the maximum number of annealing iterations, 𝜇𝜇 controls speed of cooling down process for 𝑇𝑇0 

to drop below 𝑇𝑇𝑓𝑓 and stop the process. The annealing process is harder when 𝑇𝑇0 is larger, 𝜇𝜇 

is smaller and 𝑁𝑁 is larger. Real data evaluation shows 𝑇𝑇0 = 10, 𝜇𝜇 = 0.95, 𝑇𝑇𝑓𝑓 = 1𝐵𝐵 − 5 and 𝑁𝑁 =

1000 work well in general. The energy function is defined as the average shortest path of the 

current module denoted as 𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷(𝐺𝐺𝑚𝑚) where 𝑚𝑚 is a given module size. A trial module 𝐺𝐺𝑚𝑚′  is 

proposed by randomly substituting one node in 𝐺𝐺𝑚𝑚 to another one in the searching space. If 

𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷(𝐺𝐺𝑚𝑚′ ) < 𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷(𝐺𝐺𝑚𝑚) , 𝐺𝐺𝑚𝑚  will be accepted immediately, otherwise it will initiate the 

annealing process. Another parameter 𝑅𝑅 is introduced to control the total iterations in case it 

keeps hitting 𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷(𝐺𝐺𝑚𝑚′ ) = ∞  throughout the algorithm in a very sparse graph. Detailed 

algorithm can be found in the Supplementary notes 1. When it is applied to a spectrum of 

module sizes, to further improve the performance, at each module size 𝑚𝑚, the algorithm runs 

𝑥𝑥 times and the top 𝑦𝑦 results are stored and passed to the next 𝑚𝑚 + 1 scenario as initials. 

Borrowing initial values from the previous step allows this procedure to converge faster and 

𝑦𝑦 > 1 helps to robustize the procedure when multiple close-to-optimal solutions exist. The 

overall SA algorithm including the initialization procedure is summarized in the Supplementary 

notes 2. 

Permutation test is performed to assess the p-value of identified concordant or discordant 

gene modules. Specifically, for an observed smallest 𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷𝑚𝑚 at module size 𝑚𝑚, gene modules 

of the same size are sampled without replacement from the searching space 𝐵𝐵 times resulted 
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in 𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷𝑚𝑚
(𝑔𝑔),𝑏𝑏 = 1, … ,𝐵𝐵 . The p-value is derived as  𝑝𝑝(𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷𝑚𝑚) =  �∑ 𝜒𝜒 �𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷𝑚𝑚

(𝑔𝑔) ≤𝐵𝐵
𝑔𝑔=1

𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷𝑚𝑚� + 1� /(𝐵𝐵 + 1)  and the standard deviation of the 𝑝𝑝(𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷𝑚𝑚)  is estimated as 

�1
𝐵𝐵
𝑝𝑝(𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷𝑚𝑚)(1− 𝑝𝑝(𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷𝑚𝑚)) by regarding the permuted p-value as the mean estimate of 𝐵𝐵 

approximately independent Bernoulli trials.  

In Case Study 1, we apply this local community detection algorithm to KEGG pathways 

hsa04670 and hsa04662 to identify discordant modules using exhaustive search. An elbow 

plot of (𝐵𝐵𝑎𝑎𝑔𝑔𝑎𝑎𝐷𝐷𝑚𝑚) over 𝑚𝑚 is generated from 𝑚𝑚 = 4 to the cardinality of searching space i.e., the 

total number of discordant genes (Supplementary Fig. 10). The SA algorithm with 𝑥𝑥 = 1 and 

𝑦𝑦 = 1 generates similar results as the exhaustive search. The maximum module size whose 

p-value is within 2 standard deviations of the minimum p-value is reported (12 nodes 

containing 14 genes in hsa04670 and 6 nodes containing 7 genes in hsa04662). 

Corresponding KEGG topology plots with highlighted gene modules are shown in Fig. 2. We 

recommend users to consider the p-value elbow plot, KEGG topology plots together with their 

biological insights in determining an appropriate module size to report. 

 

Data availability 

The datasets used in Case Study 134 are publicly available on the NCBI GEO database with 

accession numbers in Supplement Table 1. The datasets used in Case Study 2 are available 

at http://jsb.ucla.edu/software-and-data.   

Code availability 

An open-source R package can be downloaded from https://github.com/weiiizong/CAMO. 
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Figure Legends 

Figure 1. Workflow of the “CAMO” framework with application results from Case Study 1. (a) 

Procedures to calculate genome-wide and pathway level c-scores and d-scores for a pair of 

human study (HS) and mouse model (MM).  (b) Downstream machine learning and 

bioinformatics interactive visualization tools for pathway knowledge retrieval and topological 

gene nodule detection. (c) Summary of DE evidence with pathway level c-scores (orange in 

the upper right region) and d-scores (blue in lower left region). X- and Y-axes represent the 

average DE posterior probabilities, and size of dots represents the magnitudes of c-scores 

(orange) or d-scores (blue). Two example pathways are highlighted using different shapes 

(“◇”: hsa04662 - KEGG: B cell receptor signaling pathway; “☐”: hsa04670 - KEGG: 

Leukocyte transendothelial migration). (d) Gene-wise heatmap of posterior mean of DE 

indicators of the HS-MS comparison in hsa04670, HS-MS in hsa04662 and HB-MB in 

hsa04662. Genes identified by community detection algorithm (yellow) and genes with 

concordant (orange) or discordant (blue) are shown in two columns beside the heatmaps. 

 

 

Figure 2. Pathway topology plots of the selective pathways Case Study 1. (a). hsa04670 

(HS-MS), (b). hsa04662 (HS-MS) and (c). hsa04662 (HB-MB). Pop-out plots represent the 

co-localized concordant/discordant modules identified from the pathway topology by the 

community detection algorithm. Colors in the nodes refer to the posterior mean of DE 

indicators in each corresponding study pair (red for up-regulation and green for down-

regulation).  
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