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Abstract: 21 
In many brain areas, neural populations act as a coordinated network whose state is tied to behavior on a moment-by-22 
moment basis and millisecond timescale. Two-photon (2p) calcium imaging is a powerful tool to probe network-scale 23 
computation, as it can measure the activity of many individual neurons, monitor multiple layers simultaneously, and sample 24 
from identified cell types. However, estimating network states and dynamics from 2p measurements has proven challenging 25 
because of noise, inherent nonlinearities, and limitations on temporal resolution. Here we describe RADICaL, a deep learning 26 
method to overcome these limitations at the population level. RADICaL extends methods that exploit dynamics in spiking 27 
activity for application to deconvolved calcium signals, whose statistics and temporal dynamics are quite distinct from 28 
electrophysiologically-recorded spikes. It incorporates a novel network training strategy that exploits the timing of 2p 29 
sampling to recover network dynamics with high temporal precision. In synthetic tests, RADICaL infers network states more 30 
accurately than previous methods, particularly for high-frequency components. In real 2p recordings from sensorimotor areas 31 
in mice performing a “water grab” task, RADICaL infers network states with close correspondence to single-trial variations 32 
in behavior, and maintains high-quality inference even when neuronal populations are substantially reduced. 33 
 34 
Introduction 35 
In recent years, advances in neural recording technologies have enabled simultaneous monitoring of the activity of large 36 
neural populations1. These technologies are enabling new insights into how neural populations implement the computations 37 
necessary for motor, sensory, and cognitive processes2. However, different recording technologies impose distinct tradeoffs 38 
in the types of questions that may be asked3. Modern electrophysiology enables access to hundreds to thousands of neurons 39 
within and across brain areas with high temporal fidelity. Yet in any given area, electrophysiology is limited to a sparse 40 
sampling of relatively active, unidentified neurons (Fig. 1a). In contrast, two photon (2p) calcium imaging offers the ability to 41 
monitor the activity of vast populations of neurons - rapidly increasing from many tens of thousands to millions4–6 - in 3-D, 42 
often with identified layers and cell types of interest7,8. Thus 2p imaging is a powerful tool for understanding how neural 43 
circuitry gives rise to function. 44 
 45 
A key tradeoff, however, is that the fluorescence transients measured via 2p imaging are a low-passed and nonlinearly-46 
distorted transformation of the underlying spiking activity (Fig. 1b). Further, because neurons are serially scanned by a laser 47 
that traverses the field of view (FOV), a trade-off exists between the size of the FOV (and hence the number of neurons 48 
monitored), the sampling frequency, and the pixel size (and therefore the signal-to-noise with which each neuron is sampled). 49 
These factors together limit the fidelity with which the activity of large neuronal populations can be monitored and extracted 50 
via 2p, and thus limit our ability to link 2p activity to neural computation and behavior on fine timescales. 51 
 52 
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In recent years, a large amount of effort has been dedicated to improving the inference of spike trains from 2p data by 53 
detecting calcium influx events, i.e., time points where single spikes, or multiple spikes in close succession, produce 54 
detectable fluorescence transients9. Ideally the spikes-to-fluorescence transformation would be invertible, such that 55 
analyzing calcium events would be equivalent to analyzing spiking activity3. However, recent benchmarks illustrate that a 56 
variety of algorithms to infer calcium events reach a similar ceiling of performance and make consistent predictions, and all 57 
achieve limited correspondence to ground truth spiking activity obtained with electrophysiology, particularly on fine 58 
timescales10,11. Comparisons of calcium imaging and electrophysiology suggest that the two methods may therefore lead to 59 
divergent scientific findings3,12–14, largely due to limitations when inferring spikes from calcium traces. 60 
 61 
Rather than focusing on the responses of individual neurons, an alternative approach is to characterize patterns of 62 
covariation across a neuronal population to reveal the internal state of the underlying network. These “latent variable models”, 63 
or simply “latent models”, describe each neuron’s activity as a reflection of the network’s state. For example, when applied 64 
to electrophysiological data, latent models assume that an individual neuron’s spiking is a noisy observation of a latent “firing 65 
rate”, which fluctuates in a coordinated way with the firing rates of other neurons in the population. Despite their abstract 66 
nature, the network states inferred by latent models can reveal key insights into the computations being performed by the 67 
brain areas of interest2. Inferred network states can also enhance our ability to relate neural activity to behavior. For example, 68 
one state-of-the-art deep learning method to estimate network states from electrophysiological spiking data is Latent Factor 69 
Analysis via Dynamical Systems (LFADS)15,16. In applications to data from motor, sensory, and cognitive regions, LFADS 70 
reveals rules that govern how network states progress over time and that are consistent across behavioral conditions, while 71 
also revealing tight correspondences with single-trial behavior on a millisecond timescale16,17. 72 
 73 
Given the success of latent models in uncovering network states from electrophysiological data, here we test whether such 74 
models can achieve accurate inference of network states from activity monitored through 2p calcium imaging. We first begin 75 
with LFADS, and evaluate network state inference using simulated 2p data in which activity reflects known, nonlinear 76 
dynamical systems, and with real 2p data from mice performing a water reaching task. LFADS uncovers network state with 77 
substantially higher accuracy then standard approaches (e.g., deconvolution plus Gaussian smoothing). We then develop 78 
and test a new approach, the Recurrent Autoencoder for Discovering Imaged Calcium Latents (RADICaL), to further improve 79 
inference over LFADS. RADICaL extends LFADS with innovations tailored specifically for 2p data. In particular, we modify 80 
the network architecture to better account for the statistics of deconvolved calcium signals, and develop a novel network 81 
training strategy that exploits the staggered timing of 2p sampling of neuronal populations to achieve subframe temporal 82 
resolution. Our new approach substantially improves inference of network states from 2p data, shown in synthetic data 83 
through accurate recovery of high-frequency features (up to 20 Hz), and in real data through improved prediction of neuronal 84 
activity, as well as prediction of single-trial variability in hand kinematics during rapid reaches (lasting 200-300 ms). 85 
Ultimately, RADICaL provides an avenue to tie precise, population-level descriptions of neural computation with the 86 
anatomical and circuit details revealed via calcium imaging. 87 
 88 

Results 89 
Leveraging population dynamics to infer network states from 2p imaging data 90 
Dynamical systems models such as LFADS rely on two key principles to infer network states from neural population activity. 91 
First, simultaneously recorded neurons exhibit coordinated spatial patterns of activation that reflect the state of the 92 
network18,19. Due to this coordination, network states might be reliably estimated even if the measurement of individual 93 
neurons’ activity is unreliable. Second, these coordinated spatial patterns evolve over time based on consistent rules 94 
(dynamics)2,20. Thus, while it may be challenging to accurately estimate the network’s state based on activity at a single time 95 
point, knowledge of the network’s dynamics provides further information to help constrain network state estimates using data 96 
from multiple time points.  97 
 98 
To apply these principles to improve inference from 2p data, we extended LFADS to produce RADICaL (Fig. 1c). Both 99 
LFADS and RADICaL model neural population dynamics using recurrent neural networks (RNNs) in a sequential 100 
autoencoder configuration (details in Methods, and in previous work15,16). This configuration is built on the assumption that 101 
the network states underlying neural population activity can be approximated by an input-driven dynamical system, and that 102 
observed activity is a noisy observation of the state of the dynamical system. The dynamical system itself is modeled by an 103 
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RNN (the ‘generator’). For any given trial, the time-varying network states can be captured by three pieces of information: 104 
the initial state of the dynamical system (trial-specific), the dynamical rules that govern state evolution (shared across trials), 105 
and any external inputs that may affect the dynamics (trial-specific). The states of the generator are linearly mapped onto a 106 
latent space to produce a ‘factors’ representation, which is then transformed to produce the time-varying output for each 107 
neuron (detailed below). The model has a variety of hyperparameters that control training and prevent overfitting, whose 108 
optimal settings are not known a priori. To ensure that these hyperparameters were optimized properly for each dataset, we 109 
built RADICaL on top of a powerful, large-scale hyperparameter optimization framework we recently developed known as 110 
AutoLFADS17,21. 111 
 112 
Novel features of RADICaL 113 
RADICaL incorporates two major innovations over LFADS and AutoLFADS. First, we modified RADICaL’s observation model 114 
to better account for the statistics of deconvolved events. In LFADS, discrete spike count data are modeled as samples from 115 
an underlying time-varying Poisson process for each neuron. However, deconvolving 2p calcium signals results in 116 
continuous-valued, time-varying events, with limited correspondence to the actual spike times10. In RADICaL, deconvolved 117 
events are therefore modeled as samples from a time-varying zero-inflated gamma (ZIG) distribution, which has been shown 118 
to be more appropriate for calcium data22, and whose parameters are taken as the output of the generator RNN (Fig. 1c; 119 
details in Methods). We then define the network state at any given time point as a vector containing the inferred (i.e., de-120 
noised) event rates of all neurons, where the de-noised event rate is taken as the mean of each neuron’s inferred ZIG 121 
distribution at each time point. The de-noised event rates are latent variables that are tied to the underlying network state at 122 
each time point. We note that in RADICaL, the generator RNN must produce multiple parameters that control the shape of 123 
the ZIG distributions, which may result in activity at the level of the generator and factors that does not directly correspond 124 
to the biological network’s activity. To avoid this complication, rather than using the factors as an estimate of the biological 125 
network’s state, we used the de-noised event rates. Doing so for both RADICaL and AutoLFADS allowed us to compare 126 
methods as directly as possible. 127 
 128 
Second, we developed a novel neural network training strategy, selective backpropagation through time (SBTT), that 129 
leverages the precise sampling times of individual neurons to enable recovery of high-frequency network dynamics. Since 130 
standard multiphoton acquisition systems rely on point-by-point raster scanning of a laser beam to acquire frames, it is 131 
possible to increase temporal precision of individual neurons’ sample times beyond the timing of individual frames, by 132 
exploiting the relationship between scanning position and accumulated scanning time within the frame (Fig. 1d). To leverage 133 
this information to improve inference of high-frequency network dynamics on single trials, we reframe the underlying 134 
interpolation problem as a missing data problem: we treat low-sampling rate data from each neuron as high-sampling rate 135 
data at the level of the population. In this framing, each neuron is effectively sampled sparsely in time, i.e., the majority of 136 
time points for each neuron do not contain valid data (Fig. 1e). Such sparsely sampled data creates a challenge when 137 
training the underlying neural network: briefly, neural networks are trained by adjusting their parameters (weights), and 138 
performing this adjustment requires evaluating the gradient of a cost function with respect to weights. SBTT allows us to 139 
compute this gradient using only the valid data, and ignore the many missing samples (Fig. 1f; see Methods). Because this 140 
feature only affects how we compute the gradient and update the weights, the network still infers event rates for every neuron 141 
at every time point, regardless of whether samples exist at that time point or not. This allows the trained network to accept 142 
sparsely-sampled observations as input, and produce high-temporal resolution event rate estimates at its output. 143 
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 144 
Figure 1 | Improving inference of network states from 2p imaging. (a) Calcium imaging offers the ability to monitor the activity of 145 
hundreds or thousands of neurons, in 3-D, often with cell types of interest and layers identified. In contrast, electrophysiology sparsely 146 
samples the neurons in the vicinity of a recording electrode, and may be biased toward neurons with high firing rates. (b) 2p fluorescence 147 
transients are a low-passed and lossy transformation of the underlying spiking activity. Spike inference methods may provide a reasonable 148 
estimate of neurons’ activity on coarse timescales (left), but yield poor estimates on fine timescales (right; data from ref. 23). (c) RADICaL 149 
uses a recurrent neural network-based generative model to infer network states - i.e., de-noised event rates for the population of neurons 150 
- and assumes a time-varying ZIG observation model. (d) Top: in 2p imaging, the laser’s serial scanning results in different neurons being 151 
sampled at different times within the frame. Bottom: individual neurons’ sampling times are known with sub-frame precision (colors) but 152 
are typically analyzed with whole-frame precision (grey). (e) Sub-frame binning precisely captures individual neurons’ sampling times but 153 
results in neuron-time points without data. The numbers in the table indicate the deconvolved event in each frame. (f) SBTT is a novel 154 
network training method for sparsely sampled data that prevents unsampled time-neuron data points from affecting the gradient 155 
computation. 156 
 157 
RADICaL uncovers high-frequency features from simulated data 158 
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We first tested RADICaL using simulated 2p data, which provides a valuable tool for quantifying performance because the 159 
underlying network states are known and are parameterizable. We hypothesized that the new features of RADICaL would 160 
allow it to infer high-frequency features with greater accuracy than standard approaches, such as Gaussian-smoothing the 161 
deconvolved events (“s-deconv”) or the simulated fluorescence traces themselves (“s-sim-fluor”), or state-of-the-art tools for 162 
electrophysiology analysis, such as AutoLFADS. We generated synthetic spike trains by simulating a population of neurons 163 
whose firing rates were linked to the state of a Lorenz system15,24 (detailed in Methods and Supp. Fig. 1a). We ran the 164 
Lorenz system at various speeds, allowing us to investigate the effects of temporal frequency on the quality of network state 165 
recovery achieved by different methods. In the 3-dimensional Lorenz system, the Z dimension contains the highest-166 
frequency content (Supp. Fig. 1b). Here we denote the frequency of each Lorenz simulation by the peak frequency of the 167 
power spectrum of its Z dimension (Supp. Fig. 1c). 168 
 169 
We used the synthetic spike trains to generate realistic noisy fluorescence signals consistent with GCAMP6f (detailed in 170 
Methods and Supp. Fig. 2). To recreate the variability in sampling times due to 2p laser scanning, fluorescence traces were 171 
simulated at 100 Hz and then sub-sampled at 33.3 Hz, with offsets in each neuron’s sampling times consistent with spatial 172 
distributions across a simulated FOV. We then deconvolved the generated fluorescence signals to extract events 25,26. 173 
Because RADICaL uses SBTT, it could be applied directly to the deconvolved events with offset sampling times. In contrast, 174 
for both AutoLFADS and s-deconv, deconvolved events for all neurons were treated as all having the same sampling times 175 
(i.e., consistent with the frame times), as is standard in 2p imaging (detailed in Methods). 176 
 177 
Despite the distortion introduced by the fluorescence simulation and deconvolution process, RADICaL was able to infer 178 
event rates that closely resembled the true underlying rates (Fig. 2a). To assess whether each method accurately inferred 179 
the time-varying state of the Lorenz system, we mapped the representations from the different approaches - i.e., the event 180 
rates inferred by RADICaL or AutoLFADS, the smoothed deconvolved events, and the smoothed simulated fluorescence 181 
traces - onto the true underlying Lorenz states using ridge regression. We then quantified performance using the coefficient 182 
of determination (R2), which quantifies the fraction of the variance of the true latent variables captured by the estimates. 183 
Figure 2b shows the Lorenz Z dimension for example trials from three Lorenz speeds, as well as the recovered values for 184 
three of the methods. RADICaL inferred latent states with high fidelity (R2>0.8) up to 15 Hz, and significantly outperformed 185 
other methods across a range of frequencies (Fig. 2c; performance for the X and Y dimensions is shown in Supp. Fig. 3; 186 
p<0.05 for all frequencies and dimensions, paired, one-sided t-Test, detailed in Methods). 187 

 188 
Figure 2 | Application of RADICaL to synthetic data. (a) Example firing rates and spiking activity from a Lorenz system simulated at 7 189 
Hz, deconvolved calcium events (inputs to RADICaL), and the corresponding rates and factors inferred by RADICaL. Simulation 190 
parameters were tuned so that the performance in inferring spikes using OASIS matched previous benchmarks10 (see Methods). (b) True 191 
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and inferred Lorenz latent states (Z dimension) for a single example trial from Lorenz systems simulated at three different frequencies. 192 
Black: true. Colored: inferred. (c) Performance in estimating the Lorenz Z dimension as a function of simulation frequency was quantified 193 
by variance explained (R2) for all 4 methods. 194 
 195 
These synthetic results provide an important proof-of-principle that RADICaL can infer high-frequency features of the network 196 
activity underlying 2p signals, which is readily validated when ground truth is known. However, it is important to acknowledge 197 
limitations of the simulation process that might constrain the generality of these results when applying to real data. In 198 
particular, the parameter space is very large, especially considering the variety of calcium indicators, protein expression 199 
patterns, imaging settings, cell types and firing rate patterns. An exhaustive search of this parameter space is infeasible, 200 
and we chose parameters so that the resulting signal-to-noise regime produced similar correlations between real and inferred 201 
spike trains as those typically observed10 (see Methods). However, it is difficult to know whether the results from any 202 
particular choice of simulation parameters (or a variety of choices) can be extrapolated to real experimental conditions. Thus, 203 
we next benchmarked performance on real data to demonstrate RADICaL’s utility in the real world. 204 
 205 
RADICaL improves network state inference in data from a mouse water grab task 206 
We next tested RADICaL on 2p recordings from mice performing a forelimb water grab task (Fig. 3a, top). We analyzed data 207 
from four experiments: two mice, and two sessions from each mouse in which different brain areas were imaged (M1, S1). 208 
Our task is a variant of the water-reaching task of Galiñanes & Huber27. In each trial, the mouse was cued by the pitch of an 209 
auditory tone to reach to a left or right spout and retrieve a droplet of water with its right forepaw (Fig. 3a, bottom; see 210 
Methods). The forepaw position was tracked at 150 frames per second with DeepLabCut6 for 420-560 trials per experiment. 211 
To test whether each method could reveal structure in the neural activity at finer resolution than left vs. right reaches, we 212 
divided trials from each condition into subgroups based on forepaw height during the reach (Fig. 3a, top right; see Methods). 213 
Two-photon calcium imaging from GCaMP6f transgenic mice was performed at 31 Hz, with 430-510 neurons within the FOV 214 
in each experiment (Fig. 3b). 215 
 216 
With real datasets, a key challenge when benchmarking latent variable inference is the lack of ground truth data for 217 
comparison. A useful first-order assessment is whether the event rates inferred for individual trials match the empirical peri-218 
stimulus time histograms (PSTHs), i.e., the rates computed by averaging noisy single-trial data across trials with similar 219 
behavioral characteristics16,17. While this approach obscures meaningful across-trial variability, it provides a ‘de-noised’ 220 
estimate that is useful for coarse performance quantification and comparisons. To compute empirical PSTHs, we averaged 221 
the smoothed deconvolved events (s-deconv rates) across trials within each subgroup.  222 
 223 
We found that RADICaL-inferred event rates recapitulated features of individual neurons’ activity that were apparent in the 224 
empirical PSTHs, both when averaging across trials, but also on individual trials (Fig. 3c). Importantly, RADICaL is an 225 
unsupervised method, meaning that it was not provided any behavioral information, such as whether the mouse reached to 226 
the left or right on a given trial, or which subgroup a trial fell into. Yet the single-trial event rates inferred by RADICaL showed 227 
clear separation not only between left and right reach conditions, but also between subgroups of trials within each condition. 228 
This separation was not clear with the single-trial s-deconv rates. We quantified the correspondence between the single-trial 229 
inferred event rates and the empirical PSTHs via Pearson’s correlation coefficient (r; see Methods). RADICaL single-trial 230 
event rates showed substantially higher correlation with the empirical PSTHs than s-deconv rates (Fig. 3d) or those inferred 231 
by AutoLFADS (Supp. Fig. 4). Importantly, these improvements were not limited to a handful of neurons, but instead were 232 
broadly distributed across the population. 233 
 234 
We next tested whether the population activity inferred by RADICaL also showed meaningful structure on individual trials. 235 
We produced low-dimensional visualizations of the population’s activity by applying principal component analysis (PCA) to 236 
the RADICaL-inferred or s-deconv event rates after log-transforming and trial-averaging, and then projected the single-trial 237 
event rates (also log-transformed) into the subspace formed by the top three PCs. The low-D trajectories computed from the 238 
RADICaL-inferred rates showed consistent, clear single-trial structure that corresponded to behavioral conditions and 239 
subgroups for all four experiments (Fig. 3e, top row; Supp. Fig. 5, top row), despite RADICaL receiving no direct information 240 
about which trials belonged to which condition. In comparison, low-D trajectories computed from the s-deconv rates showed 241 
noisy single-trial structure with little correspondence to behavioral subgroups (Fig. 3e, bottom row; Supp. Fig. 5, bottom 242 
row). 243 
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 244 
Figure 3 | Application of RADICaL to real two-photon calcium imaging of a water grab task. (a) Task. Top left: Mouse performing 245 
the water grab task. Pink trace shows paw centroid trajectory. Bottom: Event sequence/task timing. RT: reaction time. ITI: inter-trial 246 
interval. Top right: Individual reaches colored by subgroup identity. (b) Top: an example field of view (FOV), identified neurons colored 247 
randomly. Bottom left: dF/F from a single trial for 5 example neurons. Bottom right: Allen Atlas M1/S1 brain regions imaged. (c) 248 
Comparison of trial-averaged (left) and single-trial (right) rates for 8 individual neurons for two different brain areas (left vs. right) and two 249 
different mice (top half vs. bottom half) for s-deconv and RADICaL (alternating rows). Left: each trace represents a different reach 250 
subgroup (4 in total) with error bars indicating s.e.m. Right: each trace represents an individual trial (same color scheme as trial-averaged 251 
panels). Odd rows: s-deconv event rates (Gaussian kernel: 40 ms s.d.). Even rows: RADICaL-inferred event rates. Horizontal scale bar 252 
represents 200 ms. Vertical scale bar denotes event rate (a.u.). Vertical dashed line denotes lift onset time. (d) Performance of RADICaL 253 
and s-deconv in capturing the empirical PSTHs on single trials. Correlation coefficient r was computed between the inferred single-trial 254 
event rates and empirical PSTHs. Each point represents an individual neuron. (e) Single-trial neural trajectories derived from RADICaL 255 
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rates (top row) and s-deconv rates (bottom row) for two experiments (left: Mouse2 M1; right: Mouse1 S1), colored by subgroups. Each 256 
trajectory is an individual trial, plotting from 200 ms before to 400 ms after lift onset. Lift onset times are indicated by the dots in the same 257 
colors with the trajectories. Grey dots indicate 200 ms prior to lift onset time. Neural trajectories from additional experiments are shown 258 
in Supp. Fig. 5. 259 
 260 
RADICaL captures dynamics that improve hand kinematics prediction 261 
We next tested whether the RADICaL-inferred event rates were closely linked to behavior by decoding forepaw positions 262 
and velocities from the inferred event rates using cross-validated ridge regression (Fig. 4a). Decoding using RADICaL-263 
inferred rates significantly outperformed results from s-deconv rates, or from the AutoLFADS-inferred rates (Fig. 4b; position: 264 
average R2 of 0.90 across all experiments, versus 0.72 and 0.83 for s-deconv and AutoLFADS, respectively; velocity: 265 
average R2 of 0.59 across the mice/areas, versus 0.32 and 0.45 for s-deconv and AutoLFADS, respectively; p<0.05 for 266 
position and velocity for all individual experiments, paired, one-sided t-test, detailed in Methods). Importantly, the 267 
performance advantage was not achieved by simply predicting the mean event rates for all trials of a given condition: 268 
RADICaL also outperformed AutoLFADS and s-deconv in decoding the kinematic residuals (i.e., the single-trial deviations 269 
from the mean; Supp. Fig. 7). To assess how these decoding improvements were distributed as a function of frequency, we 270 
computed the coherence between the true and decoded positions and velocities for each method (Fig. 4c). RADICaL 271 
predictions showed higher coherence with behavior than predictions from s-deconv or AutoLFADS across a wide range of 272 
frequencies, and the difference in coherence between RADICaL and AutoLFADS widened (especially for position) at higher 273 
frequencies (5-15 Hz). Notably, decoding was improved due to both innovations in RADICaL (i.e., modeling events with a 274 
ZIG distribution, and SBTT), and the combination of the two innovations significantly improved performance over each 275 
innovation alone (Supp. Fig. 8). 276 

 277 
Figure 4 | RADICaL improves prediction of behavior. (a) Decoding hand kinematics using ridge regression. Each column shows an 278 
example mouse/area. Row 1: true hand positions trajectories, colored by subgroups. Rows 2–4: predicted hand positions using ridge 279 
regression applied to the event rates inferred by RADICaL or AutoLFADS, or s-deconv rates (Gaussian kernel: 40 ms s.d.). Hand positions 280 
from additional experiments are shown in Supp. Fig. 6. (b) Decoding accuracy was quantified by measuring variance explained (R2) 281 
between the true and decoded position (top) and velocity (bottom) across all trials across each of the 4 datasets (2 mice for M1, denoted 282 
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by squares, and 2 mice for S1, denoted by triangles), for all 3 techniques. (c) Quality of reconstructing the kinematics across frequencies 283 
was quantified by measuring coherence between the true and decoded position (top) and velocity (bottom) for individual trials across all 284 
4 datasets, for all 3 techniques. 285 
 286 
RADICaL retains high decoding performance when reducing the number of neurons used in the model 287 
In previous demonstrations on electrophysiological spiking data, LFADS maintained accurate performance in reconstructing 288 
single-trial neural activity and decoding even when reducing the number of sampled neurons16. Enabling the same 289 
capabilities for 2p imaging could help mitigate the effects of the tradeoffs in sampling frequency or signal-to-noise that occur 290 
when laser scanning over large FOVs. To evaluate whether this holds for RaDICAL, we performed a neuron-downsampling 291 
experiment where we gradually reduced the number of neurons used in training RADICaL or AutoLFADS (Fig. 5a). RADICaL 292 
retained relatively high decoding performance as the population size was reduced (Fig. 5b; data from Mouse2 M1). Decoding 293 
performance declined gradually, with a steeper slope for velocity. Notably, however, performance when only 121/439 294 
neurons were used for training RADICaL was similar to that of AutoLFADS - and higher than for s-deconv - even when those 295 
methods were applied to the full population of 439 neurons. Note that this analysis represents a lower bound on performance: 296 
for this proof-of-concept, we simply artificially excluded from our analysis data collected as the laser scanned outside the 297 
restricted FOVs, which resulted in substantial time periods that lacked data entirely (e.g., 2/3 of the total sampling time for 298 
the smallest FOV considered). In a real application, those time periods that were artificially excluded could instead be used 299 
to monitor other brain areas or layers, or to monitor the same neurons with higher sampling rates, either of which might be 300 
expected to provide additional information. These results provide an avenue to retain information by scanning smaller areas 301 
when capturing multiple layers or regions, opening opportunities to study interesting questions such as communication 302 
between layers or interactions between regions (see Discussion). 303 

 304 
Figure 5 | RADICaL retains high decoding performance in a neuron downsampling experiment. (a) The area selected to include 305 
was gradually shrunk to the center of the FOV to reduce the number of neurons included in training RADICaL or AutoLFADS. (b) Decoding 306 
performance measured using variance explained (R2) as a function of the number of neurons used in each technique (top: Position; 307 
bottom: Velocity). Data from Mouse2 M1. 308 
 309 
Discussion 310 
2p imaging is a widely-used method for interrogating neural circuits, with the potential to monitor vast volumes of neurons 311 
and provide new circuit insights that elude electrophysiology. To date, however, it has proven challenging to precisely infer 312 
network states from imaging data, due in large part to the inherent noise, indicator dynamics, and low temporal resolution 313 
associated with 2p imaging. RADICaL bridges this gap. RADICaL is tailored specifically for 2p imaging, with a noise 314 
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emissions model that is appropriate for deconvolved calcium events, and a novel network training strategy (SBTT) that takes 315 
advantage of the specifics of 2p laser scanning to achieve substantially higher temporal resolution. Through synthetic tests, 316 
we demonstrated that RADICaL accurately infers network states and substantially outperforms alternate approaches in 317 
uncovering high-frequency fluctuations. Then, through careful validation on real 2p data, we demonstrated that RADICaL 318 
infers network states that are closely linked to single-trial behavioral variability, even on fast timescales. Finally, we 319 
demonstrated that RADICaL maintains high-quality inference of network states even as the neural population size is reduced 320 
substantially.  321 
 322 
The ability to de-noise neural activity on single trials is especially valuable. First, de-noising improves the ability to decode 323 
behavioral information from neural activity, allowing subtle relationships between neural activity and behavior to be revealed 324 
(Fig. 4). Second, de-noising may enable the field to move away from experimental paradigms that evoke the stereotyped 325 
behaviors that are needed to facilitate trial-averaging of neural data. This support for reduced stereotypy could allow greater 326 
insight in experiments with animals such as mouse and marmoset, where powerful experimental tools are available but 327 
highly repeatable behaviors are challenging to achieve. A move away from trial-averaging could also enable better 328 
interpretability of more complex or naturalistic behaviors17,28–31. Third, this de-noising capability will enable greater insight 329 
into processes that fundamentally differ from trial to trial, such as learning from errors32,33, variation in internal states such 330 
as arousal34,35, or paradigms in which tuning to uninstructed movements contaminates measurement of the task-related 331 
behavioral variables of interest36. Finally, this de-noising also reverses some of the distortions of neural activity introduced 332 
by calcium imaging, enabling greatly improved inference of neural dynamics (Fig. 2) when compared with known failures 333 
using imaging data3. 334 
 335 
In recent years, a variety of computational methods have been developed to analyze 2p imaging data9. 2p preprocessing 336 
pipelines5,26 normally include methods that correct for motion, localize and demix neurons’ fluorescence signals, and infer 337 
event rates from fluorescence traces. Several studies have applied deep learning in attempts to improve signal quality37–39, 338 
while a few others have focused on uncovering population-level structure40–45 or locally linear dynamics underlying population 339 
activity, in particular via switching linear dynamical systems-based methods46,47. Here we build RADICaL on the AutoLFADS 340 
architecture, which leverages deep learning and large-scale distributed training. This enables the integration of more 341 
accurate observation models (ZIG) and powerful optimization strategies (SBTT), while potentially inheriting the high 342 
performance and generalized applicability previously demonstrated for AutoLFADS17. 343 
 344 
Many behaviors are performed on fast timescales (e.g., saccades, reaches, movement correction, etc), and thus previous 345 
work has made steps in overcoming the limits of modest 2p frame rates in attempts to infer the fast changes in neural firing 346 
rates that relate to these fast behaviors. Efforts to chip away at this barrier have relied on regularities imposed by repeated 347 
stimuli or highly stereotyped behavior48,49, or jittered inferred events on sub-frame timescales to minimize the reconstruction 348 
error of the associated fluorescence37. RADICaL takes a different approach. In particular, it links subframe timing to neural 349 
population dynamics, representing a more powerful and generalizable approach that does not require stereotypy in the 350 
behavior or neural response and which could therefore be applied to datasets with more naturalistic or flexible behaviors. 351 
 352 
Though we made an effort to test with realistic simulations and on real 2p data from both M1 and S1, it remains untested 353 
how RADICaL would generalize to other experimental settings. Noise level can span a wide range in real experiments, 354 
depending on the optics, calcium indicators, expression levels, and other factors. Behaviors can vary in complexity and 355 
population dynamics can be high-dimensional. Though it is not guaranteed that RADICaL would work in all possible settings, 356 
it provides a solution to the spatiotemporal tradeoff that is inherent to any scanning technique, which enables retaining 357 
temporal resolution while increasing the spatial area of sampling. 358 
 359 
While RADICaL operates on deconvolved calcium events, future work to eliminate this deconvolution step may allow further 360 
improvements in temporal resolution. Because deconvolution outputs an event rate for each frame - which is a summary of 361 
the cumulative effect of the spikes within the frame - it necessarily discards some high-frequency features in the data. Instead 362 
it may be possible to build an end-to-end model that integrates the generative rates-to-fluorescence process and operates 363 
on the fluorescence traces directly. Complementary work has begun exploring in this direction50, but our unique innovation 364 
of selective backprop through time presents an opportunity to greatly improve the quality of recovering high-frequency 365 
features when the sampling rate is limited. More broadly, carefully-designed benchmarking efforts for network state inference 366 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.11.21.469441doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.21.469441


 

 

from 2p data could provide an invaluable resource for systematically comparing methods and building on advances from 367 
various different developers. 368 
 369 
The ability to achieve high-quality network state inference despite limited neuronal population size opens the door to testing 370 
new choices about how to scan during the experiments themselves, e.g., by scanning smaller and more disparate FOVs 371 
(across layers7,8 or brain areas51,52) to understand how spatially-segregated populations interact, while potentially preserving 372 
the ability to infer network states from each FOV. When the number of neurons within each FOV is limited, one advantage 373 
that RADICaL inherits from LFADS is that it allows for multi-session stitching16, which could provide an avenue to combine 374 
data from different sessions to improve inference of the underlying dynamics for each FOV.  375 
 376 
In sum, RADICaL provides a framework to push back the limits of the space-time tradeoff in 2p calcium imaging, enabling 377 
accurate inference of population dynamics in vast populations and with identified neurons. Future work will explore how best 378 
to exploit these capabilities for different experimental paradigms, and to link the power of dynamics with the anatomical detail 379 
revealed with calcium imaging. 380 
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 532 
Methods 533 
AutoLFADS and RADICaL architecture and training 534 
The core model that AutoLFADS and RADICaL build on is LFADS. A detailed overview of the LFADS model is given in refs. 535 
15,16. Briefly, LFADS is a sequential application of a variational auto-encoder (VAE). A pair of bidirectional RNNs (the initial 536 
condition and controller input encoders) operate on the spike sequence and produce initial conditions for the generator RNN 537 
and time-varying inputs for the controller RNN. All RNNs were implemented using gated recurrent unit (GRU) cells. At each 538 
time step, the generator state evolves with input from the controller and the controller receives delayed feedback from the 539 
generator. The generator states are linearly mapped to factors, which are mapped to the firing rate of the neurons using a 540 
linear mapping followed by an exponential nonlinearity. The optimization objective is to maximize a lower bound on the 541 
likelihood of the observed spiking activity given the rates produced by the generator network, and includes KL and L2 542 
regularization penalties. During training, network weights are optimized using stochastic gradient descent and 543 
backpropagation through time. 544 
 545 
Identical network sizes were used for both AutoLFADS and RADICaL runs and for both simulation and real 2P data. The 546 
dimension of initial condition encoder, controller input encoder, and controller RNNs was 64. The dimension of the generator 547 
RNN was 100. The generator was provided with 64-dimensional initial conditions and 2-dimensional controller outputs (i.e., 548 
inferred inputs u(t)) and linearly mapped to 100-dimensional factors. The initial condition prior distribution was Gaussian with 549 
a trainable mean that was initialized to 0 and a variance that was fixed to 0.1. The minimum allowable variance of the initial 550 
condition posterior distribution was set to 1e-4. The controller output prior was autoregressive with a trainable autocorrelation 551 
tau and noise variance, initialized to 10 and 0.1, respectively. The Adam optimizer (epsilon: 1e-8; beta1: 0.9; beta2: 0.99; 552 
initial learning rate: 1e-3, Table 1) was used to control weight updates.The loss was scaled by a factor of 1e4 prior to 553 
computing the gradients for numerical stability. To prevent potential pathological training, the GRU cell hidden states were 554 
clipped at 5 and the global gradient norm was clipped at 300. 555 
 556 
AutoLFADS is a recent implementation of the population based training (PBT) approach53 on LFADS to perform automatic, 557 
large-scale hyperparameter (HP) search. A detailed overview of AutoLFADS is in refs. 17,21. Briefly, PBT distributes training 558 
across dozens of models in parallel, and uses evolutionary algorithms to tune HPs over many generations. At the end of 559 
each generation, a selection process was performed to choose higher performing models and replace the poor models with 560 
the higher performing models. The HPs of the higher performing models were perturbed before the next generation to 561 
increase the HP search space. After many generations (~30-150), the PBT process converges upon a high performing model 562 
with optimized HPs.  563 
 564 
Twenty LFADS models were trained in parallel for 50 epochs per generation for both AutoLFADS and RADICaL runs and 565 
for both simulation and real 2P data. KL and L2 regularization penalties were linearly ramped for the first 80 epochs of 566 
training during the first generation. Training was stopped when there was no improvement in performance after 25 567 
generations. The HPs optimized by PBT were the model’s learning rate and six regularization HPs: scaling weights for the 568 
L2 penalties on the generator, controller, and initial condition encoder RNNs, scaling weights for the KL penalties on the 569 
initial conditions and controller outputs, and two dropout probabilities (“keep ratio” for coordinated dropout21; and RNN 570 
network dropout probability). The HP search ranges are detailed in Table 1. The magnitudes of the HP perturbation were 571 
controlled by weights and specified for different HPs (a weight of 0.3 results in perturbation factors between 0.7 and 1.3; 572 
Table 1). The learning rate and dropout probabilities were restricted to their specified search ranges and were sampled from 573 
uniform distributions. The KL and L2 HPs were sampled from log-uniform distributions and could be perturbed outside of the 574 
initial search ranges. Identical hyperparameter settings were used for both RADICaL and AutoLFADS and for both synthetic 575 
datasets and real 2P datasets. 576 
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 577 
RADICaL is an adaptation of AutoLFADS for 2P calcium imaging. RADICaL operates on sequences of deconvolved calcium 578 
events x(t). x(t) are modeled as a noisy observation of an underlying time-varying Zero-Inflated Gamma (ZIG) distribution22: 579 
 580 

 581 
 582 
where xn(t) is the distribution of observed deconvolved events, an(t), kn(t), and locn are the scale, shape, and location 583 
parameters, respectively, of the gamma distribution, and qn(t) denotes the probability of non-zeros, for neuron n at time t. 584 
locn was fixed as the minimum nonzero deconvolved event (smin). In the original AutoLFADS model, factors were mapped to 585 
a single time-varying parameter for each neuron (the Poisson firing rate) via a linear transformation followed by an 586 
exponential nonlinearity. RADICaL instead infers the three time-varying parameters for each neuron, an(t), kn(t), and qn(t), 587 
by linearly transforming the factors followed by a trainable scaled sigmoid nonlinearity (sign). sign is a positive parameter that 588 
scales the outputs of the sigmoid to be in a range between 0 and sign, and is optimized alongside network weights. An L2 589 
penalty is applied between sign and a PBT-searchable prior (Table 1) to prevent extreme values. The training objective is to 590 
minimize the negative log-likelihood of the deconvolved events given the inferred parameters: 591 
 592 

 593 
 594 
The event rate for neuron n at time t was estimated by taking the mean of the inferred ZIG distribution:  595 
 596 

 597 
 598 
RADICaL uses an SBTT training strategy to achieve subframe modeling resolution. RADICaL operates on binned 599 
deconvolved calcium events, with bin size smaller than the frame timebase of imaging. Bins where the neurons were sampled 600 
were filled with the corresponding event rates, while bins where the neurons were not sampled were filled with NaNs. The 601 
networks still output the time-varying ZIG distribution at each timestep; however, a mask was applied to the timesteps where 602 
the NaN samples were to prevent the cost computed from these timesteps being backpropagated during gradient calculation. 603 
As a result, the model weights were only updated based on the cost at the sampled timesteps. The reconstruction cost also 604 
excluded the cost calculated at the non-sampled timesteps so the PBT model selection was not affected by the cost 605 
computed from the non-sampled timesteps. 606 
 607 
Simulation experiments. 608 
Generating spike trains from an underlying Lorenz system 609 
Synthetic data were generated using the Lorenz system as described in the original LFADS work15,16. Lorenz parameters 610 
were set to standard values (σ: 10, ρ: 28, and β: 8/3), and ∆t was set to 0.01. Datasets with different speeds of dynamics 611 
were generated by downsampling the original generated Lorenz states by different factors. The speed of the Lorenz 612 
dynamics was quantified based on the peak location of the power spectra of the Lorenz Z dimension, with a sampling 613 
frequency of 100 Hz. The downsampling factors were 3, 5, 7, 9, 11 and 14 for speeds 4, 7, 10, 13, 15 and 20 Hz, respectively. 614 
Each dataset/speed consisted of 8 conditions, with 60 trials per condition. Each condition was obtained by starting the Lorenz 615 
system with a random initial state vector and running it for 900 ms. The trial length for the 4 Hz dataset was longer (1200 616 
ms) than that of other datasets (900 ms) to ensure that all conditions had significant features to be modeled - with shorter 617 
windows, the extremely low frequency oscillations caused the Lorenz states for some conditions to have little variance across 618 
the entire window, making it trivial to approximate the essentially flat firing rates. We simulated a population of 278 neurons 619 
with firing rates given by linear readouts of the Lorenz state variables using random weights, followed by an exponential 620 
nonlinearity. Scaling factors were applied so the baseline firing rate for all neurons was 3 spikes/sec. Each bin represents 621 
10 ms and an arbitrary frame time was set to be 30 ms (i.e., one “imaging frame” takes 3 bins). Spikes from the firing rates 622 
were then generated by a Poisson process. 623 
 624 
Generating fluorescence signals from synthetic spike trains 625 
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Realistic fluorescence signals were generated from the spike trains by convolving them with a kernel for an autoregressive 626 
process of order 2 and passing the results through a nonlinearity that matched values extracted from the literature for the 627 
calcium indicator GCaMP6f3,54 (Supp Fig. 2a & b). Three noise sources were added to reproduce variability present in real 628 
data55–57: Gaussian noise to the size of the calcium spike, and Gaussian and Poisson noise to the final trace (Supp Fig. 2a 629 
& b). This fluorescence generation process was realized as follows: First, spike trains s(t) were generated from the Lorenz 630 
system as mentioned above. Independent Gaussian noise (sd = 0.1) was added to each spike in the spike train to model 631 
the variability in spike amplitude. Next, we modeled the calcium concentration dynamics c(t) as an autoregressive process 632 
of order 2:  633 
 634 

 635 
 636 
with s(t) representing the number of spikes at time t. The autoregressive coefficients  and  were computed based on the 637 
rise time, decay time (  = 20 ms,  = 400 ms for GCaMP6f) of the calcium indicators, and the sampling frequency. Note 638 
that while there is substantial variability in taus across neurons in real data3, selecting and mimicking this variability was not 639 
relevant in our work, because we compared the methods (i.e., RADICaL, AutoLFADS, and s-deconv) after deconvolution. 640 
The calcium concentration dynamics were further normalized so that the peak height of the calcium dynamics generated 641 
from a single spike equalled one, regardless of the sampling frequency. Subsequently, we computed the noiseless 642 
fluorescence signals by passing the calcium dynamics through a nonlinear transformation estimated from the literature54 for 643 
the calcium indicator GCaMP6f (Supp Fig. 2c & d). After the nonlinear transformation, the relationship between spike size 644 
and trace size was corrupted, and therefore we assumed the baseline of fluorescence signals to be zero and the signals 645 
were rescaled to the range in [0,1] using min-max normalization. Finally, Gaussian noise (~N(0,sn)) and Poisson noise 646 
(simulated as gaussian with mean 0 and variance proportional to the signal amplitude at each time point via a constant d) 647 
were added to the normalized traces. The resulting fluorescence traces had the same sampling frequency as the synthetic 648 
spike trains (100 Hz). 649 
 650 
A crucial parameter is the noise level associated with each fluorescence trace. High noise levels lead to very poor spike 651 
detection and very low noise levels enable a near-perfect reconstruction of the spike train. In order to select a realistic level 652 
of noise we matched the correlations between real and inferred spike trains of the simulated data to those typically 653 
observed10. We found that a truncated normal distribution of noise level for Gaussian and Poisson noise best matched the 654 
correlations. More specifically, for each neuron, sn=d was sampled independently from a truncated normal distribution 655 
N(0.12, 0.02) truncated below 0.06. With the above noise setting, the mean correlation coefficient r between the deconvolved 656 
events and ground truth spikes was 0.32, which is consistent with the standard results reported in the spikefinder paper10 657 
for OASIS. It is worth stressing that real data feature a broad range of noise levels that depend on the imaging conditions, 658 
depth, expression level, laser power and other factors. Here we did not attempt to investigate all possible noise conditions, 659 
but instead, we aimed to create a simulation with known latent variables (i.e., low-dimensional factors and event rates) that 660 
reasonably approximated realistic signal-to-noise levels, in order to provide a tractable test case to compare RADICaL to 661 
other methods before attempting comparisons on real data. 662 
 663 
Recreating variability in sampling times due to 2p laser scanning 664 
The fluorescence traces were simulated at 100 Hz as mentioned above. A subsampling step was then performed with 665 
sampling times for each neuron staggered in time to simulate the variability in sampling times due to 2p laser scanning (as 666 
in Fig. 1e). This produced fluorescence traces where individual neurons were sampled at 33.3 Hz, with phases of 0, 11, 22 667 
ms based on each neuron’s location (top, middle and bottom of the FOV, respectively). To break this down, each neuron 668 
was sparsely sampled every three time points and the relative sampled times between neurons were fixed. For example, in 669 
trial 1, neuron 1 was sampled at time points 1, 4, 7, … and neuron 2 was sampled at time points 2, 5, 8, …; in trial 2, neuron 670 
1 was sampled at time points 2, 5, 8, … and neuron 2 was sampled at time points 3, 6, 9, … . Thus, the sampling frequency 671 
for each individual neuron was 33.3 Hz, while the sampling frequency for the population was retained at 100 Hz by filling the 672 
non-sampled time points with NaNs. The resulting 33.3 Hz simulated fluorescence signals for each individual neuron (i.e., 673 
with NaNs excluded) were deconvolved using OASIS25 (as implemented in CaImAn26) using an auto-regressive model of 674 
order 1 with smin of 0.1.  675 
 676 
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Data preparation for each method 677 
Four methods (RADICaL, AutoLFADS, s-deconv and s-sim-fluor) were compared by their performance on recovering the 678 
ground truth latent states across different datasets/speeds. Trials (480 total for each simulated dataset) were split into 80/20 679 
training and validation sets for modeling AutoLFADS and RADICaL. To prepare data for non-RADICaL methods, non-680 
sampled bins were removed so all the sampled bins were treated as if they were sampled at the same time and each bin 681 
then represented 30 ms (i.e., sampling frequency = 33.3 Hz). Preparing the data for AutoLFADS required discretizing the 682 
deconvolved events into spike count estimates, because AutoLFADS was primarily designed to model discrete spiking data. 683 
In the discretizing step, if the event rate was 0, it was left as 0; if the event rate was between 0 and 2, it was cast to 1 (to 684 
bias toward the generally higher probability of fewer spikes). If the event rate was greater than 2, it was rounded down to 685 
the nearest integer. We note that this is one of many possible patches to convert continuously-valued event intensities to 686 
natural numbers for compatibility with the Poisson distribution and AutoLFADS; a more principled solution would be to modify 687 
the network to use the ZIG distribution, as we have done in RADICaL. With s-deconv, the deconvolved events were 688 
smoothed by convolution with a Gaussian filter (6 ms s.d.) to produce event rates. With s-sim-fluor, the generated 689 
fluorescence signals were smoothed by convolution with a Gaussian filter (6 ms s.d.) to produce event rates. The choice of 690 
filter width was optimized by sweeping values ranging from 3 to 40 ms. Smoothing with a 6 ms s.d. filter gave the highest 691 
performance in recovering the ground truth Lorenz states for experiments with higher Lorenz frequencies (i.e., >= 10 Hz). 692 
The event rates produced from RADICaL had a sampling frequency of 100 Hz, while the event rates produced from the non-693 
RADICaL methods had a sampling frequency of 33.3 Hz. The non-RADICaL rates were then resampled at 100 Hz using 694 
linear interpolation.  695 
 696 
Mapping to ground truth Lorenz states 697 
Since our goal was to quantify modeling performance by estimating the underlying Lorenz states, we trained a mapping from 698 
the output of each model (i.e., the event rates) to the ground truth Lorenz states using ridge regression. First, we split the 699 
trials into training (80%) and test (20%) sets.  We used the training set to optimize the regularization coefficient using 5-fold 700 
cross-validation, and used the optimal regularization coefficient to train the mapping on the full training set. We then 701 
quantified state estimation performance by applying this trained mapping to the test set and calculating the coefficient of 702 
determination (R2) between the true and predicted Lorenz states. We repeated the above procedure five times with train/test 703 
splits drawn from the data in an interleaved fashion. We reported the mean R2 across the repeats, such that all reported 704 
numbers reflect held-out performance. We tested whether the difference of R2 between each pair of methods was significant 705 
by performing a paired, one-sided Student’s t-test on the distribution of R2 across the five folds of predictions. 706 
 707 
Real 2p experiments 708 
Surgical procedures 709 
All procedures were approved by the University of Chicago Animal Care and Use Committee. Two male Ai148D transgenic 710 
mice (TIT2L-GC6f-ICL-tTA2, stock 030328; Jackson Laboratory) were used. Each mouse underwent a single surgery. Mice 711 
were injected subcutaneously with dexamethasone (8 mg/kg) 24 hours and 1 hour before surgery. Mice were anesthetized 712 
with 2-2.5% inhaled isoflurane gas, then injected intraperitoneally with a ketamine-medetomidine solution (60 mg/kg 713 
ketamine, 0.25 mg/kg medetomidine), and maintained on a low level of supplemental isoflurane (0-1%) if they showed any 714 
signs that the depth of anesthesia was insufficient. Meloxicam was also administered subcutaneously (2 mg/kg) at the 715 
beginning of the surgery and for 1-3 subsequent days. The scalp was shaved, cleaned, and resected, the skull was cleaned 716 
and the wound margins glued to the skull with tissue glue (VetBond, 3M), and a 3 mm circular craniotomy was made with a 717 
3 mm biopsy punch centered over the left CFA/S1 border. The coordinates for the center of CFA were taken to be 0.4 mm 718 
anterior and 1.6 mm lateral of bregma. The craniotomy was cleaned with SurgiFoam (Ethicon) soaked in phosphate-buffered 719 
solution (PBS), then virus (AAV9-CaMKII-Cre, stock 2.1*1013 particles/nL, 1:1 dilution in PBS, Addgene) was pressure 720 
injected (NanoJect III, Drummond Scientific) at two or four sites near the target site, with 140 nL injected at each of two 721 
depths per site (250 and 500 µm below the pia) over 5 minutes each. The craniotomy was then sealed with a custom 722 
cylindrical glass plug (3 mm diameter, 660 µm depth; Tower Optical) bonded (Norland Optical Adhesive 61, Norland) to a 4 723 
mm #1 round coverslip (Harvard Apparatus), glued in place first with tissue glue (VetBond) and then with cyanoacrylate glue 724 
(Krazy Glue) mixed with dental acrylic powder (Ortho Jet; Lang Dental). A small craniotomy was also made using a dental 725 
drill over right CFA at 0.4 mm anterior and 1.6 mm lateral of bregma, where 140 nL of AAVretro-tdTomato (stock 1.02*1013 726 
particles/nL, Addgene) was injected at 300 µm below the pia. This injection labeled cells in left CFA projecting to the 727 
contralateral CFA. Here, this labeling was used solely for stabilizing the imaging plane (see below). The small craniotomy 728 
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was sealed with a drop of Kwik-Cast (World Precision Instruments). Two layers of MetaBond (C & B) were applied, then a 729 
custom laser-cut titanium head bar was affixed to the skull with black dental acrylic. Animals were awoken by administering 730 
atipamezole via intraperitoneal injection and allowed to recover at least 3 days before water restriction. 731 
 732 
Behavioral task 733 
The behavioral task (Fig. 3a) was a variant of the water reaching task of ref. 27 which we term the “Water Grab” task. This 734 
task was performed by water-restricted, head-fixed mice, with the forepaws beginning on paw rests (eyelet screws) and the 735 
hindpaws and body supported by a custom 3D printed clear acrylic tube enclosure. After holding the paw rests for 700-900 736 
ms, a tone was played by stereo speakers and a 2-3 µL droplet of water appeared at one of two water spouts (22 gauge, 737 
90-degree bent, 1” blunt dispensing needles, McMaster) positioned on either side of the snout. The pitch of the tone indicated 738 
the location of the water, with a 4000 Hz tone indicating left and a 7000 Hz tone indicating right, and it lasted 500 ms or until 739 
the mouse made contact with the correct water spout. The mouse could grab the water droplet and bring it to its mouth to 740 
drink any time after the tone began. Both the paw rests and spouts were wired with capacitive touch sensors (Teensy 3.2, 741 
PJRC). Good contact with the correct spout produced an inter-trial interval of 3-6 s, while failure to make contact (or 742 
insufficiently strong contact) with the spout produced an inter-trial interval of 20 s. Because the touch sensors required good 743 
contact from the paw, this setup encouraged complex contacts with the spouts. The mice were trained to make all reaches 744 
with the right paw and to keep the left paw on the paw rest during reaching. Training took approximately two weeks, though 745 
the behavior continued to solidify for at least two more weeks. Data presented here were collected after 6-8 weeks’ 746 
experience with the task. Control software was custom written in MATLAB R2018a using PsychToolbox 3.0.14, and for the 747 
Teensy. Touch event monitoring and task control were performed at 60 Hz. 748 
 749 
Behavior was also recorded using a pair of cameras (BFS-U3-16S2M-CS, FLIR; varifocal lenses COZ2813CSIR2, 750 
Computar) mounted 150 mm from the right paw rest at 10° apart to enable 3D triangulation. Infrared illuminators enabled 751 
behavioral imaging while performing 2p imaging in a darkened microscope enclosure. Cameras were synchronized and 752 
recorded at 150 frames per second with real-time image cropping and JPEG compression, and streamed to one HDF5 file 753 
per camera (areaDetector module of EPICS, CARS). The knuckles and wrist of the reaching paw were tracked in each 754 
camera using DeepLabCut and triangulated into 3D using camera calibration parameters obtained from the MATLAB Stereo 755 
Camera Calibration toolbox58,59. To screen the tracked markers for quality we created distributions of all inter-marker 756 
distances in 3D across every labeled frame and identified as problematic frames with any inter-marker distance exceeding 757 
the 99.9th percentile of its respective distribution. Trials with more than one problematic frame in the period of -200 ms to 758 
800 ms after the raw reach onset were discarded (where reach onset was taken as the first 60 Hz tick after the paw rest 759 
touch sensor fell below contact threshold). The kinematics of all trials that passed this screening procedure were visualized 760 
to confirm quality. Centroid marker kinematics were obtained by averaging the kinematics of all paw markers, locking them 761 
to behavioral events and then smoothing using a Gaussian filter (15 ms s.d.). To obtain velocity and acceleration, centroid 762 
data was numerically differentiated with MATLAB’s diff function and then smoothed again using a Gaussian filter (15 ms 763 
s.d.). 764 
 765 
Two-photon imaging 766 
Calcium imaging was performed with a Neurolabware two-photon microscope and pulsed Ti:sapphire laser (Vision II, 767 
Coherent). Depth stability of the imaging plane was maintained using a custom plugin that acquired an image stack at the 768 
beginning of the session (1.4 µm spacing), then compared a registered rolling average of the red-channel data to each plane 769 
of the stack. If sufficient evidence indicated that a plane not at the center of the stack was a better match to the image being 770 
acquired, the objective was automatically moved to compensate. This typically resulted in a slow and steady upward 771 
(outward) movement of the objective over the course of the session. 772 
 773 
Offline, images were run through Suite2p to perform motion correction, region-of-interest (ROI) detection, and fluorescence 774 
extraction from both ROIs and neuropil. ROIs were manually curated using the Suite2p GUI to retain only those 775 
corresponding to somas. We then subtracted the neuropil signal scaled by 0.723. Neuropil-subtracted ROI fluorescence was 776 
then detrended by performing a running 10th percentile operation, smoothing with a Gaussian filter (20 s s.d.), then 777 
subtracting the result from the trace. This result was fed into OASIS25 using the ‘thresholded’ method, AR1 event model, and 778 
limiting the tau parameter to be between 300 and 800 ms. Neurons were discarded if they did not meet a minimum signal-779 
to-noise (SNR) criterion. To compute SNR, we took the fluorescence at each time point when OASIS identified an “event” 780 
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(non-zero), computed (fluorescence - neuropil) / neuropil, and computed the median of the resulting distribution. ROIs were 781 
excluded if this value was less than 0.05. To put events on a more useful scaling, for each ROI we found the distribution of 782 
event sizes, smoothed the distribution (ksdensity in MATLAB, with an Epanechnikov kernel and log transform), found the 783 
peak of the smoothed distribution, and divided all event sizes by this value. This rescales the peak of the distribution to have 784 
a value of unity. Data from two mice and two brain areas (4 sessions in total) were used (Mouse1 M1: 510 neurons, 560 785 
trials; Mouse1 S1: 433 neurons, 502 trials; Mouse2 M1: 439 neurons, 475 trials; Mouse2 S1: 509 neurons, 421 trials). 786 
 787 
Data preparation for modeling with RADICaL and AutoLFADS 788 
To prepare data for RADICaL, the deconvolved events were normalized by the s_min value output by OASIS so that the 789 
minimal event size was 0.1 across all neurons. The deconvolved events for individual neurons had a sampling rate equal to 790 
the frame rate (31.08 Hz). For modeling with RADICaL, the deconvolved events were assigned into 10ms bins using the 791 
timing of individual measurements for each neuron to achieve sub-frame resolution (i.e., 100 Hz). The non-sampled bins 792 
were filled with NaNs. To prepare data for AutoLFADS, the deconvolved events were rescaled using the distribution-scaling 793 
method described above, and casted using the casting step described in the simulation section. For both AutoLFADS and 794 
s-deconv, the deconvolved events were assigned into a single time bin per frame (i.e., 32.17 ms bins) to mimic standard 795 
processing of 2p imaging data, where the sub-frame timing of individual measurements is discarded. Trials were created by 796 
aligning the data to 200 ms before and 800 ms after reach onset (100 time points per trial for RADICaL, and 31 time points 797 
per trial for AutoLFADS and s-deconv). An individual RADICaL model and AutoLFADS model were trained for each dataset 798 
(4 total). Failed trials (latency to contact with correct spout > 15 s for Mouse1, 20 s for Mouse2), or trials where the grab to 799 
the incorrect spout occurred before the grab to the correct spout, were discarded. For each dataset, trials (Mouse1 M1: 552 800 
total; Mouse1 S1: 500 total; Mouse2 M1: 467 total; Mouse2 S1: 413 total) were split into 80/20 training and validation.  801 
 802 
Trial grouping 803 
PSTH analysis and low dimensional neural trajectory visualization were performed based on subgroups of trials. Trials were 804 
sorted into two subgroups per spout based on the Z dimension (height) of hand position. The hand position was obtained by 805 
smoothing the centroid marker position with a Gaussian filter (40 ms s.d.). Time windows where the height of hand was used 806 
to split trials were hand-selected to present a good separation between subgroups of hand trajectories. For mouse1 M1, a 807 
window of 30 ms to 50 ms after reach onset was used to split left condition trials and a window of 180 ms to 200 ms after 808 
reach onset was used to split right condition trials; for mouse1 S1, a window of 180 ms to 200 ms after reach onset was 809 
used to split left condition trials and a window of 140 ms to 160 ms after reach onset was used to split right condition trials; 810 
for both mouse2 M1 and mouse2 S1, a window of 30 ms to 50 ms after reach onset was used to split both left and right 811 
condition trials. For both left or right conditions and for all mice/areas (with the exception of mouse1 M1), 55 trials with the 812 
lowest and highest heights were selected as group 1 and group 2, respectively; trials with middle-range heights were 813 
discarded. For mouse1 M1, the first 25 trials with the lowest heights for right condition were discarded because these reaches 814 
were highly non-stereotyped and loopy; instead, the 26th to 80th trials with the lowest heights were selected as group 1 for 815 
the right condition. 816 
 817 
PSTH analysis and comparing RADICaL and AutoLFADS single-trial rates 818 
RADICaL was first validated by comparing the PSTHs computed using RADICaL inferred event rates and the empirical 819 
PSTHs. Empirical PSTHs were computed by trial-averaging s-deconv rates (40 ms kernel s.d., 32.17 ms bins) within each 820 
of the 4 subgroups of trials. RADICaL inferred rates were first downsampled from 100 Hz to 31.08 Hz with an antialiasing 821 
filter applied, to match the sampling frequency (i.e., the frame rate) of the original deconvolved signals. RADICaL PSTHs 822 
were computed by similarly averaging RADICaL rates. Single-trial inferred rates were then compared to the empirical PSTHs 823 
to assess how well each method recapitulated the empirical PSTHs on single trials. The correlation coefficient (r) was 824 
computed between inferred single-trial event rates and the corresponding empirical PSTHs in a cross-validated fashion, i.e., 825 
each trial’s inferred event rate was compared against an empirical PSTH computed using all other trials within the subgroup. 826 
r was assessed for the time window spanning 200 ms before to 800 ms after reach onset, and computed by concatenating  827 
all trials across the four subgroups, yielding one r for each neuron. Neurons that had fewer than 40 nonzero events within 828 
this time window (across all trials) were excluded from the analysis. 829 
 830 
Low-D analysis 831 
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To visualize the low-dimensional neural trajectories that RADICaL produced, principal component analysis (PCA) was 832 
performed on RADICaL inferred rates. RADICaL rates (aligned to 200 ms before and 800 ms after reach onset) were log-833 
transformed (with 1e-4 added to prevent numerical precision issues) and normalized to have zero mean and unit standard 834 
deviation for each neuron. PCA was applied to the trial-averaged rates and the projection matrix was then used to project 835 
the log-transformed and normalized single-trial rates (aligned to 200 ms before and 400 ms after reach onset) onto the top 836 
3 PCs. 837 
 838 
Decoding analysis 839 
RADICaL-inferred rates, AutoLFADS-inferred rates, and s-deconv (Gaussian kernel 40 ms s.d.) rates were used to decode 840 
hand position and velocity using ridge regression. The hand position and velocity were obtained as described above and 841 
binned at 10 ms (i.e., 100 Hz). The non-RADICaL rates were retained to a sampling frequency of 100 Hz using linear 842 
interpolation. For simplicity, we did not include a lag between the neural data and kinematics. However, additional analyses 843 
confirmed that adding a lag did not alter the results (data not shown). Trials with an interval between water presentation and 844 
reach onset that was longer than a threshold were discarded due to potential variations in behavior (e.g., inattention). The 845 
threshold was selected arbitrarily for different sessions based on the actual distribution of the intervals in the session (Mouse1 846 
M1: 500 ms; Mouse1 S1: 400 ms; Mouse2 M1: 400 ms; Mouse2 S1: 600 ms). The data were aligned to 50 ms before and 847 
350 ms after reach onset. The decoder was trained and tested using cross-validated ridge regression. First, we split the 848 
trials into training (80%) and test (20%) sets.  We used the training set to optimize the regularization coefficient using 5-fold 849 
cross-validation, and used the optimal regularization coefficient to train the decoder on the full training set. This trained 850 
decoder was applied to the test set, and the coefficient of determination (R2) was computed and averaged across x-, y- and 851 
z- kinematics. We repeated the above procedure five times with train/test splits drawn from the data in an interleaved fashion. 852 
We reported the mean R2 across the repeats, such that all reported numbers reflect held-out performance. We tested 853 
whether the difference of R2 between each pair of methods was significant by performing paired, one-sided Student’s t-Test 854 
on the distribution of R2 across the five folds of predictions. 855 
 856 
Coherence analysis 857 
Coherence was computed between the true and predicted kinematics (window: 200 ms before and 500 ms after reach onset) 858 
across all trials and across all x-, y- and z- dimensions using magnitude-squared coherence (MATLAB: mscohere). The 859 
power spectral density estimation parameters within mscohere were specified to ensure a robust calculation on the single 860 
trial activity: Hanning windows with 35 timesteps (i.e., 350 ms) for the FFT and window size, and 25 timesteps (i.e., 250 ms) 861 
of overlap between windows. 862 
 863 
t-SNE analysis on the weights mapping from factors to ZIG parameters 864 
RADICaL relies on subframe bins in which neurons are grouped based on their spatial locations within the FOV. Because 865 
this strategy results in consistent neuron grouping, it could potentially result in different groups of neurons corresponding to 866 
different latent factors. To test whether such an artifact existed, we visualized the transformation from latents to neurons by 867 
using t-SNE to reduce the 300-dimensional weights vector (100 factors * 3 ZIG parameters) into a 2-D t-SNE space for each 868 
individual neuron (510 neurons total) (Supp. Fig. 9). We did not observe a relationship between neurons’ position within the 869 
field of view (i.e., top, middle, and bottom) and the underlying factors. This suggested that the model did not use distinct 870 
factors for sets of neurons that were sampled with different phases, despite neurons in distant portions of the FOV never 871 
being grouped in the same bin.  872 
 873 
Neuron downsampling 874 
The neuron downsampling experiment was performed on the Mouse2 M1 dataset. The number of neurons included when 875 
training RADICaL or AutoLFADS was gradually reduced by limiting the area of FOV that the neurons were sampled from. 876 
The area was shrunk from the entire FOV with an area-to-FOV ratio of 1, 25/36, 9/16, 1/4, and 1/9, resulting in the number 877 
of included neurons to be 439, 321, 262, 121 and 59. An individual RADICaL model and AutoLFADS model were trained for 878 
each number of neurons. Decoding was performed using ridge regression (see above). 879 
 880 
 881 
 882 
 883 
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   LR CD DO KL CO KL IC L2 Con L2 Gen Sig Prior 

 
Defaults 

RADICaL Ranges (1e-5, 5e-3) (0.01, 0.99) (0.3, 1.0) (1e-6, 1e-4) (1e-6, 1e-4) (1e-5, 0.1) (1e-5, 0.1) (1.0, 100.0) 

Initial values 1e-3 0.5 uniform loguniform loguniform loguniform loguniform 20.0 

Explore weight 0.3 0.3 0.3 0.8 0.8 0.8 0.8 0.2 

Limit explore TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE 

AutoLFADS Ranges (1e-5, 5e-3) (0.01, 0.99) (0.3, 1.0) (1e-6, 1e-4) (1e-6, 1e-4) (1e-5, 0.1) (1e-5, 0.1) - 

Initial values 1e-3 0.5 uniform loguniform loguniform loguniform loguniform - 

Explore weight 0.3 0.3 0.3 0.8 0.8 0.8 0.8 - 

Limit explore TRUE TRUE TRUE FALSE FALSE FALSE FALSE - 

Table 1. Hyperparameter ranges for RADICaL and AutoLFADS runs. Cells with a dash indicate “not applicable” for the 884 
method. LR is the learning rate. CD is the coordinated dropout rate (i.e., proportion of samples dropped at input). DO is the 885 
dropout probability for the RNN network. KL indicates the weight applied to the KL divergence of a posterior from its prior. 886 
CO indicates the controller output distributions and IC indicates the initial condition distributions. L2 indicates the weight 887 
applied to the Frobenius norm of the recurrent kernel of the GRU cell. Con indicates the controller GRU cell, Gen indicates 888 
the generator GRU cell, IC Enc indicates the initial condition encoder GRU cells. Sig Prior indicates the prior of the scaling 889 
factors applied to the sigmoid nonlinearity when mapping from factors to ZIG parameters. 890 
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