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Abstract

The prediction of protein mutations that affect function may be exploited for multiple
uses. In the context of disease variants, the prediction of compensatory mutations that
reestablish functional phenotypes could aid in the development of genetic therapies. In
this work, we present an integrated approach that combines coevolutionary analysis and
molecular dynamics (MD) simulations to discover functional compensatory mutations.
This approach is employed to investigate possible rescue mutations of a
poly(ADP-ribose) polymerase 1 (PARP1) variant, PARP1 V762A, associated with lung
cancer and follicular lymphoma. MD simulations show PARP1 V762A exhibits noticeable
changes in structural and dynamical behavior compared with wild type PARP1. Our
integrated approach predicts A755E as a possible compensatory mutation based on
coevolutionary information, and molecular simulations indicate that the PARP1
A755E/V762A double mutant exhibits similar structural and dynamical behavior to WT
PARP1. Our methodology can be broadly applied to a large number of systems where
single nucleotide polymorphisms (SNPs) have been identified as connected to disease
and can shed light on the biophysical effects of such changes as well as provide a way to
discover potential mutants that could restore wild type-like functionality. This can in turn
be further utilized in the design of molecular therapeutics that aim to mimic such
compensatory effect.
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Significance Statement

Discovering protein mutations with desired phenotypes can be challenging due to
its combinatorial nature. Herein we employ a methodology combining gene SNP
association to disease, direct coupling analysis and molecular dynamics simulations
to systematically predict rescue mutations. Our workflow identifies A755E as a potential
rescue for the PARP1 V762A mutation, which has been associated with cancer. This
methodology is general and can be applied broadly.

Introduction

The identification of disease–associated mutations that result in missense protein variants
can provide avenues for therapeutic development. For example, trans–splicing is a
therapeutic approach that can be employed to repair mutations at the mRNA level (1).
Therefore, understanding the impact of disease variants may be of value to determine if these
mutations can or should be targeted for genetic therapies.

The identification and characterization of missense mutations has been a field of active
research. Some of us have developed an approach termed Hypothesis Driven-SNP-Search
(HyDn-SNP-S). This approach involves the search of single nucleotide polymorphisms (SNPs)
resulting in missense mutations that are associated with a specific phenotype on a particular
gene or genes, followed by atomistic simulations to characterize the impact of the mutation (2,
3). We have previously employed this approach to uncover and characterize various cancer–
associated mutations (2, 4, 5), including the prediction and experimental confirmation of a
rescue mutation for a lung–cancer associated mutation on APOBEC3H (6). Although there are
successful examples for the prediction of rescue mutations, a systematic method to discover
these variants would be beneficial.

Proteins evolve through a series of neutral or selectively-favored mutations (7, 8) that
could coevolve with corresponding compensatory mutations to maintain constraints from
folding structure or function (9–11). Such coevolutionary information between residue sites
can be inferred by a statistical modeling of sequences in a protein family and has achieved
significant performance in predicting physical contacts for protein folding and protein-protein
interaction prediction (12–15). The coevolutionary model has also been used to estimate
mutational effect in epistatis studies (16–19). The direct coupling analysis (DCA) method is a
statistical model that estimates a global probability distribution of protein sequences by
inferring parameters including covariation coupling between residues and site-wise
conservation from multiple sequence alignments (MSAs) of homologous sequences (20). As
a result, DCA is a useful tool that has been successfully applied in the prediction of protein
structures (21, 22), conformational changes (23), protein interactions (24), function (25),
Sequence Evolution with Epistatic Contributions (SEEC) (19), and recently in protein design
(25, 26).

Given the features of these two methodologies, coevolutionary analysis and SNP search
can be combined to further understand the relationship between cancer-related mutations and
compensatory mutations which could rescue the SNP variant (Figure 2). Working from these
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two origins, molecular dynamics (MD) simulations of the identified mutations can be used
to contextualize their impacts in reference to the wild type structure. In this contribution we
present the development of a methodology that combines HyDn-SNP-S with coevolutionary
analysis to uncover possible compensatory mutations for disease variants. We apply this
approach to the regulatory domain of protein PARP1 and use MD simulations to understand
the mutation’s effect on the overall PARP1 structure.

Poly(ADP-ribose) polymerase 1 (PARP1) performs base excision and repairs
single-stranded breaks. It acts as an ADP-ribosylating enzyme, covalently attaching
ADP-ribose to proteins. The successive transfer of ADP-ribose results a PAR chain, which
acts as a signal for other DNA-repair enzymes (27). This process, known as PARsylation or
PARylation, occurs on both single- and double-stranded DNA (28, 29). PARP1 is believed to
perform over 90% of all cellular PARsylation activity (30). PARP1 is known to assist with the
repair of single- and double-stranded breaks through several DNA repair pathways, including
base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR),
homologous recombination repair (HRR), and non-homologous end joining (NHEJ) (28, 31).
Despite its involvement in these various pathways, PARP1 is only essential for single-strand
break repair, and it is considered non-essential for double-stranded repair (32). When it is in a
position to repair strand breaks, PARP1 is believed to dimerize with the DNA-binding domain
of another PARP1 (33). This dimerization is facilitated by the central automodification domain
(34). PARP1 is of particular interest because of its inextricable link with the BRCA1 enzyme,
known for breast cancer susceptibility (29, 35). Both PARP1 and BRCA1 are involved in
homologous recombination repair (HRR), where a damaged area of DNA is resynthesized
using a sister chromatid (36–38). BRCA1 is also known to perform PARsylation, which,
together with RAP80, regulates HRR (39). This link has been utilized in the treatment of
BRCA-mutated cancers, as evidenced by the FDA-approved use the PARP1 inhibitor
Olaparib for advanced ovarian cancer (40). Inhibiting PARP1 leads to a stalling of the
replication fork and the subsequent switch to repair via the NHEJ pathway in cancer cells, but
a continuation via HRR in non-cancer cells (41).

PARP1’s N-terminal domain has three zinc fingers, one responsible for interactions
between domains, and the other two involved in DNA binding (43). When DNA damage
occurs, PARP1 localizes to the damaged area (44). The zinc fingers bind to the exposed
nucleotides, instead of the 3′ and 5′ ends at the break sites, allowing for versatility in binding
other secondary arrangements of DNA (45). The catalytic region then goes through three
enzymatic reactions for PARsylation, composed of initiation, elongation, and branching.
Central to this process is an "ADP-ribosyltransferase (ART) signature" (Figure 1) comprised
of a conserved His-Tyr-Glu (H-Y-E) triad in its nicotinamide binding pocket (46). PARsylation
requires the nicotinamide adenine dinucleotide (NAD+) as a coenzyme, because PARP1
polymerizes the ADP-ribose units (47). Unfolding of the helical subdomain (HD) (Figure 1) is
crucial for the activation of PARP-1, and thus, changes in stability in this region can affect the
enzyme’s catalytic output or how it binds NAD+ (48). This unfolding has been proposed to
occur through a two-step mechanism, first through DNA binding and secondarily through
substrate binding to destabilize the folded HD structure (49). Wild type PARP1 has been
found to be upregulated in different cancers (50–56). In turn, overactivation of PARP1 can
lead to mitochondrial distress and cell necrosis (57–59). One particular single nucleotide
polymorphism (SNP), rs1136410, results in the V762A missense mutation in the HD region of
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Figure 1: The ADP-ribosyltransferase (ART; red) and the helical (HD; pale orange)
subdomains of the catalytic domain of PARP1 are highlighted on the 4ZZZ wild-type structure
(42). Residues A755 and V762 are shown in black.

PARP1. The resulting V762A mutation has been shown to reduce the enzymatic activity of
PARP1 (60). This SNP has been linked to both lung cancer and follicular lymphoma through
the HyDn-SNP-S method (2, 3). The rs1136410 SNP has also been shown to serve as a
protective factor against breast cancer and coronary artery disease in the Han Chinese
population, but it may lead to an increased overall risk of age-related cataracts and cancers
(61–65).

In the remainder of this paper we describe the application of the combined HyDn-SNP-S
and coevolutionary analysis methods to determine whether there are possible compensatory
mutations for the PARP1 V762A variant. In the next section we provide details of the
coevolutionary analysis and molecular dynamics simulations methods, followed by the results
of these approaches for wild type (WT) and various mutants of PARP1. Finally, concluding
remarks are provided on the applicability of this combined approach.

Materials and Methods

Coevolutionary Analysis for PARP Regulatory Domain

The V762A mutation is found within the PARP regulatory domain of PARP1. To investigate
evolutionary footprints for this functional domain, multiple sequence alignments (MSAs) of
homologous sequences for this specific domain are obtained from the Pfam database with an
entry ID of PF02877 (66). The direct coupling analysis (DCA) method (20) is then applied to
the MSA dataset to extract information about coevolutionary coupling between any pairwise
residues and the preference of amino acid occurrence at each residue position. As described
in (20), DCA utilizes maximum entropy modeling to estimate the joint probability distribution of
amino acid sequences of a protein or domain sequence:
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P (S) =
1

Z
exp(

X
i ;j

ei j +
X
i

hi) (1)

where Z is the partition function, the position of residues within the aligned domain or
protein sequence are denoted as i and j and parameters ei ;j and hi can be inferred by DCA.
Parameters ei ;j quantify coevolutionary coupling strength for residue i and j for all possible
amino acid occurrence pairs. The amino acid biases for single residue positions is captured by
the parameter hi . Being the exact inference of the parameters an intractable problem, there are
multiple approximations to infer these parameters with different complexities and accuracies.
In this work we use the mean field formulation (20), which optimizes the identification of highly
coupled sites, however it is not generative as other approximations like bmDCA (67) or arDCA
(68). Since the generative property is not useful in our context, mfDCA provides both accuracy
and low computational complexity.

Calculation of a Sequence-based Energy Function for PARP1 Mutants

Using the collection of ei ;j and hi parameters estimated by DCA, a sequence-based energy
function can be calculated from Equation 1 for any given aligned sequence. This collection of
parameters or Hamiltonian (H) for a protein sequence S is expressed as:

H(S) = −
X
i ;j

ei j −
X
i

hi (2)

Calculating the energy function H(SWT) for the wild type sequence of PARP1’s regulatory
domain provides a reference energy to compare against amino acid changes in the sequence.
This sequence Hamiltoniann has been predictive of functional and non-functional effects in
proteins and RNA (69–71). Any amino acid substitution in this domain would update the
energy function to a mutant one H(SMut). Then the effect of any mutant could be estimated in
terms of the differential of this sequence-based energy function:

∆Hmut = H(SMut)−H(SWT) (3)

In this context, a more positive ∆Hmut score is predicted in general to have an unfavorable
or neutral effect, while a more negative one represents a favorable change for fitness.

Original codes for coevolutionary parameter inference by DCA and H(S) score calculation
were written in MATLAB and published before at
https://github.com/morcoslab/coevolution-compatibility (72).

Molecular Dynamics Analysis of PARP1

Seven systems of the catalytic domain in PARP1 were considered including: wild type from
crystal 4ZZZ (WT) (42, 73), a cancer mutant containing the V762A mutation (rs1136410)
from crystal 5WS1 (V762A) (74), a mutant containing the V762A mutation from the WT
(V762A-from-WT), single mutants containing either A755E only (A755E) or A755L only
(A755L), and double mutants containing the hypothesized rescue mutations and the V762A
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cancer-related mutation, A755E/V762A and A755L/V762A (Table 1). None of the systems
studied contained DNA. The V762A-from-WT was created by using LEaP in AMBER Tools to
edit structure 4ZZZ (75, 76). Modeller was used to incorporate the missing residues into both
crystal structures (77, 78). The single mutants were created by editing structure 4ZZZ using
UCSF Chimera and replacing the amino acid using the Dunbrack rotamer libraries (79, 80).
The double mutants were similarly created by modifying structure 5WS1. VMD and UCSF
Chimera were used for visualization (79, 81).

Using LEaP, chloride ions were added to neutralize the total charge of each system (75).
WT, V762A, and V762A-from-WT were each solvated using TIP3P water extending at least 8Å
from the solute, and the A755E, A755L, A755E/V762A, and A755L/V762A systems were each
solvated extending at least 12Å from the solute (75, 82). A simulation for a WT system with a
12Å solvent buffer was also performed and no significant differences were observed compared
with the smaller box results (Figures S4 and S7). Charged residues were assigned the default
protonation state in LEaP, consistent with PROPKA (5 His had suggested protonation at N-
delta by PROPKA, 3 of which were inconclusive by the electrostatic calculation and visual
inspection) (83–85). The ff14SB force field was used for all protein residues (86).

AMBER molecular dynamics simulations were run using pmemd.cuda (76, 87, 88), with the
NVT ensemble (number of atoms, volume, and temperature held constant) for the minimization
and heating phases. The NPT ensemble (number of atoms, pressure, and temperature held
constant) with the Langevin thermostat (temperature held at 300K) was used for equilibration
and production (89). The systems were run in triplicate with a 2 fs time step for the total
simulation time shown in Table 1. Results for a representative trajectory of each system are
shown below. All difference data between systems is presented as Variant − WT.

Table 1: Naming scheme for MD simulations of PARP1.

Abbreviation Mutations Original PDB Time Simulated (ns)

WT 4ZZZ 500
V762A V762A 5WS1 500
V762A-from-WT V762A 4ZZZ 500
A755E A755E 4ZZZ 200
A755L A755L 4ZZZ 200
A755E/V762A A755E and V762A 5WS1 200
A755L/V762A A755L and V762A 5WS1 200

Cpptraj was used to analyze production dynamics (90). Normal modes were visualized
using the Normal Mode Wizard in VMD (81, 91). Further data processing and graphing were
performed with Gnuplot and the Matplotlib, NumPy, and statsmodels Python libraries (92–96).
A FORTRAN90 program was used for the energy decomposition analysis (EDA) (97). EDA
averaging was done using R (98), with the data.table, abind, and tidyverse libraries (99–101).
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Figure 2: Workflow of DCA-MD method for identifying compensatory mutations for SNP(s).
The DCA method infers coevolutionary parameter from MSA(s) containing the mutated residue
(See Methods). Then a mutational landscape of protein energy function scores for all possible
single mutations is generated to evaluate the SNP and initially screen possible compensatory
mutations. The MD method simulates and validates the effect of SNP and compensatory
mutation candidate.

Results and Discussion

We developed a compensatory mutation discovery workflow comprised of two computational
approaches: 1) molecular dynamics simulations to investigate the effect of mutations on the
protein’s structure and dynamics and 2) sequence-based coevolutionary analysis that
provides a global single mutation landscape to screen out potential rescuing mutations for the
SNP variant of interest. The compensatory mutation discovery workflow that has been
developed herein is depicted schematically in Figure 2. Briefly, the two computational
approaches are performed in tandem to investigate the structural and dynamic properties of
the protein and disease variants under study via MD; coupled with the sequence-based
coevolutionary analysis to obtain a single mutation landscape to screen out possible rescue
mutations for the SNP variant of interest.

Guided by the results from HyDn-SNP-S on PARP1, we sought to understand how the
rs1136410 SNP affected the overall structure and dynamics of PARP1. Thus, we performed
molecular dynamics (MD) simulations of both wild type PARP1 (WT) and the V762A PARP1
(V762A) variant structures.

Each system’s root mean square deviations (RMSDs) were stable across all simulations
(see Figures S2–S3, and S8A). One way to assess the mutation’s effect on the dynamics of the
system is through the use of a by-residue correlation matrix. This analysis can reveal regions
of motion and dynamical correlation, anti-correlation, and no correlation within the protein (see
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Figures S9–S14). Based on the differences in correlated movements in Figure 3A, about half
of the residues in the HD subdomain (710–770) and a fifth of the residues in the ART domain
(910–960) show enhanced correlated movement in V762A than in WT.

Figure 3: Comparison between V762A and WT. A. Differences in correlated movement
between V762A (blue) and WT (red). B. Differences in RMSF between V762A and WT. A
1Å threshold is shown with a blue dashed line. C. Differences in EDA and hydrogen bonding
between V762A and WT. Beige residues have undefined values. Differences in EDA above
threshold of 0:5Å are marked. Hydrogen bond donor in orange, acceptor in pink; bond
indicated with bold dashed line.

An analysis of the root mean square fluctuation (RMSF) can be used to identify areas of
higher or lower fluctuation between a system and its reference. Detailed RMSF data can be
found in Table S1 and Figures S5–S7 and S8B,C. V762A and WT differ in RMSF by more
than 1Å at residues 724, 747, 782, and 825. Each of these residues is central to flexible
loops throughout the subdomains, indicating a difference in dynamics between V762A and WT.
V762A impacts the active site because of its proximity to the nicotinamide binding pocket. The
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active site residues (879 to 889; Figure 3B) show increased fluctuation in the V762A structure
compared to WT, leading to decreased structural stability in the mutant. These residues are
in a flexible loop opposite the NAD+-coordinating residues in the binding pocket, and several
residues interact directly with V762.

An energy decomposition analysis (EDA), comprised of Coulomb and van der Waals
(non-bonded) interactions, was used to study all of the intermolecular interactions between
individual protein residues and residue 762 (see Figures S15–S25). Residues G888 and
Y889, specifically, interact more favorably with residue 762 in the V762A mutant than in WT.
The reverse behavior occurs with residue N759, which is located in the same helix as V762,
but opposite the loop. N759 interacts more favorably with V762 in WT than in the V762A
system (Figure 3C). Further, one of the hydrogen bonds between the HD and ART
subdomains, GLN 717 – THR 887, is present for 27% less of production time in the V762A
system than WT (Figure 3B). The V762A mutation appears to result in a reduction in stability
in the active site because the loop and helix are not held as tightly together. This instability
could mean that the NAD+ may bind with lower affinity in the PARP1 V762A holoenzyme.
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landscape of mutations on PARP regulatory domain for PARP1. B. Mutational effect of PARP1
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We then utilized a DCA-based energy scoring function ∆HMut (see Materials and
Methods) to explore the single mutation landscape for all residues in the regulatory domain of
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PARP1 (Figure 4A). The majority of single mutations had disruptive scores in for PAPR1
regulatory domain. V762A has a more positive score than WT, indicating its potential
disruptive role in protein folding or stability from the perspective of coevolutionary analysis.
Among all possible mutations, the top two most favorable mutations are observed in residue
755, specifically A755E and A755L. A double mutation profile generated with V762A also
reports A755E and A755L as the best compensatory mutations occurring at positions other
than 762 for the V762A mutant (Figure S1 and Figure 4B). This SNP-based profile directly
estimates the effect of a second mutation on the original SNP variant, to uncover if there are
second mutations that reverse the effect of SNP on the energy function score (Figure S1 ).
Both A755E and A755L single mutations cause a comparable, but opposite, effect on protein
coevolutionary score as V762A, while the double mutations, V762A/A755E and
V762A/A755L, lead to scores near WT (Figure 4B,C). A755L generates a positive epistatic
effect on V762A, suggesting that the double mutations has a better fitness energy score than
the additive effect of two single mutations. A755E causes a negative epistatic effect on
V762A. In summary, the coevolutionary analysis indicates that two mutations at residue 755
are promising for rescuing V762A.

Working from the results of the coevolutionary analysis, we simulated the A775E and
A755L single mutants to establish a baseline for those mutations. The hydrogen bond
between GLN 717 and THR 887 is present 28% (OE1–OG1) and 23% (OE1–N) less of
production time in the A755L system than in the WT, indicating that A755L leads to less
stability in the active site (lower box of Figure 5A). The EDA revealed significant differences in
the non-bonded interactions between A755E and WT; with a large number of residues in the
catalytic domain showing changes larger than 1 kcal=mol (Figure 5B). This may be due to the
change from a residue with no charge to one that is negatively charged. Additionally, several
HD subdomain residues (717, 720, 758–759) and residue 887, which is located in the active
site, all interact more favorably with residue 755 in A755L than in WT (Figure 5B). Four
residues in flexible loops, two in the HD subdomain (744 and 746) and two in the ART
subdomain (824 and 825), have a significantly lower RMSF in A755E and A755L than WT
(Figure 5C and S8C), suggesting that both A755E and A755L stabilize the overall structure
as a result of this decreased flexibility. Based on the differences in correlated movements, the
portion of the helices of the HD subdomain near the variant (residues 710–770) show more
correlated movement in both A755E and A755L than in WT with themselves (Figure 5D-E).

We then simulated the A755E/V762A and A755L/V762A double mutant systems to
evaluate the role of the predicted residues as compensatory mutations on the dynamics of
PARP1. The hydrogen bond between GLN 717 and THR 887 is present 28% (OE1–OG1)
less of production time in A755L/V762A than in the WT, indicating that A755L/V762A leads to
less stability in the active site (Figure 6A). Residues 717, 720, 758–759, which are near the
site of mutation, and 887, which is located in the active site, all interact more favorably with
residue 762 in A755L/V762A than in WT (Figure 6A).

There is minimal difference in correlated movements between A755E/V762A and WT,
potentially indicating that A755E is a rescue mutation (Figure 6B). Based on the differences
in correlated movements, residues 710-770 show more correlated movement in
A755L/V762A than in WT with themselves and 885-985 with themselves (Figure 6C). This
impact on the HD subdomain may point to a similar or increased catalytic output for
structures with A755E/L rescue mutations.
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Figure 5: Comparison between A755E and WT and A755L and WT. A. Differences in EDA and
hydrogen bonding between A755L and WT. Beige residues have undefined values. Differences
in EDA above threshold of 0:5 kcal=mol are marked. Hydrogen bond donor in orange, acceptor
in pink; bonds indicated with bold dashed line. B. Differences in EDA between A755E and WT.
Beige residues have undefined values. Differences in EDA above threshold of 0:5 kcal=mol
are marked. C. Differences in RMSF between A755E and A755L and WT. A 1Å threshold is
shown with a blue dashed line. D. Differences in correlated movement between A755E (blue)
and WT (red). E. Differences in correlated movement between A755L (blue) and WT (red).
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Figure 6: Comparison between A755E/V762A and WT and A755L/V762A and WT. A.
Differences in EDA and hydrogen bonding between A755L/V762A and WT. Beige residues
have undefined values. Differences in EDA above threshold of 0:5 kcal=mol are marked.
Hydrogen bond donor in orange, acceptor in pink; bonds indicated with bold dashed
line. B. Differences in correlated movement between A755E/V762A (blue) and WT (red).
C. Differences in correlated movement between A755L/V762A (blue) and WT (red). D.
Differences in EDA and hydrogen bonding between A755E/V762A and WT. Beige residues
have undefined values. Differences in EDA above threshold of 0:5 kcal=mol are marked.
Hydrogen bond donor in orange, acceptor in pink; bonds indicated with bold dashed line.
E. Differences in RMSF between A755E/V762A and A755L/V762A and WT. A 1Å threshold is
shown with a blue dashed line.
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In A755E/V762A, the hydrogen bond between GLN 717 and THR 887 is present 29%
(OE1–OG1) and 24% (OE1–N) less of production time than in the WT, indicating that
A755E/V762A also leads to less stability in the active site (lower box of Figure 6D). There are
significant differences in the non-bonded interactions between A755E/V762A and WT;
residues all over the catalytic domain are impacted (Figure 6D). Similar to A755E, the
changes may be due to the additional charge at position 755.

At residues 724, 748, and 826, the RMSF was significantly lower in A755E/V762A than
WT (Figure 6E). At residues 960, 961, and 968, the RMSF was significantly higher in
A755E/V762A than WT (Figure 6E). These correspond to differences seen for A755E/V762A
in the normal modes analysis (see Figures S26–S27), where the HD subdomain shows less
motion than the ART subdomain. The A755L/V762A system, however, closely resembles the
WT in its first normal mode. As these residues are indicated by RMSF in each mutant
studied, their fluctuation may be important for the recognition of the cofactor, which is absent
from these simulations. The added stability provided by A755L in the A755L/V762A gives
strong support for its evolution as a compensatory mutation. Because HD region
destabilization is necessary for PARP1 activation, this particular double-mutant may more
tightly control activation.

Conclusion

In this study, we have demonstrated that integrating coevolutionary analysis and MD
simulations can be useful to discover and validate compensatory mutations for SNPs using
PARP1 rs1136410 as an example. A755E/L is first recognized by the DCA coevolutionary
method as variants that are most favorable for PARP1 structures and the subsequent MD
simulations validated that both variants stabilize the overall structure. Coevolutionary
information can also be used to estimate double mutations that contain SNP to uncover
rescue mutations. Both A755E/L lead to favorable “fitness" conditions in the context of the
V762A variant from an evolutionary perspective. Additionally, the effects of A755E/L and
V762A on PARP1 protein are not purely additive, with A755E being negatively synergetic and
A755L being positively synergetic (Figure 4B). MD simulations show that the cancer mutation
affects the structure and dynamics of V762A PARP1 compared with WT. These results
indicate that the A775E mutation, in conjunction with V762A, can resolve some of the
structural and dynamical impacts, mimicking wild type. Our work can help understand the
effects of SNPs in their association with disease, like cancer in this case, as well as
identifying changes that could ameliorate those changes. The discovery of important
compensatory mutations can be used to study how particular SNPs are not always
associated with disease and provide a roadmap for molecular therapeutic approaches aiming
at reducing the negative effects of mutations. This methodology is generic in the sense that
can be applied to a large number of systems where structural and sequence data is available.
The case of PARP1, presented here, is only one of many that could be studied with our
integrated approach. Subsequent computational and new experimental investigation of the
potential of the two proposed rescue mutations would provide further insights. We expect
future work could uncover important insights on the effect of mutations for many more genes
and their associated diseases.
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and W. Bal, 2015. Unusual Zn(II) affinities of zinc fingers of poly(ADP-ribose) polymerase
1 (PARP-1) nuclear protein. Chem. Res. Toxicol. 28:191–201, DOI: 10.1021/tx500320f.

44. Haince, J.-F., D. McDonald, A. Rodrigue, U. Déry, J.-Y. Masson, M. J. Hendzel,
and G. G. Poirier, 2008. PARP1-dependent kinetics of recruitment of MRE11 and
NBS1 proteins to multiple DNA damage sites*. J. Biol. Chem. 283:1197–1208, DOI:
10.1074/jbc.M706734200.

45. Langelier, M.-F., J. L. Planck, S. Roy, and J. M. Pascal, 2011. Crystal structures of
poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: Structural and
functional insights into DNA-dependent PARP-1 activity*,. J. Biol. Chem. 286:10690–
10701, DOI: 10.1074/jbc.M110.202507.

46. Alemasova, E. E., and O. I. Lavrik, 2019. Poly(ADP-ribosyl)ation by PARP1:
reaction mechanism and regulatory proteins. Nucleic Acids Res. 47:3811–3827, DOI:
10.1093/nar/gkz120.

47. Kim, M. Y., T. Zhang, and W. L. Kraus, 2005. Poly(ADP-ribosyl)ation by PARP-
1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 19:1951–1967, DOI:
10.1101/gad.1331805.

48. Dawicki-McKenna, J., M.-F. Langelier, J. DeNizio, A. Riccio, C. Cao, K. Karch,
M. McCauley, J. Steffen, B. Black, and J. Pascal, 2015. PARP-1 activation
requires local unfolding of an autoinhibitory domain. Mol. Cell 60:755–768, DOI:
10.1016/j.molcel.2015.10.013.

49. Ogden, T. E. H., J.-C. Yang, M. Schimpl, L. E. Easton, E. Underwood, P. Rawlins,
M. McCauley, M.-F. Langelier, J. Pascal, K. Embrey, and D. Neuhaus, 2021. Dynamics
of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP
activation and inhibition. Nucleic Acids Res. 49:2266–2288, DOI: 10.1093/nar/gkab020.

50. Singh, N., 1991. Enhanced poly ADP-ribosylation in human leukemia lymphocytes and
ovarian cancers. Cancer Lett. 58:131–135, DOI: 10.1016/0304-3835(91)90035-G.

51. Nomura, F., M. Yaguchi, A. Togawa, M. Miyazaki, K. Isobe, M. Miyake, M. Noda, and
T. Nakai, 2000. Enhancement of poly-adenosine diphosphate-ribosylation in human
hepatocellular carcinoma. J. Gastroenterol. Hepatol. 15:529–535, DOI: 10.1046/j.1440-
1746.2000.02193.x.

52. Yalcintepe, L., L. Turker-Sener, A. Sener, G. Yetkin, D. Tiryaki, and E. Bermek, 2005.
Changes in NAD/ADP-ribose metabolism in rectal cancer. Braz. J. Med. Biol. Res.
38:361 – 365, DOI: 10.1590/S0100-879X2005000300006.

53. Ossovskaya, V., I. C. Koo, E. P. Kaldjian, C. Alvares, and B. M. Sherman, 2010.
Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast
cancer and other primary human tumor types. Genes Cancer 1:812–821, DOI:
10.1177/1947601910383418.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.11.21.469407doi: bioRxiv preprint 

https://doi.org/10.1021/tx500320f
https://doi.org/10.1074/jbc.M706734200
https://doi.org/10.1074/jbc.M110.202507
https://doi.org/10.1093/nar/gkz120
https://doi.org/10.1101/gad.1331805
https://doi.org/10.1016/j.molcel.2015.10.013
https://doi.org/10.1093/nar/gkab020
https://doi.org/10.1016/0304-3835(91)90035-G
https://doi.org/10.1046/j.1440-1746.2000.02193.x
https://doi.org/10.1046/j.1440-1746.2000.02193.x
https://doi.org/10.1590/S0100-879X2005000300006
https://doi.org/10.1177/1947601910383418
https://doi.org/10.1101/2021.11.21.469407
http://creativecommons.org/licenses/by-nc-nd/4.0/


54. Schiewer, M. J., J. F. Goodwin, S. Han, J. C. Brenner, M. A. Augello, J. L. Dean, F. Liu,
J. L. Planck, P. Ravindranathan, A. M. Chinnaiyan, P. McCue, L. G. Gomella, G. V. Raj,
A. P. Dicker, J. R. Brody, J. M. Pascal, M. M. Centenera, L. M. Butler, W. D. Tilley, F. Y.
Feng, and K. E. Knudsen, 2012. Dual roles of PARP-1 promote cancer growth and
progression. Cancer Discovery 2:1134–1149, DOI: 10.1158/2159-8290.CD-12-0120.

55. Bi, F.-F., D. Li, and Q. Yang, 2013. Hypomethylation of ETS transcription factor binding
sites and upregulation of PARP1 expression in endometrial cancer. BioMed Res. Int.
2013:946268, DOI: 10.1155/2013/946268.

56. Green, A. R., D. Caracappa, A. A. Benhasouna, A. Alshareeda, C. C. Nolan, R. D.
Macmillan, S. Madhusudan, I. O. Ellis, and E. A. Rakha, 2015. Biological and clinical
significance of PARP1 protein expression in breast cancer. Breast Cancer Res. Treat.
149:353–362, DOI: 10.1007/s10549-014-3230-1.

57. Virág, L., A. L. Salzman, and C. Szabó, 1998. Poly(ADP-Ribose) synthetase activation
mediates mitochondrial injury during oxidant-induced cell death. J. Immunol. 161:3753–
3759.

58. Ha, H. C., and S. H. Snyder, 1999. Poly(ADP-ribose) polymerase is a mediator of necrotic
cell death by ATP depletion. Proc. Natl. Acad. Sci. U. S. A. 96:13978–13982, DOI:
10.1073/pnas.96.24.13978.

59. Berger, N. A., V. C. Besson, A. H. Boulares, A. Bürkle, A. Chiarugi, R. S. Clark,
N. J. Curtin, S. Cuzzocrea, T. M. Dawson, V. L. Dawson, G. Haskó, L. Liaudet,
F. Moroni, P. Pacher, P. Radermacher, A. L. Salzman, S. H. Snyder, F. G. Soriano,
R. P. Strosznajder, B. Sümegi, R. A. Swanson, and C. Szabo, 2018. Opportunities for
the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br. J.
Pharmacol. 175:192–222, DOI: 10.1111/bph.13748.

60. Wang, X.-G., Z.-Q. Wang, W.-M. Tong, and Y. Shen, 2007. PARP1 Val762Ala
polymorphism reduces enzymatic activity. Biochem. Biophys. Res. Commun. 354:122–
126, DOI: 10.1016/j.bbrc.2006.12.162.

61. Ma, X.-B., X.-J. Wang, M. Wang, Z.-M. Dai, T.-B. Jin, X.-H. Liu, H.-F. Kang, S. Lin, P. Xu,
and Z.-J. Dai, 2016. Impact of the PARP1 rs1136410 and rs3219145 polymorphisms
on susceptibility and clinicopathologic features of breast cancer in a Chinese population.
Transl. Cancer Res. 5, DOI: 10.21037/tcr.2016.09.01.

62. Wang, X.-b., N.-h. Cui, S. Zhang, S.-r. Guo, Z.-j. Liu, and L. Ming, 2017. PARP-
1 variant rs1136410 confers protection against coronary artery disease in a Chinese
Han population: A two-stage case-control study involving 5643 subjects. Front. Physiol.
8:916, DOI: 10.3389/fphys.2017.00916.

63. Cui, N.-H., C. Qiao, X.-K. Chang, and L. Wei, 2017. Associations of PARP-1 variant
rs1136410 with PARP activities, oxidative DNA damage, and the risk of age-related
cataract in a Chinese Han population: A two-stage case-control analysis. Gene 600:70–
76, DOI: 10.1016/j.gene.2016.11.019.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.11.21.469407doi: bioRxiv preprint 

https://doi.org/10.1158/2159-8290.CD-12-0120
https://doi.org/10.1155/2013/946268
https://doi.org/10.1007/s10549-014-3230-1
https://doi.org/10.1073/pnas.96.24.13978
https://doi.org/10.1111/bph.13748
https://doi.org/10.1016/j.bbrc.2006.12.162
https://doi.org/10.21037/tcr.2016.09.01
https://doi.org/10.3389/fphys.2017.00916
https://doi.org/10.1016/j.gene.2016.11.019
https://doi.org/10.1101/2021.11.21.469407
http://creativecommons.org/licenses/by-nc-nd/4.0/


64. Li, H., Y. Zha, F. Du, J. Liu, X. Li, and X. Zhao, 2020. Contributions of PARP-1 rs1136410
C>T polymorphism to the development of cancer. J. Cell. Mol. Med. 24:14639–14644,
DOI: 10.1111/jcmm.16027.

65. Xin, Y., L. Yang, M. Su, X. Cheng, L. Zhu, and J. Liu, 2021. PARP1 rs1136410 Val762Ala
contributes to an increased risk of overall cancer in the East Asian population: a meta-
analysis. J. Int. Med. Res. 49:0300060521992956, DOI: 10.1177/0300060521992956.

66. El-Gebali, S., J. Mistry, A. Bateman, S. R. Eddy, A. Luciani, S. C. Potter, M. Qureshi,
L. J. Richardson, G. A. Salazar, A. Smart, E. L. L. Sonnhammer, L. Hirsh, L. Paladin,
D. Piovesan, S. C. E. Tosatto, and R. D. Finn, 2018. The Pfam protein families database
in 2019. Nucleic Acids Res. 47, DOI: 10.1093/nar/gky995.

67. Figliuzzi, M., P. Barrat-Charlaix, and M. Weigt, 2018. How pairwise coevolutionary
models capture the collective residue variability in proteins? Mol. Biol. Evol. 35:1018–
1027, DOI: 10.1093/molbev/msy007.

68. Trinquier, J., G. Uguzzoni, A. Pagnani, F. Zamponi, and M. Weigt, 2021. Efficient
generative modeling of protein sequences using simple autoregressive models. Nat.
Commun. 12, DOI: 10.1038/s41467-021-25756-4.

69. Cheng, R. R., O. Nordesjö, R. L. Hayes, H. Levine, S. C. Flores, J. N. Onuchic, and
F. Morcos, 2016. Connecting the sequence-space of bacterial signaling proteins to
phenotypes using coevolutionary landscapes. Mol. Biol. Evol. 33:3054–3064, DOI:
10.1093/molbev/msw188.

70. Figliuzzi, M., H. Jacquier, A. Schug, O. Tenaillon, and M. Weigt, 2015. Coevolutionary
landscape inference and the context-dependence of mutations in Beta-Lactamase TEM-
1. Mol. Biol. Evol. 33:268–280, DOI: 10.1093/molbev/msv211.

71. Zhou, Q., N. Kunder, J. A. D. la Paz, A. E. Lasley, V. D. Bhat, F. Morcos, and Z. T.
Campbell, 2018. Global pairwise RNA interaction landscapes reveal core features of
protein recognition. Nat. Commun. 9, DOI: 10.1038/s41467-018-04729-0.

72. Jiang, X.-L., R. P. Dimas, C. T. Y. Chan, and F. Morcos, 2021. morcoslab/coevolution-
compatibility: Companion to "Coevolutionary methods enable robust design of modular
repressors by reestablishing intra-protein interactions". DOI: 10.5281/zenodo.5262799,
DOI: 10.5281/zenodo.5262799.

73. Papeo, G., H. Posteri, D. Borghi, A. A. Busel, F. Caprera, E. Casale, M. Ciomei,
A. Cirla, E. Corti, M. D’Anello, M. Fasolini, B. Forte, A. Galvani, A. Isacchi, A. Khvat,
M. Y. Krasavin, R. Lupi, P. Orsini, R. Perego, E. Pesenti, D. Pezzetta, S. Rainoldi,
F. Riccardi-Sirtori, A. Scolaro, F. Sola, F. Zuccotto, E. R. Felder, D. Donati, and
A. Montagnoli, 2015. Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-
3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118): A potent, orally available,
and highly selective PARP-1 inhibitor for cancer therapy. J. Med. Chem. 58:6875–6898,
DOI: 10.1021/acs.jmedchem.5b00680.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.11.21.469407doi: bioRxiv preprint 

https://doi.org/10.1111/jcmm.16027
https://doi.org/10.1177/0300060521992956
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/molbev/msy007
https://doi.org/10.1038/s41467-021-25756-4
https://doi.org/10.1093/molbev/msw188
https://doi.org/10.1093/molbev/msv211
https://doi.org/10.1038/s41467-018-04729-0
https://doi.org/10.5281/zenodo.5262799
https://doi.org/10.5281/zenodo.5262799
https://doi.org/10.1021/acs.jmedchem.5b00680
https://doi.org/10.1101/2021.11.21.469407
http://creativecommons.org/licenses/by-nc-nd/4.0/


74. Cao, R., Y. Wang, J. Zhou, N. Huang, and B. Xu, 2016. Structure of human PARP1
catalytic domain bound to a benzoimidazole inhibitor, DOI: 10.2210/pdb5WS1/pdb.

75. Schafmeister, C. E. A. F., W. S. Ross, and V. Romanovski, 1995. LEaP.

76. Case, D., I. Ben-Shalom, S. Brozell, D. Cerutti, T. Cheatham III, V. Cruzeiro, T. Darden,
R. Duke, D. Ghoreishi, M. Gilson, H. Gohlke, A. Goetz, D. Greene, R. Harris, N. Homeyer,
Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman, T. Lee, S. LeGrand, P. Li, C. Lin, J. Liu,
T. Luchko, R. Luo, D. Mermelstein, K. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen,
I. Omelyan, A. Onufriev, F. Pan, R. Qi, D. R. Roe, A. Roitberg, C. Sagui, S. Schott-
Verdugo, J. Shen, C. Simmerling, J. Smith, R. Salomon-Ferrer, J. Swails, R. Walker,
J. Wang, H. Wei, R. Wolf, X. Wu, L. Xiao, D. York, and P. Kollman, 2018. AMBER 2018.

77. Šali, A., and T. L. Blundell, 1993. Comparative protein modelling by satisfaction of spatial
restraints. J. Mol. Biol. 234:779 – 815, DOI: 10.1006/jmbi.1993.1626.

78. Fiser, A., R. K. G. Do, and A. Šali, 2000. Modeling of loops in protein structures. Protein
Sci. 9:1753–1773, DOI: 10.1110/ps.9.9.1753.

79. Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng,
and T. E. Ferrin, 2004. UCSF Chimera—A visualization system for exploratory research
and analysis. J. Comput. Chem. 25:1605–1612, DOI: 10.1002/jcc.20084.

80. Dunbrack, R. L., 2002. Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol.
12:431 – 440, DOI: 10.1016/S0959-440X(02)00344-5.

81. Humphrey, W., A. Dalke, and K. Schulten, 1996. VMD: Visual molecular dynamics. J.
Mol. Graphics 14:33 – 38, DOI: 10.1016/0263-7855(96)00018-5.

82. Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, 1983.
Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.
79:926–935, DOI: 10.1063/1.445869.

83. Søndergaard, C. R., M. H. M. Olsson, M. Rostkowski, and J. H. Jensen, 2011. Improved
treatment of ligands and coupling effects in empirical calculation and rationalization of
pKa values. J. Chem. Theory Comput. 7:2284–2295, DOI: 10.1021/ct200133y.

84. Olsson, M. H. M., C. R. Søndergaard, M. Rostkowski, and J. H. Jensen, 2011.
PROPKA3: Consistent treatment of internal and surface residues in empirical pKa
predictions. J. Chem. Theory Comput. 7:525–537, DOI: 10.1021/ct100578z.

85. Jurrus, E., D. Engel, K. Star, K. Monson, J. Brandi, L. E. Felberg, D. H. Brookes,
L. Wilson, J. Chen, K. Liles, M. Chun, P. Li, D. W. Gohara, T. Dolinsky, R. Konecny, D. R.
Koes, J. E. Nielsen, T. Head-Gordon, W. Geng, R. Krasny, G.-W. Wei, M. J. Holst, J. A.
McCammon, and N. A. Baker, 2018. Improvements to the APBS biomolecular solvation
software suite. Protein Sci. 27:112–128, DOI: 10.1002/pro.3280.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.11.21.469407doi: bioRxiv preprint 

https://doi.org/10.2210/pdb5WS1/pdb
https://doi.org/10.1006/jmbi.1993.1626
https://doi.org/10.1110/ps.9.9.1753
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1016/S0959-440X(02)00344-5
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1063/1.445869
https://doi.org/10.1021/ct200133y
https://doi.org/10.1021/ct100578z
https://doi.org/10.1002/pro.3280
https://doi.org/10.1101/2021.11.21.469407
http://creativecommons.org/licenses/by-nc-nd/4.0/


86. Maier, J. A., C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and C. Simmerling,
2015. ff14SB: Improving the accuracy of protein side chain and backbone parameters
from ff99SB. J. Chem. Theory Comput. 11:3696–3713, DOI: 10.1021/acs.jctc.5b00255.

87. Essmann, U., L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen,
1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103:8577–8593, DOI:
10.1063/1.470117.

88. Salomon-Ferrer, R., A. W. Götz, D. Poole, S. Le Grand, and R. C. Walker, 2013. Routine
microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent
particle mesh Ewald. J. Chem. Theory Comput. 9:3878–3888, DOI: 10.1021/ct400314y.

89. Loncharich, R. J., B. R. Brooks, and R. W. Pastor, 1992. Langevin dynamics of peptides:
The frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide.
Biopolymers 32:523–535, DOI: 10.1002/bip.360320508.

90. Roe, D. R., and T. E. Cheatham, 2013. PTRAJ and CPPTRAJ: Software for processing
and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9:3084–
3095, DOI: 10.1021/ct400341p.

91. Bakan, A., I. Bahar, and L. M. Meireles, 2011. ProDy: Protein dynamics
inferred from theory and experiments. Bioinformatics 27:1575–1577, DOI:
10.1093/bioinformatics/btr168.

92. Williams, T., and C. Kelley, 2019. Gnuplot 5.2: An interactive plotting program. http:
//gnuplot.sourceforge.net/.

93. Hunter, J. D., 2007. Matplotlib: A 2D graphics environment. Computing in Science &
Engineering 9:90–95, DOI: 10.1109/MCSE.2007.55.

94. Oliphant, T. E., 2006. A guide to NumPy, volume 1. Trelgol Publishing USA.

95. Van Der Walt, S., S. C. Colbert, and G. Varoquaux, 2011. The NumPy array: A structure
for efficient numerical computation. Computing in Science & Engineering 13:22.

96. Seabold, S., and J. Perktold, 2010. statsmodels: Econometric and statistical modeling
with python. In 9th Python in Science Conference.

97. Leddin, E., and G. A. Cisneros, 2020. CisnerosResearch/AMBER-EDA: First Release.
DOI: 10.5281/zenodo.4469902, DOI: 10.5281/zenodo.4469902.

98. R Core Team, 2018. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

99. Dowle, M., and A. Srinivasan, 2018. data.table: Extension of ‘data.frame‘. https://CRAN.
R-project.org/package=data.table, r package version 1.11.8.

100. Plate, T., and R. Heiberger, 2016. abind: Combine multidimensional arrays. https://
CRAN.R-project.org/package=abind, r package version 1.4-5.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.11.21.469407doi: bioRxiv preprint 

https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1063/1.470117
https://doi.org/10.1021/ct400314y
https://doi.org/10.1002/bip.360320508
https://doi.org/10.1021/ct400341p
https://doi.org/10.1093/bioinformatics/btr168
http://gnuplot.sourceforge.net/
http://gnuplot.sourceforge.net/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.4469902
https://doi.org/10.5281/zenodo.4469902
https://www.R-project.org/
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=abind
https://CRAN.R-project.org/package=abind
https://doi.org/10.1101/2021.11.21.469407
http://creativecommons.org/licenses/by-nc-nd/4.0/


101. Wickham, H., 2017. tidyverse: Easily install and load the ’Tidyverse’. https://CRAN.
R-project.org/package=tidyverse, r package version 1.2.1.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2022. ; https://doi.org/10.1101/2021.11.21.469407doi: bioRxiv preprint 

https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse
https://doi.org/10.1101/2021.11.21.469407
http://creativecommons.org/licenses/by-nc-nd/4.0/

