1	Klebsiella pneumoniae mutants resistant to ceftazidime/avibactam plus
2	aztreonam, imipenem/relebactam, meropenem/vaborbactam and
3	cefepime/taniborbactam.
4	
5	Naphat Satapoomin ^a , Punyawee Dulyayangkul ^a , Matthew B. Avison ^{a#}
6	
7	^a School of Cellular & Molecular Medicine, University of Bristol,
8	Bristol. UK
9	
10	#Address correspondence to: Matthew B. Avison. bimba@bris.ac.uk
11	
12	
13	Running Head: β-lactam/β-lactamase inhibitor resistance

14 ABSTRACT

- 15 Using modified *Klebsiella pneumoniae* clinical isolates, we show that *ramR*
- 16 plus *ompK36* mutation together with production of the V239G variant KPC-3
- 17 confirs resistance to ceftazidime/avibactam plus aztreonam,
- 18 imipenem/relebactam and meropenem/vaborbactam, but not
- 19 cefepime/taniborbactam. This is because the V239G variant does not generate
- 20 collateral β-lactam susceptibility as do many other KPC-3 variants associated
- 21 with ceftazidime/avibactam resistance. Additional mutation of *ompK35* and
- 22 carriage of a plasmid expressing the OXA-48-like carbapenemase OXA-232
- 23 was required to confer cefepime/taniborbactam resistance.

24

26 **TEXT**

27 Aztreonam/avibactam (AZT/AVI) is a β -lactam/ β -lactamase inhibitor combination currently in clinical trials, which has activity against Enterobacterales producing 28 29 metallo-carbapenemases and those with aztreonam-hydrolysing enzymes such as 30 plasmid-mediated AmpCs (pAmpCs), extended-spectrum β-lactamases (ESBLs) and 31 the serine carbapenemase KPC. All these enzymes are increasingly carried in 32 Klebsiella pneumoniae, and yet few studies have been performed to consider 33 mechanisms of AZT/AVI resistance in this species. It was recently reported that among 8787 Enterobacterales isolates, 17 were AZT-AVI resistant. Of these, three 34 Klebsiella spp, were identified. Production of the pAmpC, DHA-1 plus acrA efflux 35 36 pump gene overexpression and mutation of *ompK35* or *ompK36* porins were 37 identified in two resistant isolates. The other produced the ESBL PER-2 and carried 38 an *ompK35* loss of function mutation (1). In one *in vitro* study, selecting AZT/AVI resistance identified mutations in the pAmpC, CMY-16 in a K. pneumoniae strain (2). 39 40 Avibactam is currently in clinical use partnered by ceftazidime (CAZ/AVI) and here. 41 mutations in KPC are known to confer resistance. However, such mutations tend to 42 reduce hydrolytic activity to β -lactams other than ceftazidime, including carbapenems 43 and aztreonam (3-6). Accordingly, it is conceivable that such mutant KPC enzymes might not confer AZT/AVI resistance. 44

Another recently licenced β-lactam/β-lactamase inhibitor combination is
imipenem/relebactam (IMI/REL). Unlike AZT/AVI, this does not have efficacy against
isolates producing metello carbapenemases, but is generally efficacious against
Enterobacterales producing pAmpC, KPC and ESBLs (7). Again, analysis of clinical

isolates shows that IMI/REL resistance in K. pneumoniae is rare, but resistant 49 50 isolates have mutations in or reduced expression of ompK35 and/or ompK36 porin 51 genes and/or increased acrA efflux pump gene expression, alongside ESBL 52 production (8). Similar impacts of porin and efflux pump production on IMI/REL 53 susceptibility have been seen in *in vitro* studies using KPC-producing isolates (9). 54 Given seeming overlaps between AZT/AVI and IMI/REL resistance mechanisms in 55 K. pneumoniae, we set out to dissect the mechanisms contributing to resistance to 56 each in K. pneumoniae using a bank of clinical isolates and targeted recombinants 57 having fully defined genotypes. Table 1 reports MICs (determined using CLSI broth microdilution methodology [10,11]) of these combinations against a collection of 58 59 clinical isolates, which have been previously described (12) and their β -lactam 60 resistance genotypes characterised (13). All isolates, whether producing 61 carbapenemases of classes A (KPC-3), B (NDM-1) or D (OXA-232) were AZT/AVI susceptible, but the NDM-1/OXA-232 producer KP4 was, as expected IMI/REL 62

resistant, as was the OXA-232 producer KP11, though with lower MICs (**Table 1**).

Notably, KP4 and KP11 have *ramR* mutations (12), which leads to over production of

AcrAB-TolC efflux pump, and reduced production of the OmpK35 porin in *K*.

66 pneumoniae (14). Nonetheless, a ramR mutant clinical isolate producing KPC-3,

67 KP30, was susceptible to both AZT/AVI and IMI/REL (Table 1) so we conclude that

68 modulating production of these permeability-associated proteins is not sufficient to

 $_{69}$ give resistance to either β -lactam/ β -lactamase inhibitor combination in a KPC-3

70 positive background.

71	To investigate the role of bla_{KPC-3} mutations known to be associated with CAZ/AVI
72	resistance (15) in AZT/AVI and IMI/REL susceptibility, we took clinical K.
73	pneumoniae isolate KP21, which is a ramR mutant and fully susceptible to AZT and
74	IMI (Table 1). We introduced <i>bla</i> KPC-3 on a plasmid (pKPC-3), either wild-type or
75	following site-directed mutagenesis to create a D178Y or V239G mutations
76	(numbering based on the original KPC-3 sequence nomenclature [16]), previously
77	associated with CAZ/AVI resistance (15). The construction of these plasmids has
78	been reported previously (17). Reduced MICs of AZT and IMI were observed against
79	KP21 carrying the D178Y variant, compared with KP21 carrying wild-type KPC-3
80	(Table 2). This phenomenon of reduced spectrum of β -lactamase activity has been
81	described for other <i>bla</i> _{KPC-3} mutants associated with CAZ/AVI resistance (3-6).
82	However, in a KP21 background, this reduction in activity was seen to a greater
83	extent for the D178Y mutant, than the V239G variant (Table 2). This observation fits
84	with previous reports that K. pneumoniae carrying the V239G mutant blaKPC-3 remain
85	meropenem resistant, while those carrying the D178Y mutant are meropenem
86	susceptible (15, 17). However, AZT/AVI and IMI/REL MICs were not greatly elevated
87	against KP21 carrying pKPC-3 V239G in comparison with KP21 carrying pKPC-3,
88	and all these KP21 recombinants remained AZT/AVI and IMI/REL susceptible (Table
89	2). We conclude, therefore, that mutating bla_{KPC-3} in a way that gives CAZ/AVI
90	resistance is not sufficient to give AZT/AVI or IMI/REL resistance, even in a ramR
91	mutant K. pneumoniae background.

Addition of an OXA-232 (class D carbapenemase) plasmid (pOXA-232, as described
in our previous work [17]) to the KP21 recombinant carrying pKPC-3 V239G
conferred IMI/REL (but not AZT/AVI) resistance, but this was not seen for KP21

95	recombinants carrying pKPC-3 D178Y or pKPC-3 (Table 2). Disruption of the
96	ompK36 porin gene in KP21 (as described previously[17]) conferred AZT/AVI and
97	IMI/REL resistance when the recombinant was carrying pKPC-3 V239G, but not
98	when it carried pKPC-3 D178Y or pKPC-3. Addition of pOXA-232 to the KP21
99	ompK36 recombinants further raised MICs against the pKPC-3 V239G recombinant,
100	and actually conferred IMI/REL resistance in the recombinant carrying pKPC-3, but
101	not pKPC-3 D178Y (Table 2). Using the ramR wild-type isolate KP47 engineered to
102	have an <i>ompK</i> 36 mutation we confirmed that <i>ramR</i> mutation is essential for the
103	AZT/AVI resistance seen in KP21 ompK36 pKPC-3 V239G, even following addition
104	of pOXA-232 (Table 2).
105	We therefore conclude that three steps: mutation of ramR, mutation of ompK36 and
	environe of the MORA content of the second contribution to be contributed for the second

106 carriage of the V239G variant of bla_{KPC-3} is sufficient for K. pneumoniae to become

107 resistant to both AZT/AVI and IMI/REL. However, prior to clinical approval of

108 AZT/AVI, this combination is usually created clinically by adding AZT to CAZ/AVI

109 therapy. A checkerboard assay confirmed that AZT/AVI and IMI/REL resistant

derivative KP21[ramR] ompK36 pKPC-3 V239G is also resistant to CAZ/AVI plus

AZT, with MICs of CAZ (>32 μ g.ml⁻¹) and AZT (16 μ g.ml⁻¹) against this recombinant

112 (Figure 1).

We have previously shown that this combination of *ramR* and *ompK36* mutation
coupled with acquisition of pKPC-3 V239G also gives resistance to another licenced
β-lactam/β-lactamase inhibitor combination meropenem/vaborbactam (17). Finally,
therefore, we considered the MIC of another combination in late stage clinical trials,
cefepime/taniborbactam (18) against this derivative. Notably, in this *ramR ompK36*

118	mutant background pKPC-3 D178Y supported lower cefepime MICs than pKPC-3
119	(Table 3), as seen for the other β -lactams (Table 2) and this was also true for
120	cefepime/taniborbactam (Table 3). But again, the V239G mutant did not suffer from
121	this reducton in cefepime MIC, and the MIC of cefepime/taniborbactam was the
122	same against pKPC-3 and pKPC-3 V239G recombinants of KP21[ramR] ompK36,
123	being 8 μ g.ml ⁻¹ , which is one doubling dilution below the cefepime resistance
124	breakpoint (11) (Table 3). Further addition of pOXA-232 elevated cefepime MICs
125	against the recombinants (Table 3), as expected since OXA enzymes are known to
126	hydrolyse cefepime (19), but the cefepime/taniborbactam MIC remained at \leq 8 µg.ml ⁻
127	¹ indicating successful inhibition of OXA-232. However, additional insertional
128	inactivation of ompK35 porin gene (performed as described previously [17]) pushed
129	the cefepime/taniborbactam MIC against KP21[ramR] ompK36 recombinants
130	carrying pOXA-232 and pKPC-3 V239G (but not pKPC-3 D178Y) to 16 μ g.ml ⁻¹ ,
131	which is classed as cefepime resistant (Table 3).
132	We conclude, therefore, that whilst three events (ramR, ompK36, bla _{KPC-3} V239G)
133	are sufficient to cause AZT/AVI, CAZ/AVI/AZT, IMI/REL and
134	meropenem/vaborbactam resistance in K. pneumoniae, additional events are
135	required to give cefepime/taniborbactam resistance. Furthermore, whilst many
136	bla _{KPC-3} mutations leading to CAZ/AVI resistance do come with the collateral effect
137	of increased susceptibility to carbapenems, late generation cephalosporins and AZT,
138	KPC-3 V239G does not suffer from this effect to the same degree. This explains why
139	KPC-3 V239G, rather than KPC-3 D178Y, which does suffer from collateral
140	increased susceptibility is able to confer resistance to multiple β -lactam/ β -lactamase

141 inhibitor combinations, provided their accumulation is slowed. The implication here is

- that KPC-3 V239G is inhibited to a lesser extent than KPC-3, rather than having a
- 143 more ceftazidime focussed hydrolytic spectrum, as does KPC-3 D178Y (20).
- 144 Accordingly, the emergenece of this bla_{KPC-3} variant should be watched with caution.

145

146 Funding

- 147 This work was funded by grant MR/S004769/1 to M.B.A. from the Antimicrobial
- 148 Resistance Cross Council Initiative supported by the seven United Kingdom research
- councils and the National Institute for Health Research. N.S. received a postgraduate
- scholarship from the University of Bristol.

- 152 Transparency declaration
- 153 The authors declare no conflict of interests.

154 Figure Legend

155

156 Figure 1. Checkerboard assays for CAZ and AZT in the presence of AVI against

157 *K. pneumoniae* KP21[*ramR*] *ompK36* producing KPC-3 V239G.

- 158 The image represents duplicate assays for an 8×8 array of wells in a 96-well plate.
- All wells contained CA-MHB including avibactam (4 µg.ml⁻¹). A serial dilution of
- aztreonam (AZT, x-axis) and ceftazidime (CAZ, y-axis) was created from 32 µg.ml⁻¹
- in each plate as recorded. All wells were inoculated with a suspension of bacteria,
- made as per CLSI microtiter MIC guidelines (10), and the plate was incubated at
- 163 37°C for 20 h. Growth was recorded by measuring OD₆₀₀ and growth above
- background (broth) is recorded as a yellow block; no growth is recorded as a white
- ¹⁶⁵ block. Growth in the red edged block indicates resistance to both AZT and CAZ.

166 **Figure 1**

167

169 **Table 1** MICs of aztreonam and imipenem with or without avibactam or relebactam

against *K. pneumoniae* clinical isolates

171

Isolato (rolovant gonotyno)	MIC (µg.ml ⁻¹)			
isolate (relevant genotype)	AZT	AZT/AVI	IMI	IMI/REL
KP31 (wild-type)	≤0.5	≤0.5	≤0.5	≤0.5
KP21 (<i>ramR</i> TEM-1)	≤0.5	≤0.5	≤0.5	≤0.5
KP11 (<i>ramR</i> OXA-232 CTX- M-15 TEM-1)	>128	≤0.5	4	4
KP30 (<i>ramR ompK35</i> KPC-3 TEM-1)	>128	1	>128	1
KP4 (<i>ramR</i> NDM-1 OXA-232 CTX-M-15 TEM-1)	>128	≤0.5	64	16

172 Shading indicates resistance based on CLSI breakpoints (11)

173 **Table 2** MICs of aztreonam or imipenem with or without avibactam or relebactam

against derivatives of *K. pneumoniae* clinical isolates KP21 and KP47

175

	MIC (µg.ml ⁻¹)			
Isolate	AZT	AZT/AVI	IMI	IMI/REL
KP21[ramR] pUBYT	0.5	≤0.5	0.5	≤0.5
KP21[ramR] pKPC-3	>128	1	64	2
KP21[<i>ramR</i>] pKPC-3 D178Y	1	≤0.5	1	0.5
KP21[<i>ramR</i>] pKPC-3 V239G	>128	2	32	2
KP21[<i>ramR</i>] pUBYT pOXA-232	0.5	≤0.5	2	1
KP21[<i>ramR</i>] pKPC-3 pOXA-232	>128	2	128	2
KP21[<i>ramR</i>] pKPC-3 D178Y pOXA-232	16	2	2	2
KP21[<i>ramR</i>] pKPC-3 V239G pOXA-232	>128	4	32	8
KP21[<i>ramR</i>] ompK36 pUBYT	0.5	1	2	0.5
KP21[ramR] ompK36 pKPC-3	>128	2	128	2
KP21[ramR] ompK36 pKPC-3 D178Y	8	2	1	0.5
KP21[ramR] ompK36 pKPC-3 V239G	>128	16	128	4
KP21[<i>ramR</i>] ompK36 pUBYT pOXA-232	1	1	4	2
KP21[ramR] ompK36 pKPC-3 pOXA-232	>128	2	>128	32
KP21[<i>ramR</i>]	8	4	8	2
KP21[<i>ramR</i>]	>128	16	>128	32
KP47 ompK36 pUBYT	0.5	<0.5	05	0.5
KP47 ompK36 pKPC-3	√128	_0.0 1	√128	8
KP47 ompK36 pKPC-3 D178Y	16	2	1	0.5
KP47 ompK36 pKPC-3 V239G	>128	4	>128	16
KD47 ompK26 pUDVT pOVA 222	05	<0 F	0	4
RF41 UIIIPR30 PUBTI PUAA-232	0.5 \120	⊆.∪∠ 1	۲ ۱۵۵	l o
KP47 ompK36 pKPC-3 PUAA-232	16	ו ס	/	0
KP47 omp K26 p KPC 3 V220C p CVA 222	10	Ζ	4	16
NF41 UIIIphou phru-3 V2386 pUAA-232	>120	4	>120	10

176 Shading indicates resistance based on CLSI breakpoints (11)

177 Table 3 MICs of cefepime/taniborbactam against derivatives of K. pneumoniae

178 clinical isolate KP21

179

	MIC (μg.ml ⁻¹)		
Isolate	Cefepime	Cefepime/ Taniborbactam	
KP21[ramR] ompK36 pUBYT	8	1	
KP21[ramR] ompK36 pKPC-3	>256	8	
KP21[ramR] ompK36 pKPC-3 D178Y	16	2	
KP21[ramR] ompK36 pKPC-3 V239G	>256	8	
KP21[ramR] ompK36 pUBYT pOXA-232	8	1	
KP21[ramR] ompK36 pKPC-3 pOXA-232	>256	8	
KP21[ramR] ompK36 pKPC-3 D178Y pOXA-232	64	1	
KP21[ramR] ompK36 pKPC-3 V239G pOXA-232	>256	8	
KP21[ramR] ompK36 ompK35 pUBYT	8	1	
KP21[ramR] ompK36 ompK35 pKPC-3	>256	8	
KP21[ramR] ompK36 ompK35 pKPC-3 D178Y	16	2	
KP21[ramR] ompK36 ompK35 pKPC-3 V239G	>256	8	
KP21[ramR] ompK36 ompK35 pUBYT pOXA-232	8	2	
KP21[ramR] ompK36 ompK35 pKPC-3 pOXA-232	>256	8	
KP21[ramR] ompK36 ompK35 pKPC-3 D178Y pOXA-232	64	2	
KP21[ramR] ompK36 ompK35 pKPC-3 V239G pOXA-232	>256	16	

181 **References**

- 182 1. Mendes RE, Doyle TB, Streit JM, Arhin FF, Sader HS, Castanheira M. 2021.
- 183 Investigation of mechanisms responsible for decreased susceptibility of
- aztreonam/avibactam activity in clinical isolates of Enterobacterales collected in
- 185 Europe, Asia and Latin America in 2019. J Antimicrob Chemother. doi:
- 186 10.1093/jac/dkab279. Epub ahead of print.
- 187 2. Niu S, Wei J, Zou C, Chavda KD, Lv J, Zhang H, Du H, Tang YW, Pitout JDD,
- Bonomo RA, Kreiswirth BN, Chen L. 2020. *In vitro* selection of
- aztreonam/avibactam resistance in dual-carbapenemase-producing Klebsiella
- 190 pneumoniae. J Antimicrob Chemother. 75:559-565.
- 191 3. Poirel L, Vuillemin X, Juhas M, Masseron A, Bechtel-Grosch U, Tiziani S, Mancini
- 192 S, Nordmann P. 2020. KPC-50 Confers Resistance to Ceftazidime-Avibactam
- 193 Associated with Reduced Carbapenemase Activity. Antimicrob Agents
- 194 Chemother. 64:e00321-20.
- 195 4. Hobson CA, Bonacorsi S, Jacquier H, Choudhury A, Magnan M, Cointe A, Bercot
- 196 B, Tenaillon O, Birgy A. 2020. KPC Beta-Lactamases Are Permissive to
- 197 Insertions and Deletions Conferring Substrate Spectrum Modifications and
- 198 Resistance to Ceftazidime-Avibactam. Antimicrob Agents Chemother.
- 199 64:e01175-20.
- 200 5. Qin J, Feng Y, Lü X, Zong Z. 2021. KPC-12 with a L169M substitution in the Ω
- loop has reduced carbapenemase activity. Eur J Clin Microbiol Infect Dis.
- 40:1761-1766.

- 6. Findlay J, Poirel L, Juhas M, Nordmann P. 2021. KPC-Mediated Resistance to
- 204 Ceftazidime-Avibactam and Collateral Effects in *Klebsiella pneumoniae*.
- Antimicrob Agents Chemother. 2021 65:e0089021.
- 206 7. Bush K, Bradford PA. 2019. Interplay between β -lactamases and new β -
- 207 lactamase inhibitors. Nat Rev Microbiol. 17:295-306.
- 8. Castanheira M, Doyle TB, Deshpande LM, Mendes RE, Sader HS. 2021. Activity
- 209 of ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam
- 210 against carbapenemase-negative carbapenem-resistant Enterobacterales
- isolates from US hospitals. Int J Antimicrob Agents. doi:
- 212 10.1016/j.ijantimicag.2021.106439. Epub ahead of print.
- 213 9. Balabanian G, Rose M, Manning N, Landman D, Quale J. 2018. Effect of Porins
- and blaKPC Expression on Activity of Imipenem with Relebactam in *Klebsiella*
- 215 *pneumoniae*: Can Antibiotic Combinations Overcome Resistance? Microb Drug
- 216 Resist. 24:877-881.
- 10. Clinical and Laboratory Standards Institute. 2015. M07-A10. Methods for dilution

antimicrobial susceptibility tests for bacteria that grow aerobically; approved

standard, 10th ed. Clinical and Laboratory Standards Institute, Wayne, PA.

11. Clinical and Laboratory Standards Institute. 2021. M100-S31. Performance

- standards for antimicrobial susceptibility testing; thirtieth informational
- supplement. An informational supplement for global application developed
- through the Clinical and Laboratory Standards Institute consensus process.
- 224 Clinical and Laboratory Standards Institute, Wayne, PA.
- 12. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Jiménez-
- 226 Castellanos JC, Zhang J, Graham L, Bowker K, Williams OM, MacGowan AP,
- 227 Avison MB. 2018. Prediction of Fluoroquinolone Susceptibility Directly from

228	Whole-Genome Sequence Data by Using Liquid Chromatography-Tandem Mass
229	Spectrometry To Identify Mutant Genotypes. Antimicrob Agents Chemother.
230	62:e01814-17.
231	13. Takebayashi Y, Wan Nur Ismah WAK, Findlay J, Heesom KJ, Zhang J, Williams
232	OM, MacGowan AP, Avison MB. 2017. Prediction of cephalosporin and
233	carbapenem susceptibility in multi-drug resistant Gram-negative bacteria using
234	liquid chromatography-tandem mass spectrometry. BioRxiv
235	https://doi.org/10.1101/138594.
236	14. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J,
237	Schneiders T, Heesom KJ, Avison MB. 2018. Envelope proteome changes driven
238	by RamA overproduction in Klebsiella pneumoniae that enhance acquired β -
239	lactam resistance. J Antimicrob Chemother 73:88-94.
240	15. Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, Pandey R, Doi
241	Y, Kreiswirth BN, Nguyen MH, Clancy CJ. 2017. Emergence of ceftazidime-
242	avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment
243	of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents
244	Chemother 61:e02097-16.
245	16. Woodford N, Tierno PM Jr, Young K, Tysall L, Palepou MF, Ward E, Painter RE,
246	Suber DF, Shungu D, Silver LL, Inglima K, Kornblum J, Livermore DM. 2004.
247	Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing
248	class A β -lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents
249	Chemother 48:4793-4799.
250	17. Dulyayangkul P, Douglas EJA, Lastovka F, Avison MB. 2020. Resistance to
251	Ceftazidime/Avibactam plus Meropenem/Vaborbactam When Both Are Used

252	Together Is Achieved in Four Steps in Metallo-β-Lactamase-Negative Klebsiella
253	pneumoniae. Antimicrob Agents Chemother. 64:e00409-20.
254	18. Hamrick JC, Docquier JD, Uehara T, Myers CL, Six DA, Chatwin CL, John KJ,
255	Vernacchio SF, Cusick SM, Trout REL, Pozzi C, De Luca F, Benvenuti M,
256	Mangani S, Liu B, Jackson RW, Moeck G, Xerri L, Burns CJ, Pevear DC, Daigle
257	DM. 2020. VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine-
258	and Metallo- β -Lactamases, Restores Activity of Cefepime in Enterobacterales
259	and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 64:e01963-19.
260	19. Torres E, López-Cerero L, Rodríguez-Martínez JM, Pascual Á. 2016. Reduced
261	Susceptibility to Cefepime in Clinical Isolates of Enterobacteriaceae Producing
262	OXA-1 Beta-Lactamase. Microb Drug Resist. 22:141-6.
263	20. Compain F, Arthur M. 2017. Impaired Inhibition by Avibactam and Resistance to
264	the Ceftazidime-Avibactam Combination Due to the D179Y Substitution in the
265	KPC-2 β-Lactamase. Antimicrob Agents Chemother. 61:e00451-17.