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 2 

Abstract     44 

Neurons in the primary visual cortex (V1) receive excitation and inhibition from distinct 45 

parallel pathways processing lightness (ON) and darkness (OFF). V1 neurons overall 46 

respond more strongly to dark than light stimuli, consistent with a preponderance of 47 

darker regions in natural images, as well as human psychophysics. However, it has been 48 

unclear whether this "dark-dominance" is due to more excitation from the OFF pathway 49 

or more inhibition from the ON pathway. To understand the mechanisms behind dark-50 

dominance, we record electrophysiological responses of individual simple-type V1 51 

neurons to natural image stimuli and then train biologically inspired convolutional neural 52 

networks to predict the neurons' responses. Analyzing a sample of 74 neurons (in 53 

anesthetized, paralyzed cats) has revealed their responses to be more driven by dark than 54 

light stimuli, consistent with previous investigations. We show that this asymmetry is 55 

predominantly due to slower inhibition to dark stimuli rather than to stronger excitation 56 

from the thalamocortical OFF pathway. Consistent with dark-dominant neurons having 57 

faster responses than light-dominant neurons, we find dark-dominance to solely occur in 58 

the early latencies of neurons’ responses. Neurons that are strongly dark-dominated also 59 

tend to be less orientation selective. This novel approach gives us new insight into the 60 

dark-dominance phenomenon and provides an avenue to address new questions about 61 

excitatory and inhibitory integration in cortical neurons.  62 

 63 

 64 

 65 
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 3 

Significance 66 

 67 

Neurons in the early visual cortex respond on average more strongly to dark than to light 68 

stimuli, but the mechanisms behind this bias have been unclear. Here we address this 69 

issue by combining single-unit electrophysiology with a novel machine learning model to 70 

analyze neurons’ responses to natural image stimuli in primary visual cortex. Using these 71 

techniques, we find slower inhibition to light than to dark stimuli to be the leading 72 

mechanism behind stronger dark responses. This slower inhibition to light might help 73 

explain other empirical findings, such as why orientation selectivity is weaker at earlier 74 

response latencies. These results demonstrate how imbalances in excitation vs. inhibition 75 

can give rise to response asymmetries in cortical neuron responses.   76 

  77 
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 4 

Introduction     78 

The early thalamocortical visual system is separated into two distinct pathways:  79 

an ON pathway which responds more to lighter parts of images and an OFF pathway 80 

which encodes darker image regions. Neurons in primary visual cortex (V1) combine 81 

inputs from these two pathways, but the nature of this integration is still poorly 82 

understood.  83 

V1 neurons evidently receive asymmetrical inputs from the two pathways, since 84 

they are on average more responsive to dark than light stimuli (Jin et al., 2008; Yeh et al., 85 

2009), especially at low spatial frequencies (Kremkow et al., 2014; Jansen et al., 2019) 86 

and shorter time latencies (Komban et al., 2014). This asymmetry is presumably adaptive 87 

due to the preponderance of dark regions in natural images (Ratliff et al., 2010), which is 88 

also more pronounced at lower spatial frequencies (Cooper & Norcia, 2015). These 89 

asymmetries may influence human perception, since dark stimuli are processed faster and 90 

more reliably than light stimuli (Buchner & Baumgartner, 2007; Komban, Alonso & 91 

Zaidi, 2011).  92 

 There are more OFF than ON excitatory inputs from the lateral geniculate 93 

nucleus (LGN) to layer 4 of V1, which could help explain why responses to dark stimuli 94 

are stronger in V1 (Jin et al., 2008). However, this does not explain why more dark-95 

dominant neurons are found in layers 2/3 than in layer 4 (Yeh et al., 2009). This 96 

discrepancy could be explained by stronger ON than OFF intracortical inhibition within 97 

V1 (Taylor, Sedigh-Sarvestani, Vigeland, Palmer, & Contreras, 2018). Hence, whether 98 

dark-dominance is mostly due to excitation to dark stimuli or inhibition to light stimuli 99 

remains unclear. Here we develop a novel machine learning approach to disambiguate 100 
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excitation from inhibition in extracellular recordings, which allows us to make 101 

quantitative inferences about how cortical neurons integrate ON and OFF inputs.  102 

To better understand how visual stimuli drive V1 responses, we predict the 103 

responses of recorded neurons to natural images with a simple, biologically-inspired 104 

convolutional neural network. This neural network processes the natural images' light 105 

(ON) and dark (OFF) information in two distinct pathways. The first layer of each 106 

pathway consists of a convolution with a parametrized 2D gaussian spatial filter, which 107 

represents the responses of LGN neurons (omitting the weaker surrounds; Croner & 108 

Kaplan, 1995). The second layer is a linear weighted sum of the excitatory or inhibitory 109 

contributions of each pathway, which then sum to provide the model’s output. From these 110 

estimated weights, we infer how much excitation and inhibition arises from each 111 

pathway, at every spatial location and temporal lag of a V1 cell's receptive field. 112 

Using this approach, we find the dark-dominance phenomenon in V1 neurons to 113 

only occur at the early response latencies. We show these stronger dark responses to be 114 

predominantly driven by a lack of inhibition to dark stimuli at early latencies. We also 115 

find that this slower inhibition to dark stimuli is associated with less orientation 116 

selectivity in neurons' early responses (Ringach, Hawkin, & Shapley, 1997; Shapley, 117 

Hawken & Ringach, 2003). These findings suggest that slower inhibition to dark than to 118 

light stimuli plays a crucial role in the dark-dominance found in primary visual cortex.   119 

 120 

 121 

 122 

 123 

 124 
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 6 

Methods 125 

 126 

Animal preparation 127 

Anesthesia in adult cats was induced by isoflurane-oxygen (3–5%) inhalation, 128 

followed by intravenous cannulation and bolus injection of propofol (5 mg/kg). Surgical 129 

anesthesia was maintained with supplemental doses of propofol. Glycopyrrolate (30 μg) 130 

and dexamethasone (1.8 mg) were administered and a tracheal cannula or intubation tube 131 

was inserted. Throughout the surgery, body temperature was thermostatically maintained 132 

and heart rate was monitored (Vet/Ox Plus 4700). 133 

The animal was then positioned in a stereotaxic apparatus and connected to a 134 

ventilator (Ugo Basile 6025). Cortical Area 17 was exposed by a craniotomy (P3/L1) and 135 

a small durotomy, and the cortical surface protected with 2% agarose capped with 136 

petroleum jelly. Local injections of bupivacaine (0.50%) were administered at all surgical 137 

sites. During recording, anesthesia was maintained by infusion of propofol (5.3 mg·kg-138 

1·h-1), and in addition, remifentanil (initial bolus injection, 1.25 μg·kg-1, then infusion, 3.7 139 

µg·kg-1·h-1) and O2/N2O (30:70 ratio) delivered through the ventilator. Paralysis was 140 

produced with a bolus iv injection of gallamine triethiodide (to effect), followed by 141 

infusion (10 mg·kg−1·h−1). Throughout subsequent recording, expired CO2, EEG, ECG, 142 

body temperature, blood oxygen, heart rate, and airway pressure were monitored and 143 

maintained at appropriate levels. Intramuscular glycopyrrolate (16 μg) and 144 

dexamethasone (1.8 mg) were also administered daily.  145 

Corneas were initially protected with topical carboxymethylcellulose (1%) and 146 

subsequently with neutral contact lenses. Spectacle lenses were selected with slit 147 

retinoscopy to produce emmetropia at 57 cm, and artificial pupils (2.5 mm) were 148 
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 7 

provided. Topical phenylephrine hydrochloride (2.5%) and atropine sulfate (1%), or 149 

cyclopentolate (1.0 %) in later experiments, were administered daily. 150 

All animal procedures were approved by the McGill University Animal Care 151 

Committee and are in accordance with the guidelines of the Canadian Council on Animal 152 

Care. 153 

 154 

Extracellular recording 155 

Recordings were performed using 32-channel silcon probes (NeuroNexus), in 156 

most cases polytrodes (A1x32-Poly2-5mm-50s-177) or occasionally linear arrays 157 

(A1x32-6mm-100-177), advanced with a stepping motor microdrive (M. Walsh 158 

Electronics, uD-800A). Raw electrophysiological signals were acquired with a Plexon 159 

Recorder (3 Hz to 8 kHz; sampling rate, 40 kHz), along with supplementary signals from 160 

a small photocell placed over one corner of the visual stimulus CRT, which were used for 161 

temporal registration of stimuli and spikes, and to verify the absence of dropped frames. 162 

Spike waveforms were carefully classified from the recorded multichannel data into 163 

single units, using Spikesorter (Swindale & Spacek, 2014). Only clearly sorted units were 164 

used for further analysis.  165 

In total, 110 single units from 37 penetrations in 8 cats (4 males, 4 females) were 166 

analyzed. These recording experiments involved lab personnel working on other projects. 167 

Out of these neurons, 6 were rejected because part of their receptive fields was outside 168 

the screen, and 30 were rejected because the predictive performance of the fitted model 169 

was too low (see the Model Architecture section, below). The sample size included the 170 

remaining 74 neurons.   171 

 172 
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 8 

 173 

Visual stimuli 174 

Visual stimuli were presented on a gamma-corrected CRT monitor (NEC FP1350, 175 

20 inches, 640x480 pixels, 150 Hz, 36 cd/m2) at a viewing distance of 57 cm. Stimuli 176 

were produced by an Apple Macintosh computer (MacPro, 2.66 GHz, 6 GB, MacOSX 177 

ver. 10.6.8, NVIDIA GeForce GT 120) using custom software written in MATLAB (ver. 178 

2012b) with the Psychophysics Toolbox (ver. 3.0.10; Pelli, 1997; Brainard, 1997; Kleiner 179 

et al., 2007). We selected a channel having with good spike responses to hand-held bar 180 

stimuli, which we used to determine the dominant eye (with the non-dominant eye 181 

subsequently occluded), and to position the CRT monitor to be approximately centered 182 

around the population receptive field.  183 

Visual stimuli were ensembles of 375 natural images taken from the McGill 184 

Calibrated Colour Image Database (Olmos & Kingdom, 2004), cropped to 480x480, 185 

converted to monochrome 8-bit integers - as in Talebi & Baker (2012), but with a higher 186 

RMS contrast. We randomly presented each ensemble at 75 images per second (i.e. every 187 

13.33 ms) in short movies of 5 seconds each. We separated the ensembles into three sets, 188 

to evaluate predictive performance independently from overfitting. The training set had 189 

20 movies which were presented 5 times each, while the validation and testing sets each 190 

had 5 movies which were presented 20 times each. The validation and testing sets were 191 

presented more often to provide less noisy estimates of the fitted model's predictive 192 

performance. Instances of these three subsets of movies were quasi-randomly interleaved 193 

throughout the 45-minute recording session. 194 

For the subsequent data analysis (described below), all images were resized from 195 

480x480 to 40x40 before training (see below) to avoid overparameterization of the fitted 196 
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 9 

model. Resizing was done using the Image module from the Python Image Library (PIL; 197 

Umesh, 2012).  198 

 199 

 200 

Model architecture 201 

To better understand differences between the ON and OFF pathways, we employ 202 

a model architecture abstracted from known visual circuitry (Figure 1), whose parameters 203 

are optimized to predict a recorded cortical neuron's mean spiking responses to the 204 

natural image ensembles. We model LGN receptive fields as parametrized 2D isotropic 205 

gaussians, acting convolutionally on the stimulus images. The antagonistic surrounds are 206 

neglected, so there is only a pair of gaussian width parameters, for the ON and OFF 207 

pathways, to be estimated. The connections between the gaussian operators and the 208 

model cortical neuron are a pair of linear weighted sums of rectified responses of the 209 

gaussian-operators, across a series of time lags. Each of these linear weighted sums acts 210 

like a "dense layer" in machine learning - but note that there is not a subsequent 211 

rectification. The output of each dense layer might be thought of as a presynaptic 212 

membrane potential contribution, from its respective ON or OFF pathway.   213 

  214 
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 10 

 215 

Figure 1.  Model architecture for responses of a cortical neuron to visual stimuli such as natural 216 

images. Light and dark image regions are encoded as rectified responses of convolution with 217 

positive and negative spatial gaussians, respectively. Linear weighted sums are separately taken 218 

for each pathway and summed, followed by a half-power pointwise nonlinearity. A machine 219 

learning algorithm estimates the sizes of the parameterized gaussian operators, and the two sets of 220 

dense layer weights, for each of a series of time lags. 221 

 222 

 223 

The inputs to the model are the pixel luminance values of the natural image 224 

stimuli (cropped, and spatially downsampled to 40x40 pixels, as described below). The 225 

mean of the inputs is centered at zero by subtracting the overall mean across all images 226 

within an ensemble. To model the neuron's temporal processing, the inputs to the 227 

estimated model (see below) are composed of the preceding 7 images, each of which 228 

were presented for 13.33 ms. The model output is the neuron's response, with spike times 229 

collected into time bins of 13.33 ms each (duration of each stimulus image frame).  230 

The stimulus images are convolved with a pair of parametrized 2D gaussian filters 231 

(with positive or negative polarity for the ON and OFF pathways, respectively), each 232 

followed with a half-wave rectification (ReLU). The 2D gaussians represent receptive 233 

fields of LGN neurons in which the weaker surrounds (Croner & Kaplan, 1995) are 234 

neglected, as follows: 235 

𝑔(ℎ, 𝑣, 𝑝, 𝑡)	= !!

"#$%!"
𝑒
&'#

"$	&"

'!"
(
	        (1) 236 

 237 
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 11 

where h and v are the horizontal and vertical distances between a pixel and the center of 238 

the gaussian, respectively, and σ represents the standard deviation (i.e. width) and α the 239 

amplitude (i.e. the height) of the 2D gaussian. The σ parameter is estimated separately for 240 

each pathway (p). To allow each pathway to selectively process light or dark information, 241 

α is set to 1 for the ON pathway and -1 for the OFF pathway. The convolution of the 2D 242 

gaussian with the inputs is half-wave rectified (ReLU), to mimic spike frequency 243 

responses of LGN neurons (Persi et al., 2011): 244 

 245 

 c(i, j, t,p,k) = max(0,∑ ∑ 𝑥)*+,-*.,/,0 ∗1
.2&3 		𝑔(ℎ, 𝑣, 𝑝, 𝑡)1

+2&3 )  (2) 246 

 247 

where i and j are the horizontal and vertical coordinates of the center of the 12x12 2D 248 

gaussian, x is the luminance of a specific pixel (resized to a grid of 40x40), t is the 249 

number of time bins between the shown image and the recorded response (latency), and k 250 

is the time bin of the neuron’s response. The convolution with the 2D gaussians is 251 

implemented with zero-padding and a "stride" of 1. Due to the first rectification, the ON-252 

pathway encodes luminance above (lighter than) the mean, and the OFF-pathway 253 

luminance below (darker than) the mean. 254 

For each of the ON- or OFF-pathways, the model then takes a linear weighted 255 

sum of the convolution outputs from the respective rectified gaussians, with each weight 256 

notionally representing the excitatory or inhibitory inputs from an array of LGN cells to 257 

the cortical neuron. The sum of responses from these dense layers is followed by a 258 

rectified power law output nonlinearity, which forms the final output of the model and 259 

the prediction of the neuron’s mean spiking response: 260 

 261 
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  y/	456(𝑘)= max(0, ∑ ∑ ∑ ∑ 𝑐(𝑖, 𝑗, 𝑝, 𝑡, 𝑘)𝑤),-,4,078
-29

78
)29

:
029

#
429 )  (3) 262 

 263 

 𝑦/(𝑘)= a 𝑦/456; (𝑘)        (4) 264 

 265 

where w represents the dense layer weights, 𝑦/(𝑘) is the prediction of a neuron’s response 266 

for the kth time bin, b is the exponent of the rectified power nonlinearity, and a is a scale 267 

(gain) factor.  268 

To estimate the proportion of the variance in a neuron’s response that is 269 

accounted for by the model’s predictions, we calculate a variance-accounted-for (VAF) 270 

index by taking the square of the Pearson correlation coefficient between y (neuron’s 271 

response) and ŷ (model’s predictions). To insure that the estimated weights are 272 

representative of each neuron’s responses to visual stimuli, we excluded neurons with a 273 

VAF below 10% in the testing set (see below). Based on this criterion we excluded 30 274 

neurons, which resulted in a sample size of 74 neurons for the remaining analysis.  275 

 276 

Optimization and regularization 277 

 To characterize a neuron’s receptive field, we find the model parameters which 278 

minimize the difference between its recorded responses and the responses predicted by 279 

the model of Equation 3, which requires fitting a total of 2x40x40x7 = 22,400 dense layer 280 

weights, and 2 parameters (σ<=	𝑎𝑛𝑑	σ<>>) for the 2D gaussians (fitting of the two 281 

parameters for the output nonlinearity, Equation 4, is described below). To minimize 282 

over-fitting due to the large number of parameters, we employ L2-regularization by 283 

penalizing the squared amplitude of the dense layer weights (Hoel & Kennard, 1970), 284 
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implemented by minimizing a loss function in which the first term is the squared error of 285 

the model prediction and the second term the regularization penalty: 286 

 287 

 L = ∑ (𝑦/ −	𝑦//)#	?
/29 + 	𝜆∑ ∑ ∑ ∑ 𝑤),-,4,078

-29
78
)29

:
029

#
429    (5) 288 

 289 

 290 

where 𝑦/ is the neuron’s recorded response, 𝑦// the model's predicted response for the kth 291 

time bin, wi,j,t,p the dense layer weights (for the p-th On/Off stream, t-th time lag, and i,j-292 

th dense layer position) and 𝜆 the L2-regularization hyperparameter. Based on pilot 293 

results from a representative subset of neurons, the hyperparameter 𝜆 is set to 5 x 10-6 in a 294 

first pass and 2 x 10-6 in a second pass (see below, three-pass training procedure). In the 295 

third pass, we train the model with different 𝜆 values of [1,2,4,8,16] x 10-6, and choose 296 

the 𝜆 value giving the best model performance on the validation dataset for each neuron.  297 

 This loss function is minimized using the Adam optimization algorithm (Kingma 298 

& Ba, 2014) with mini-batch gradient descent (Li et al., 2014). To further reduce 299 

overfitting, we apply dropout during training to both the convolutional and dense layers 300 

with a probability of 50% (Srivasta et al., 2014). 301 

 The data is separated into training, validation, and test sets, corresponding to the 302 

three sets of stimulus movies. The model parameters are fit to the training set using a 303 

mini-batch size of 100 stimulus-response pairs. As an additional regularization measure, 304 

training is stopped if there is no improvement on the validation set in the preceding 50 305 

epochs - then we use the model at its peak performance (i.e. 50 epochs before training 306 
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stops) in subsequent analyses. We use a third, separate test set to obtain an unbiased 307 

estimate of predictive performance.  308 

 309 

Three-pass training procedure 310 

 Because V1 receptive fields usually only occupy a small subset of the displayed 311 

visual stimulus images, it would be detrimental to optimize each neuron’s model based 312 

on the full extent of the images. Doing so would entail a very high overparameterization, 313 

or a loss of spatial resolution due to excessive downsampling of the stimulus images, in 314 

either case yielding poorer predictive performance. To address this issue, we use a three-315 

pass training procedure, with each pass improving the spatial resolution of the receptive 316 

field estimate. In the first pass, we optimize the model parameters using the full 480x480 317 

stimulus images downsampled to 40x40. We then manually designate a square cropping 318 

window that encloses an area slightly larger than the apparent receptive field. Next, we 319 

crop the stimulus images within that window, and rescale each image within it to 40x40. 320 

Due to the resizing, this cropped image then has much better spatial resolution than the 321 

40x40 image from the first-pass. This image is used to re-train the model in the second 322 

pass, where we repeat the procedure, but with the cropped image. In the third pass, we 323 

further adjust the cropping window based on the model estimate obtained in the second 324 

pass. This third pass provides much higher accuracy in identifying the boundaries of the 325 

receptive field, and gives us the final model fits that we use for the remaining analysis. 326 

This three-pass training procedure allows us to characterize a neuron’s receptive field 327 

with high resolution and substantially increases predictive performance.  328 

 329 
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Output nonlinearity 330 

 A cortical neuron’s spike frequency response has often been modeled with a final 331 

output nonlinearity, consisting of a rectified power law (Heeger, 1991; Anzai et al, 1999; 332 

Persi et al., 2011). However, it has proven problematic to simultaneously estimate the 333 

power law exponent with the other parameters using the backpropagation algorithm 334 

employed here. This problem is most likely due in part to the "exploding gradient" 335 

problem (Pascanu, Mikolov & Bengio, 2012). To resolve this issue, we initially set a 336 

power-law exponent value of unity (1.0), and wait 100 epochs into the training algorithm, 337 

to get a rough estimate of the other parameter values. We then pause the model 338 

optimization, to fit the two parameters of the output nonlinearity to the predicted vs. 339 

measured neuron responses - and then resume full model parameter optimization, keeping 340 

the output nonlinearity parameters fixed.  341 

 To address the heavily uneven distribution of the measured firing rates, we bin the 342 

predicted responses into 100 bins of 75 responses each, and compute the mean measured 343 

response for each bin - a modification of the method used by Anzai et al (1999). We then 344 

fit a scaling factor ‘a’ and an exponent ‘b’ (Eq. 4) to minimize the difference between the 345 

binned predicted responses 𝑦/ and the measured spike rates y, using python scipy's 346 

‘optimize.curve_fit’.     347 

 348 

 349 

Estimating excitation and inhibition  350 

The spatiotemporal properties of each of the ON and OFF pathways in the fitted 351 

model depend on both the dense layer weights and estimated 2D gaussians (which may 352 
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differ in width for the ON and OFF pathways). To incorporate both in our analysis, for 353 

each of the ON and OFF pathways we convolve the 2D gaussian with the corresponding 354 

dense weights, to produce a 40x40x7 spatio-temporal filter for each pathway (ONRecon 355 

and OFFRecon). This "reconstructed" receptive field represents the neuron’s 356 

responsiveness to either light or dark stimuli. For further analyses we estimate the overall 357 

amount of excitation and inhibition from the filter for each pathway and time lag, by 358 

taking the sum of all positive or negative values in either the ON or OFF reconstructed 359 

receptive field. This procedure provides an inference of the total amount of ON 360 

excitation, ON inhibition, OFF excitation and OFF inhibition contributing to each 361 

neuron's response: 362 

ONexcit(t) = ∑ ∑ max	(0, 𝑂𝑁@6AB?(𝑖, 𝑗, 𝑡)78
)29 	78

-29 )    (6) 363 

OFFexcit(t) = ∑ ∑ max	(0, 𝑂𝐹𝐹@6AB?(𝑖, 𝑗, 𝑡)78
)29 	78

-29 )    (7) 364 

ONinhib(t) = −∑ ∑ min	(0, 𝑂𝑁@6AB?(𝑖, 𝑗, 𝑡)78
)29 	78

-29 )    (8) 365 

OFFinhib(t) = −∑ ∑ min	(0, 𝑂𝐹𝐹@6AB?(𝑖, 𝑗, 𝑡)78
)29 	78

-29 )   (9) 366 

where ONRecon represents the contribution of the ON pathway to the estimated 367 

relationship between (light) stimuli and the neuron’s responses (and similarly for 368 

OFFRecon). ONRecon and OFFRecon are estimated from the convolution of the spatiotemporal 369 

weights, wp,t, with the gaussian layer, gp,t for p=1 (and similarly for OFFRecon for p=2): 370 

 𝑂𝑁@6AB?(𝑡) = 	𝑤429,0 ∗ 𝑔429,0      (10) 371 

 𝑂𝐹𝐹@6AB?(𝑡) = 	𝑤42#,0 ∗ 𝑔42#,0      (11) 372 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2021.11.21.469446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.21.469446
http://creativecommons.org/licenses/by/4.0/


 17 

Parts of our analysis are based on each neuron’s peak latency of responsiveness, 373 

determined as the latency having the greatest variance in the sum of the reconstructions 374 

from each pathway:   375 

𝑉𝑎𝑟@6AB?(𝑡) = 
∑ ∑ 	(@6AB?(),-,0)&	G6H?()*+,(0))"-.

/01
-.
201

918
    (12) 376 

where 377 

𝑅𝑒𝑐𝑜𝑛(𝑖, 𝑗, 𝑡)	= 𝑂𝑁@6AB?(𝑖, 𝑗, 𝑡) + 𝑂𝐹𝐹@6AB?(𝑖, 𝑗, 𝑡)    (13) 378 

𝑀𝑒𝑎𝑛@6AB?(𝑡) = 
∑ ∑ @6AB?(),-,0)-.

/01
-.
201

918
      (14) 379 

The latency t with the highest 𝑉𝑎𝑟@6AB? will be referred to as T.  380 

 381 

 382 

Light/dark balance  383 

To quantify the extent to which individual neurons are light- or dark- dominated, 384 

we use a light-dark balance index (LDB) to indicate the relative influence of a neuron's 385 

light and dark weights: 386 

LDB(t) = (BLight(t)–BDark(t)) / (BLight(t) + BDark(t))    (15) 387 

where  388 

BLight(t) = ONexcit(t) + OFFinhib(t)      (16) 389 

BDark(t) = OFFexcit(t) + ONinhib(t)      (17) 390 

This index varies from -1.0 to 1.0, with positive LDB values indicating a neuron 391 

is light-dominated, and negative values that it is dark-dominated.  392 
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 393 

 394 

Excitation/Inhibition balance 395 

The excitation/inhibition balance (EIB) index is similar to LDB, but contrasts 396 

excitation with inhibition instead of light with dark:   397 

EIB(t) = (Bexcit(t) – Binhib(t)) / ( Bexcit(t)  + Binhib(t))    (17) 398 

where 399 

Bexcit(t) = ONexcit(t) + OFFexcit(t)      (18) 400 

Binhib(t) = ONinhib(t) + OFFinhib(t)      (19) 401 

This index varies from -1 to 1, with positive EIB values indicating a neuron's response 402 

reflects relatively stronger excitation, and negative EIB values stronger inhibition.  403 

 404 

Simulated responses to artificial stimuli 405 

 To better understand how dark-dominance influences neurons’ responses to visual 406 

stimuli, we simulated the estimated models’ responses to four different stimulus 407 

conditions. The 40x40 stimuli were tailored to each neuron’s spatial receptive field, 408 

which we estimated by using Recon(i,j,T) (Eq. 13) at each neuron’s peak latency T (see 409 

above). The four stimulus conditions (Fig. 6) are the following:  light falling on light-410 

driven regions (LL), dark on dark-driven regions (DD), light on light-driven and half of 411 

dark-driven regions (LLHD) and dark on dark-driven and half of light-driven regions 412 

(DDHL): 413 

LL(i,	j)	= N1, 𝑅𝑒𝑐𝑜𝑛
(𝑖, 𝑗, 𝑇) > 0

0, 𝑅𝑒𝑐𝑜𝑛(𝑖, 𝑗, 𝑇) ≤ 0	414 
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DD(i,	j)	= N−1, 𝑅𝑒𝑐𝑜𝑛
(𝑖, 𝑗, 𝑇) < 0

0, 𝑅𝑒𝑐𝑜𝑛(𝑖, 𝑗, 𝑇) ≥ 0 	415 

LLHD(i,	j)	= N 1,											𝑅𝑒𝑐𝑜𝑛
(𝑖, 𝑗, 𝑇) > 0

−𝑏(0.5), 𝑅𝑒𝑐𝑜𝑛(𝑖, 𝑗, 𝑇) ≤ 0	416 

DDHL(i,	j)	= N−1,												𝑅𝑒𝑐𝑜𝑛
(𝑖, 𝑗, 𝑇) < 0

𝑏(0.5), 𝑅𝑒𝑐𝑜𝑛(𝑖, 𝑗, 𝑇) ≥ 0 	417 

where i and j index the spatial location of the image pixels, T is each neuron's peak 418 

latency and b is a random value (either 0 or 1) drawn from an equiprobable Bernoulli 419 

distribution. The first two stimulus conditions (LL and DD) are designed to only recruit 420 

excitation, while the latter two conditions recruit a mixture of both excitation and half as 421 

much inhibition. We used the estimated model of each neuron to simulate its response to 422 

each of these four stimulus conditions at different latencies. (Note that this procedure is 423 

equivalent to simulating the neuron’s impulse response to each stimulus.) The average 424 

simulated responses across the entire sample at each latency are shown in Figure 6.    425 

 426 

Orientation selectivity 427 

 To better understand the relationship between dark-dominance and orientation 428 

selectivity, we simulated the estimated models’ responses to static sinewave gratings at 429 

each of 36 orientations (with increments of 5 degrees), 56 spatial frequencies (equally 430 

spaced from 0.0667 to 0.143 cycles per image) and 36 phases (increments of 5 degrees). 431 

These responses were used to compute the orientation selectivity of each neuron using a 432 

vector summation method (Wörgötter & Eysel, 1987; Swindale, 1998): 433 
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 𝑂𝑆 = 	 (H
"*	;")1/"

∑ @(I/)451
/0.

        (12) 434 

with 435 

 𝑎 = 	∑ 𝑅(𝑥))	𝑐𝑜𝑠=&9
)28 (2𝑥))       (13) 436 

 𝑏 = 	∑ 𝑅(𝑥))	𝑠𝑖𝑛=&9
)28 (2𝑥))       (14) 437 

where N is the number of sinewave gratings, xi is the orientation angle, and R(xi) 438 

represents the simulated responses. The orientation selectivity index, OS, was computed 439 

separately for each latency in individual neurons.    440 

 441 

 442 

Experimental design and statistical analyses 443 

 Most statistical tests here are paired t-tests, to compare whether there is a 444 

significant difference between the means of two groups. We also use one-sample t-tests 445 

to assess whether means differ significantly from zero, and perform linear regression to 446 

test the correlation between two sets of values. We adjust for multiple comparisons with 447 

Bonferroni corrections, where the significance threshold α of 0.05 is divided by the 448 

number of comparisons (e.g., Figure 3B has 6 comparisons: α = 0.05 / 6 = 0.0083). 449 

Because visual responses are much weaker for latencies longer than 40 ms (see Figure 2), 450 

statistical tests are only performed for the first three latencies in Figures 5 and 7, with the 451 

correction for multiple comparisons adjusted accordingly.  452 

 453 
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 454 

Results 455 

As described in the Methods, a simple neural network model (Figure 1) was fit to 456 

responses from individual neurons, to estimate 2D gaussians and 3D spatiotemporal 457 

filters (dense layers) separately for ON and OFF inputs, as well as a power law output 458 

nonlinearity. Figure 2 shows these estimated model parameters for four example neurons, 459 

which all had peak responses at the 13-27 or 27-40 ms latency. As we observed more 460 

generally, the early ON and OFF Gaussian filters for a given neuron were about the same 461 

size, but opposite in polarity.  And for each neuron, the spatiotemporal filters (dense 462 

layers) were largely similar, both spatially and temporally, but opposite in polarity. 463 

Many of the neurons had Gabor-like receptive fields that are orientation selective 464 

(Hubel & Wiesel, 1962), like the one shown in Figure 2A (with OS = 0.55). At the 27-40 465 

ms latency, this neuron has balanced light and dark responses for both the ON (left) and 466 

OFF (right) pathways (LDB = 0.04). This balance does not occur at the 13-27 ms latency, 467 

where the neuron responds more strongly to dark stimuli (LDB = -0.2). This bias is due 468 

to the OFF pathway having stronger excitation (red) than inhibition (blue), with the ON 469 

pathway being balanced.  470 

Another neuron (Figure 2B) is also orientation selective (OS = 0.64), balanced 471 

(LDB = 0.02) at the 27-40 ms latency, and exhibits a bias toward dark responses (LDB = 472 

-0.3) at the 13-27 ms latency. However, for this neuron the 27-40 ms latency is 473 

imbalanced due to both the ON and OFF pathways, with the ON pathway having weaker 474 

excitation and the OFF pathway having weaker inhibition.  475 
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The neuron shown in Figure 2C differs from the previous examples in that it has 476 

low orientation selectivity (OS = 0.09) due to its isotropic receptive field, which has a 477 

dark center and an opposite-polarity surround. At the 13-27 ms latency, this neuron is 478 

dark-dominant (LDB = -0.34) due to its weaker surround, especially in the OFF pathway. 479 

Contrary to the above two example neurons, at the 27-40 ms latency this neuron is not 480 

balanced but light-dominant, due to stronger inhibition than excitation in the OFF 481 

pathway.  482 

Not all neurons are dark-dominant - for example, the neuron in Figure 2D is light-483 

dominant at the 13-27 ms latency (LDB = 0.29), due to its Gaussian-like receptive field 484 

with a light-responsive center and a weak surround. Similar to previous results, this 485 

neuron is balanced at the 27-40 ms latency (LDB = -0.02). However, as we shall see 486 

below, there is a tendency for most neurons to, on average, have stronger responses to 487 

dark stimuli at the 13-27 ms latency, and to have stronger responses to light stimuli or to 488 

be balanced at the 27-40 ms latency.  489 

 490 

ON Gaussian OFF GaussianON dense layer OFF dense layer

Time (ms)

OS: 0.64                  VAF: 34.3% H6023.006_1_Ch32

OS: 0.09                    VAF: 50% H6023.006_1_Ch35

OS:  0.31                    VAF: 30.4% H6211.005_1_Ch44

OS: 0.55                        VAF:  21.8% H6005.009_2_Ch18

LDB:  -0.42                 -0.2                 0.04                  0.28                 0.1                  0.07           0.07  

LDB:  -0.22                 -0.3                0.02               -0.01                0.02                0.07               0.04  

LDB:  -0.41              -0.34                0.24                  0.2                0.15                0.08                0.09  

0-13      13-27    27-40     40-53     53-67    67-80     80-93 
LDB:  0.09                 0.29               -0.02                 -0.2               -0.23               -0.22               -0.2  

0-13      13-27    27-40     40-53     53-67    67-80     80-93 

A

B

C

D

13.5o4o

2.9o

9.2o2.8o

9.8o

9.5o

2.9o
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 491 

Figure 2.  Gaussian filters and spatiotemporal dense layers estimated for four example neurons, 492 

one in each row. Elements of ON pathway on the left and OFF pathway on the right. Each dense 493 

layer is shown at a series of latencies ranging from 0-13 ms to 80-93 ms, with neurons being most 494 

responsive at the 13-27 ms and 27-40 ms latencies. Positive values (excitation) are in red and 495 

negative values (inhibition) are in blue. Orientation selectivity (OS) and variance accounted for 496 

(VAF) are indicated for each neuron, and light-dark balance (LDB) values for each latency. A, B, 497 

Both neurons respond more strongly to dark stimuli (LDB < 0) at the 13-27 ms latency, and 498 

become more balanced (LDB ~ zero) at the 27-40 ms latency. C, Neuron is also dark-dominant at 499 

the 13-27 ms latency but responds more strongly to light at the 27-40 ms latency. D, Neuron that 500 

is instead light-dominant at the 13-27 ms latency, and balanced at the 27-40 ms latency.  501 

 502 

Population responses 503 

To investigate the patterns of light and dark response strength across the sample 504 

of 74 neurons, we computed the sums of the four types of inputs for each neuron's 505 

optimal time lag (see Methods). Neurons had an optimal time latency of either 0-13.3 (38 506 

neurons), 13.3-26.7 ms (35 neurons) or 26.7-40 ms (1 neuron). As described in the 507 

Methods, we estimated the overall amount of excitation and inhibition from the ON and 508 

OFF pathways, and also used these values to calculate an index of light-vs-dark balance, 509 

LDB. We classified each neuron as dark-dominated (LDB < 0) or light-dominated (LDB 510 

> 0) depending on whether it was more responsive to dark (OFF excitation and ON 511 

inhibition) or light (ON excitation and OFF inhibition) at its optimal time latency. Across 512 

our population of 74 neurons, we found 46 neurons (62.16%) to be dark-dominated 513 

(LDB<0) and 28 neurons (37.84%) to be light-dominated (LDB>0) at their optimal 514 
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latencies, similar to Yeh et al. (2009). The neurons in our sample had a wide range of 515 

LDB values (Figure 3A; minimum = -0.62, maximum = 0.57, median = -0.078), but were 516 

on average dark-dominated, with an average LDB of -0.094 (Figure 3A; t = -3.49, df = 517 

73, p = 0.00081).   518 

To better understand why cortical neurons are on average more responsive to dark 519 

than light stimuli, we next compare the four types of inputs (Figure 3B) at each neuron’s 520 

optimal latency. ON pathway inhibition is the strongest type of input on average, and is 521 

significantly stronger than the other three. ON inhibition is on average significantly 522 

stronger than ON excitation (paired t-tests with Bonferroni correction; t = 4.21, df = 73, p 523 

= 7.07 x 10-5), OFF excitation (t = 3.03, df = 73, p = 0.0034) and OFF inhibition (t = 524 

3.95, df = 73, p = 0.00018). In contrast, OFF inhibition is on average the weakest type of 525 

input. While it has previously been suggested that stronger OFF than ON excitation could 526 

underlie stronger dark responses (Jin et al., 2008), the overall dark-dominance effect we 527 

observe at the optimal latency instead seems to be due to a strong imbalance between ON 528 

and OFF inhibition:  while inhibition is on average 37.95% stronger from the ON than 529 

from the OFF pathway (Figure 3C), there is no significant difference between excitation 530 

from the ON and OFF pathways (Figure 3D; t = 0.81, df = 73, p = 0.42). The difference 531 

between ON and OFF inhibition (Figure 3C) is also significantly stronger (t = 2.96, df = 532 

73, p = 0.0042) than the difference between ON and OFF excitation (Figure 3D).  533 

In addition, whether a given neuron is light- or dark-dominated is strongly related 534 

to whether ON inhibition exceeds OFF inhibition (Figure 3C, red points above 1:1 line 535 

vs. blue points below). However, the imbalance of ON vs. OFF excitation poorly predicts 536 

whether a neuron is light or dark-dominant (Figure 3D). Overall, these results suggest the 537 
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dark-dominance effect to be more driven by an imbalance in ON/OFF inhibition than by 538 

an imbalance in ON/OFF excitation.  539 

 540 

Figure 3.   Strengths of excitation and inhibition from the ON and OFF pathways at each 541 

neuron’s optimal time lag. A, Distribution of light-dark balance (LDB) index values for each 542 

neuron at its optimal latency. This index is on average negative, which indicates neurons respond 543 

more strongly to dark than light stimuli. B, Strength of excitation and inhibition across the ON 544 

and OFF pathways for each neuron, with average values shown as gray bars. Note ON inhibition 545 

is the strongest input on average. Blue dots represent light-dominant neurons and orange dots 546 

represent dark-dominant neurons. Significant paired t-tests (with Bonferroni correction, p < 547 

0.0083) are indicated by a star (*). C, Scatterplot of ON vs. OFF inhibition, for each of the 74 548 

neurons. Most neurons have stronger ON inhibition, and whether ON or OFF inhibition is 549 

stronger is correlated with light and dark-dominance. D, same as (C) but for ON and OFF 550 

excitation. Unlike the result for inhibition in (C), note that ON and OFF excitation have relatively 551 

similar strength on average. 552 

 553 

A B C

D

Light = ON excitation + OFF inhibition
Dark = OFF excitation + ON inhibition

= "#$ℎ& − ()*+
"#$ℎ& + ()*+

Light-dark 
balance  

*

*
*
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 554 

Time dynamics 555 

Since responses to dark stimuli have previously been found to have shorter 556 

latencies than responses to light stimuli (Komban et al., 2014), we suspected the above 557 

results might vary as a function of response latency. The dependence of light-dark 558 

balance is shown for each of the measured time lags in Figure 4A, with data points for 559 

each sampled neuron, and gray bars indicating their averages. The dark-dominance effect 560 

is especially predominant at the 0-13.3 ms (one sample t-tests with Bonferroni correction; 561 

t = -7.68, df = 73, p = 5.6 x 10-11) and 13.3-26.7 ms latencies (t = -3.90, df = 73, p-value 562 

= 0.00021). The dark-dominance effect disappears at the 26.7-40 ms latency, with 563 

slightly stronger average responses to light than dark, though the difference is not 564 

significant (t = 2.48, df = 73, p = 0.015). At the longer latencies, there is no significant 565 

average light- or dark-dominance (p > 0.15). These findings suggest that while V1 566 

neurons are on average biased towards dark responses in their short latencies, the dark-567 

dominance effect disappears at the 27-40 ms latency. 568 

 569 

Optimal latency:
13-27 ms: 38 neurons
27-40 ms: 35 neurons
40-53 ms: 1 neuron

A

B

C D

*

*
*

* *
*
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Figure 4.  Light-dark balance index and strength of excitation/inhibition of ON and OFF 570 

pathways for all neurons, across different latencies. A, Light-dark balance index values, shown as 571 

bar graph of average values for each latency, with superimposed data points for individual 572 

neurons. The 0-13.3 and 13.3-26.7 ms latencies exhibit dark-dominance, the 26.7-40 ms latency 573 

shows a slight bias towards light-dominance and the later latencies are relatively balanced.  B, 574 

Excitation and inhibition from the ON and OFF pathways for each neuron at the 0-13.3 ms 575 

latency. OFF excitation is stronger than ON excitation on average, and inhibition is significantly 576 

weaker than excitation at this latency.  C, Same as (B) but for the 13.3-26.7 ms latency - note the 577 

relatively balanced values on average, except for OFF inhibition which is significantly weaker 578 

than the other three types of input. D, Same as (B,C) but for the 26.7-40 ms latency - note the 579 

significantly weaker OFF excitation on average compared to the other three types of input. 580 

Significant paired t-tests (with Bonferroni correction, p < 0.0083) are shown by a star (*) for B, C 581 

and D. All of the pair-wise comparisons are significantly different in D. 582 

 583 

To understand why neurons are dark-dominated in their early latencies, we 584 

investigate how the strength of each input type varies as a function of time. Because 585 

neurons are most responsive up until a latency of 40 ms, the following sections focus on 586 

the first three latencies. As we can see in Figure 4B, at a latency of 0-13.3 ms OFF 587 

excitation is the strongest input on average - it is 25.5% stronger than ON excitation 588 

(paired t-tests with Bonferroni correction; t = 5.47, df = 73, p = 6.0 x 10-7). Inhibition is 589 

significantly weaker than excitation, both in the ON (t = 4.35, df = 73, p = 4.36 x 10-5) 590 

and OFF (t = 13.1, df = 73, p < 2.2 x 10-16) pathways. This discrepancy is stronger in the 591 

OFF than in the ON pathway (t = 7.51, df = 73, p = 1.17 x 10-10). Inhibition is on average 592 

37.9% stronger from the ON than from the OFF pathway (t = 5.35, df = 73, p = 9.76 x 10-593 

7), thereby contributing to stronger dark responses. Weaker inhibition than excitation at 594 
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the shortest latency could be explained by inhibition having to go through at least one 595 

more synapse than excitation to reach V1 neurons (Ferster & Lindström 1983, Martin & 596 

Whitteridge 1984; Montero, 1986). These results are also consistent with findings from 597 

Jin et al. (2008), who demonstrated stronger OFF than ON excitation from the LGN to be 598 

an important mechanism contributing to the dark-dominance phenomenon. However, 599 

while stronger OFF than ON excitation might explain dark-dominance at the 0-13.3 ms 600 

latency, the overall dark/light dominance of neurons will be more related to the 601 

considerably stronger responses at the 13.3-26.7 and 26.7-40 ms latencies. 602 

Responses at the 13.3-26.7 ms latency are also stronger to dark stimuli (Figure 603 

4C), but for a different reason. OFF excitation is not significantly stronger than ON 604 

excitation at the 13.3-26.7 ms latency (paired t-tests with Bonferroni correction; t = 1.65, 605 

df = 73, p = 0.103). Instead, dark-dominance at this latency is due to weaker OFF 606 

inhibition compared to the other three types of inputs. Inhibition from the OFF pathway 607 

is on average 38.3% weaker than inhibition from the ON pathway (t = 4.58, df = 73, p = 608 

1.88 x 10-5). OFF inhibition is also on average 31.2% weaker than ON excitation (t = 609 

7.67, df = 73, p = 5.77 x 10-11) and on average 36.9% weaker than OFF excitation (t = 610 

5.84, df = 73, p = 1.37 x 10-7). No other pair of inputs are significantly different from 611 

each other (p < 0.0083) at the 13.3-26.7 ms latency, further strengthening the idea that the 612 

imbalance between light and dark responses at this latency is due to weaker OFF 613 

inhibition. 614 

Contrary to the results for the earlier latencies, the 26.7-40 ms latency does not 615 

show dark-dominance (Figure 4D). The only significant differences are OFF excitation 616 

being both 22.4% weaker than OFF inhibition (paired t-tests with Bonferroni correction; t 617 
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= 5.37, df = 73, p = 9.1 x 10-7) and 19.7% weaker than ON inhibition (t = 3.80, df = 73, p 618 

= 0.0003). No other pair of inputs differ significantly (p < 0.0083) at this latency. Thus, 619 

different types of input are relatively more balanced at this latency compared to the 620 

previous ones.   621 

To further understand the time dynamics of dark and light responses, we next 622 

analyze how the strength of each type of input changes across latencies (Figure 5). 623 

Because all input types are much weaker at the 0-13.3 ms latency compared to the 13.3-624 

26.7 and 26.7-40 ms latencies (Figure 5), we focus our analysis on comparing the two 625 

latencies with the strongest responses, 13.3-26.7 ms and 26.7-40 ms. Consistent with the 626 

above results, OFF inhibition is 41.4% weaker at 13.3-26.7 ms than at 26.7-40 ms (Figure 627 

5A; paired t-tests with Bonferroni correction; t = 8.14, df = 73, p = 7.63 x 10-12), and is 628 

the only input type to differ significantly in strength between these two latencies. OFF 629 

excitation is 16.6% weaker at 26.7-40 ms than at 13.3-26.7 ms, but this difference is not 630 

significant (Figure 5B; t = 2.11, df = 73, p = 0.0381). There are no significant differences 631 

between the 13.3-26.7 ms and 26.7-40 ms latencies for both ON inhibition (Figure 5C; t 632 

= 0.197, df = 73, p = 0.845) and ON excitation (Figure 5D; t = 1.15, df = 73, p = 0.256). 633 

These findings suggest that inhibition is slower to dark than light stimuli, which leads to 634 

dark-dominance at the 13.3-26.7 ms latency.  635 
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 636 

 637 

Figure 5.  Temporal dependence of contributions from ON / OFF excitation and inhibition. A, 638 

Bar graph of average OFF inhibition strength across time lags, with data points indicating values 639 

for individual neurons. Note OFF inhibition is weaker at the 13.3-26.7 ms latency than at the 640 

26.7-40 ms latency. B, Same as (A) but for OFF excitation. C, Same as (A-B) but for ON 641 

inhibition. D, Same as (A-C) but for OFF excitation. Significant paired t-tests (p < 0.0167) 642 

between the first three latencies are shown by a star (*). Note that OFF inhibition (A) is the only 643 

input type to significantly vary in strength between the 13.3-26.7 and 26.7-40 ms latencies. Also 644 

note that input strength at the 0-13.3 ms latency is always significantly weaker than at the 13.3-645 

26.7 and 26.7-40 ms latencies. 646 

 647 
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 The results so far suggest dark-dominance occurs at the 13-27 ms latency due to 648 

more inhibition to light than dark stimuli. Because of those results, we hypothesized the 649 

dark-dominance effect would depend on how much inhibition a neuron receives, which in 650 

turn depends on the relationship between the stimuli and a neuron’s receptive field. There 651 

should be little or no dark-dominance from excitation alone, for example if we compare 652 

the responses to light stimuli falling upon the ON-excitation region to dark stimuli on the 653 

OFF-excitation region. Dark-dominance also cannot occur from inhibition alone, since 654 

the spontaneous firing rate is close to zero. Instead, dark-dominance should occur when a 655 

stimulus triggers both excitation and inhibition, for example when either light or dark 656 

stimuli fall upon both the light and dark-driven regions of a neuron’s receptive field.  657 

 To test this hypothesis, we simulated responses of the estimated models to four 658 

different stimulus conditions tailored to the receptive field of each neuron (see Methods): 659 

1. Light stimuli on light-driven regions, 2. Dark stimuli on dark-driven regions, 3. Light 660 

stimuli on light and (half of) dark-driven regions, and 4. Dark stimuli on dark and (half 661 

of) light-driven regions (Figure 6, top parts). The averages of the four responses were 662 

taken across the entire sample of 74 neurons (Figure 6, lower plots). As expected, the 663 

simulation shows little or no dark-dominance when only the excitatory region is 664 

stimulated (conditions 1 and 2, Figure 6A). But as we hypothesized, we do obtain dark-665 

dominance at the 13-27 ms latency with stimuli that both excite and inhibit the neuron’s 666 

response (conditions 3 and 4, Figure 6B). These results support the idea that dark-667 

dominance occurs when measured with stimuli that recruit both the excitatory and 668 

inhibitory regions of a neuron’s receptive field.  669 
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 670 

Figure 6.  Average simulated temporal impulse responses to different stimuli. The stimuli were 671 

tailored to each neuron’s receptive field and are presented here in a schematic form. A, Red 672 

shows the simulated responses to light stimuli on the light-driven regions of each neuron’s 673 

receptive field. Blue shows the simulated response to dark stimuli on the dark-driven regions of 674 

each receptive field. The two responses are similar, suggesting responses to light and dark stimuli 675 

are relatively balanced across latencies. B, Red shows the simulated responses to light stimuli 676 

falling upon the light-driven regions, and also upon half of the dark-driven regions. Blue shows 677 

the simulated responses to dark stimuli on the dark-driven regions, plus on half of the light-driven 678 

regions. As expected, the responses are weaker than in (A), and this decrease is much less 679 

pronounced for the dark stimulus (blue line) at the 13-27 ms latency. These results suggest that 680 

dark-dominance predominantly occurs when measured with stimuli that recruit both the 681 

excitatory and inhibitory regions of a neuron’s receptive field. 682 

 683 

 684 

 685 

A BExcitation only 
-> no dark-dominance

Excitation + Inhibition 
-> dark-dominance at 13-27 ms
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Orientation selectivity 686 

Previous studies demonstrated that V1 neurons are less orientation selective in 687 

their early responses (Ringach et al, 1997; Shapley et al, 2003). Since we have found 688 

early latencies to respond more strongly to dark stimuli, we wondered whether the 689 

stronger dark-dominance might be related to weaker orientation selectivity. To infer 690 

orientation selectivity, we next simulate the responses of the neurons’ fitted models to 691 

static sinewave grating stimuli with a series of orientations, spatial frequencies, and 692 

phases. For each latency, we select the sinewave grating with the best phase and spatial 693 

frequency for each orientation. We then use each model’s simulated responses to these 694 

sinewave gratings to measure an index of orientation selectivity, OS, using a conventional 695 

vector summation method (Wörgötter & Eysel, 1987; Swindale, 1998; see Methods), as a 696 

function of latency. This orientation selectivity index for a given neuron typically peaks 697 

at the 26.7-40 ms latency (Figure 7A). More specifically, across the population the 698 

orientation selectivity is significantly higher at 26.7-40 ms than at both 13.3-26.7 ms 699 

(paired t-test with Bonferroni correction; t = 6.07, df = 73, p = 5.1 x 10-8) and 0-13.3 ms 700 

(t = 5.95, df = 73, p = 8.4 x 10-8). Orientation selectivity is slightly higher at the 13.3-26.7 701 

than at the 0-13.3 ms latency, but this difference is not significant (t = 2.17, df = 73, p = 702 

0.033). These results suggest that orientation selectivity is most prominent at the 26.7-40 703 

ms latency, where is also the first latency where light and dark responses are relatively 704 

balanced. 705 

We next investigate the relationship between orientation selectivity and light-dark 706 

balance at each neuron's optimal latency, which can be seen in Figure 7B. Neurons 707 

having high dark dominance (LDB << 0) or high light dominance (LDB >> 0) tend to 708 
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have low orientation selectivity, while those that are more orientation selective are more 709 

often light-dark balanced (LDB ~ 0). This apparent relationship is confirmed statistically:  710 

there is a significant negative relationship (r = -0.45) between orientation selectivity and 711 

absolute values of LDB (t = -4.4, df = 72, p = 4 x 10-5). These results suggest that a 712 

response bias towards dark stimuli might reduce a neuron’s orientation selectivity (Figure 713 

7B), especially at the 0-13.3 and 13.3-26.7 ms latencies (Figure 7A).   714 

 715 

 716 

 717 

Figure 7.  Changes in orientation selectivity and excitation-inhibition balance across latencies. A, 718 

Average orientation selectivity peaks at the 26.7-40 ms latency, and is relatively low at the 0-13.3 719 

and 13.3-26.7 ms latencies.  B, Relationship between orientation selectivity (ordinate) and light-720 

dark balance (abscissa). Neurons with higher orientation selectivity tend to be more balanced. C, 721 

A B

C D
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Excitation-Inhibition balance (EIB) index as a function of latency. Excitation is stronger than 722 

inhibition at the 0-13.3 and 13.3-26.7 ms latencies, while excitation and inhibition are relatively 723 

balanced at the 26.7-40 ms latency. D, Relationship between orientation selectivity (ordinate) and 724 

EIB (abscissa). Neurons with stronger excitation than inhibition tend to be less orientation 725 

selective. Significant paired t-tests (with Bonferroni correction, p < 0.0167) between the first 726 

three latencies (0-40 ms) are shown by a star (*) for B and D. 727 

 728 

 Another possible explanation for weaker orientation selectivity at early latencies 729 

could be faster excitation than inhibition (Ringach et al., 1997; Shapley et al., 2003). 730 

Figure 7C shows the relative amount of excitation vs. inhibition (EIB index; see 731 

Methods) at each latency. Excitation is stronger than inhibition at the 0-13.3 ms (t = 11.3, 732 

df = 73, p < 2.2 x 10-16) and 13.3-26.7 ms latencies (t = 5.08, df = 73, p = 2.8 x 10-6), 733 

while there is no significant difference between excitation and inhibition at the 26.7-40 734 

ms latency (t = -2.3, df = 73, p = 0.025). This bias towards excitation weakens over time, 735 

with lower EIB values for the 13.3-26.7 than for the 0-13.3 ms latency (t = 4.89, df = 73, 736 

p = 5.73 x 10-6). EIB values are also lower for the 26.7-40 than for the 13.3-26.7 ms 737 

latency (t = 7.44, df = 73, p = 1.58 x 10-10). Also consistent with Ringach et al. (1997) 738 

and Shapley et al. (2003), we find a negative correlation of r = -0.26 between orientation 739 

selectivity and EIB (Figure 7D; t = -4.87, df = 72, p = 6.25 x 10-6). Overall, these results 740 

suggest that both dark-dominance and stronger excitation contribute to weaker orientation 741 

selectivity at early latencies. However, another interpretation might be that weaker OFF 742 

inhibition is responsible for all of the above phenomena at early latencies: stronger dark 743 

responses, weaker overall inhibition and weaker orientation selectivity (see Discussion). 744 

 745 
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Discussion    746 

 Using a novel model-fitting approach to natural image responses, we find V1 747 

neurons respond more strongly to dark than to light stimuli at early but not at later 748 

latencies, due to slower inhibition to dark than light stimuli. Dark-dominance occurs 749 

when inhibition is differentially recruited, for example when there is a light stimulus on 750 

the dark-driven region of a neuron’s receptive field (or vice-versa). As can be seen in 751 

Figure 6 our results suggest little difference in the average neuron’s firing rate when a 752 

light stimulus only covers the light-excited region of the receptive field (Figure 6A, red) 753 

compared to when a dark stimulus only covers the dark-excited region of the receptive 754 

field (Figure 6A, blue). At the 13.3-26.7 ms latency, stronger responses to dark stimuli 755 

are instead observed when light (Figure 6B, red) or dark (Figure 6B, blue) stimuli cover 756 

both the light and dark regions of a neuron’s receptive field. These results could help 757 

explain why dark-dominance increases at lower spatial frequencies (Jansen et al., 2019), 758 

since a given light or dark band of a low-frequency grating may cover more than one 759 

region of a receptive field.  760 

 761 

 762 

Inference of excitation and inhibition from model-fitting 763 

We use a machine learning algorithm to fit a model based on separate ON and 764 

OFF retinogeniculate inputs to V1, each composed of linear filters followed by half-wave 765 

rectification. The weaker surrounds of LGN neurons (e.g. Croner & Kaplan, 1995) are 766 

omitted, to enable robust convergence on a set of fitted parameter values. Using this 767 

approach, we can distinguish between excitation and inhibition to light and dark stimuli 768 
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across spatial receptive field locations and temporal lags, to investigate how ON and OFF 769 

pathways contribute to the dark-dominance effect.  770 

It is important to note that the excitation and inhibition we estimate does not 771 

necessarily reflect direct LGN inputs. For example, V1 does not receive direct inhibitory 772 

inputs from the LGN (Ferster & Lindström 1983, Martin & Whitteridge 1984; Montero, 773 

1986), but rather from local inhibitory interneurons, which in turn may relay geniculate 774 

inputs or be driven by other V1 neurons (Isaacson & Scanziani, 2011). Although V1 775 

neurons directly receive geniculate excitation, there is also intracortical excitation within 776 

V1 (Douglas et al., 1995). Moreover, what we estimate does not necessarily reflect the 777 

synaptic excitatory or inhibitory inputs a neuron directly receives. For example, a neuron 778 

could decrease its firing rate in response to light because its excitatory inputs are 779 

inhibited by light. Consequently, the estimated excitation and inhibition should best be 780 

interpreted as a measure of how a neuron’s response varies as a function of light and dark 781 

stimuli, and not simply as synaptic weighting.  782 

Distinguishing excitation to dark from inhibition to light (and vice-versa) has 783 

been enabled by the use of rich stimuli such as natural images, combined with our simple 784 

model architecture. Had we attempted to make the model more complex and biologically 785 

realistic, the results we obtain from the analysis might be more dependent on the 786 

particular sort of model we use and thus become problematic to interpret. Natural image 787 

stimuli lead to more robust system identification than with synthetic stimuli (Talebi & 788 

Baker, 2012), and perhaps more importantly, they ensure that neurons simultaneously 789 

receive visual stimuli that both increase and decrease their firing rate in different parts of 790 
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their receptive fields - this allows the machine learning algorithm to distinguish between 791 

excitation from one pathway and inhibition from the other.  792 

 793 

 794 

Dark-dominance due to weaker inhibition from dark stimuli 795 

Dark-dominance in V1 has previously been thought to originate from relatively 796 

greater lateral geniculate excitation from the OFF pathway (Jin et al., 2008). However, 797 

recent findings suggest dark-dominance might instead be caused by stronger intracortical 798 

inhibition from light than dark stimuli (Taylor et al., 2018). At each neuron’s optimal 799 

latency, our results support the latter hypothesis by showing ON inhibition to be much 800 

stronger than OFF inhibition, while we do not find a significant difference between ON 801 

and OFF excitation.  802 

These findings might help explain why dark-dominance is strongest in layer 2/3 803 

of primate V1 (Yeh et al., 2009). If dark-dominance were principally due to stronger 804 

lateral geniculate excitation from the OFF pathway, we would expect dark-dominance to 805 

be at least as strong in layer 4 than in the other layers, since this is where most LGN 806 

neurons synapse. While two-thirds of the neurons in primate layer 4 show dark-807 

dominance, this effect is much stronger in layers 2/3 where almost every neuron is dark-808 

dominant (Yeh et al., 2009). This laminar difference might be due to pyramidal neurons 809 

in primate layers 2/3 receiving extensive inhibition, as has been shown in the mouse 810 

(Kätzel et al., 2011), with inhibition being stronger to light than dark stimuli (Taylor et 811 

al., 2018).  812 
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Since this study utilized recordings from polytrodes that did not extend across all 813 

the cortical layers, a laminar analysis was not feasible. A useful future direction could be 814 

to replicate this experiment with linear-array probes to obtain simultaneous recording 815 

across all V1 layers, to investigate the laminar dependence of dark-dominance.  816 

 817 

Time dynamics of dark-dominance 818 

A novel finding of this study is how the dark-dominance changes as a function of 819 

latency. We observe the dark-dominance effect at the 0-13.3 and 13.3-26.7 latencies, but 820 

instead find a slight light-dominance at the 13.3-26.7 latency. We were able to find this 821 

relationship between latency and dark-dominance because we estimate and analyze light 822 

and dark responses at every latency for each neuron. Other studies have focused on each 823 

neuron’s optimal latency (e.g. Yeh et al., 2009), which still clearly shows the dark-824 

dominance effect (Figure 3) but neglects the effect of latency on the strength of dark 825 

responses. Consequently, dark responses were thought to be on average stronger in 826 

general, whereas we find this effect to be specific to the earlier latencies. 827 

This relationship between dark-dominance and latency should not be too 828 

surprising, considering dark-dominant V1 neurons have previously been found to respond 829 

3-6 ms faster than light-dominant neurons (Komban et al., 2014). These faster dark 830 

responses in V1 have been attributed to faster OFF than ON LGN responses (Jin et al., 831 

2008; Jin et al., 2011). While we do find the 0-13.3 ms latency to be dark-dominant due 832 

to stronger OFF than ON excitation (Figure 4B), most neurons have poor responses at 833 

this latency. The dark-dominance effect is most salient at the 13.3-26.7 ms latency, when 834 

response strength peaks and dark-dominance is due to weaker inhibition to dark stimuli 835 
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(Figure 4C). These results are consistent with findings from Taylor et al. (2018), who 836 

found intracortical inhibition to be stronger for light than for dark stimuli. Therefore, we 837 

interpret the dark-dominance results at each neuron’s optimal time lag from Yeh et al. 838 

(2009) and Jansel et al. (2019) as mostly due to weaker inhibition rather than stronger 839 

excitation to dark stimuli.  840 

 841 

Relationship to orientation selectivity      842 

 This study also brings a new perspective on the intracortical mechanisms of 843 

orientation selectivity, and helps explain why V1 neurons are less orientation-selective in 844 

their early time lags (Ringach et al., 1997; Shapley et al., 2003). Due to the absence of 845 

direct inhibition from the LGN to V1 (Ferster & Lindström 1983, Martin & Whitteridge 846 

1984; Montero, 1986), the lagged onset of orientation selectivity was previously 847 

attributed to the delay imposed by the necessity of intracortical inhibitory interneurons 848 

(Ringach et al., 1997; Shapley et al., 2003). We do find inhibition strength to be 849 

positively correlated with orientation selectivity (Figure 7D; see Li, Yang, Liang, Xia & 850 

Zhou, 2008). However, we also find neurons with higher orientation selectivity to have 851 

more balanced light/dark responses (Figure 7B). Consistent with these results, responses 852 

from 0 to 26.7 ms, which are lower in orientation selectivity (Figure 7A), are also biased 853 

towards dark stimuli (Figure 4A) and have stronger excitation than inhibition (Figure 854 

7C). In contrast to the first two latencies, the 26.7-40 ms latency has high orientation 855 

selectivity (Figure 7A) and relatively balanced responses between light and dark stimuli 856 

(Figure 4A, 4D). Because both dark-dominance and stronger inhibition at the 13.3-26.7 857 

latency are due to slower inhibition to dark stimuli (Figure 4C), the reason why neurons 858 
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are less orientation selective at the 13.3-26.7 than at the 26.7-40 ms latency could 859 

possibly be due to this slower inhibition to dark stimuli.   860 

 861 

Conclusion 862 

In conclusion, we use a novel machine learning approach to bring new insights to 863 

the phenomenon of stronger dark responses in visual cortex neurons. We find the dark-864 

dominance effect to only occur in the early latencies, and to be due to slower inhibition to 865 

dark stimuli. We also show how weaker average inhibition to dark stimuli is related to 866 

weaker orientation selectivity in the early latencies. The questions of how and why 867 

primary visual cortex neurons receive slower inhibition to dark than to light stimuli, and 868 

whether these findings vary across laminae, could be fruitful subjects of future 869 

investigation.  870 
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