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Abstract 

 The identification of xenobiotics in nontargeted metabolomic analyses is a vital step in 

understanding human exposure. Xenobiotic metabolism, excretion, and co-existence with other 

endogenous molecules however greatly complicate nontargeted studies. While mass spectrometry 

(MS)-based platforms are commonly used in metabolomic measurements, deconvoluting 

endogenous metabolites and xenobiotics is often challenged by the lack of xenobiotic parent and 

metabolite standards as well as the numerous isomers possible for each small molecule m/z feature. 

Here, we evaluate the use of ion mobility spectrometry coupled with MS (IMS-MS) and mass 

defect filtering in a xenobiotic structural annotation workflow to reduce large metabolomic feature 

lists and uncover potential xenobiotic classes and species detected in the metabolomic studies. To 

evaluate the workflow, xenobiotics having known high toxicities including per- and 

polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated 

biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were examined. Initially, to 

address the lack of available IMS collision cross section (CCS) values for per- and polyfluoroalkyl 

substances (PFAS), 88 PFAS standards were evaluated with IMS-MS to both develop a targeted 

PFAS CCS library and for use in machine learning predictions. The CCS values for biomolecules 

and xenobiotics were then plotted versus m/z, clearly distinguishing the biomolecules and 

halogenated xenobiotics. The xenobiotic structural annotation workflow was then used to annotate 

potential PFAS features in NIST human serum. The workflow reduced the 2,423 detected LC-

IMS-MS features to 80 possible PFAS with 17 confidently identified through targeted analyses 

and 48 additional features correlating with possible CompTox entries. 
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Introduction 

Measuring chemical exposure is extremely challenging due to the range and number of 

anthropogenic molecules encountered in our daily lives, as well as their complex biochemical 

transformations throughout the body. Metabolomic measurements host an abundance of exposure 

information as they are composed of xenobiotics originating from diet, lifestyle, and 

environmental exposure, in addition to information about endogenous molecules from primary 

pathways, secondary signaling, and microbial communities within our bodies (Figure 1).1–4 With 

all these considerations, millions of molecules are estimated in the human metabolome. These 

estimates include more than 16,000 known endogenous metabolites, 1500 drugs, 22,000 food 

constituents,5 and thousands of xenobiotics from environmental exposures since over 882,000 

parent chemicals are present in the CompTox database alone,6,7 not even including all the 

xenobiotic degradants and metabolites. These xenobiotics and their degradants and metabolites are 

also included in the exposome, which was first introduced by Dr. Christopher Wild in 2005 and 

defined as “the totality of exposures from conception onwards”.8,9 Since xenobiotic exposure is 

known to affects a person's health, and various epidemiological studies have revealed links 

between environmental exposures and many different infections, conditions, and diseases 

including various cancers and Alzheimer’s disease, evaluating these chemicals in metabolomic 

studies is essential.10  

To date, direct measurements of xenobiotics biofluids and tissues are performed to attain 

exposure data. Biological responses are also commonly used to infer the extent of chemical 

exposure as many xenobiotics can be cleared from the body prior to any observed perturbations. 

Omic-based measurements (e.g., genomics transcriptomics, proteomics, and metabolomics) are 

therefore extremely valuable for gaining insight into the molecular disruptions. While genomic, 
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transcriptomic, and proteomic analyses have rapidly progressed over the last two decades,1,2 

xenobiotic and endogenous metabolite measurements have not advanced to nearly as great a degree 

even though they are essential for the direct evaluations of chemical exposure.  

 
Figure 1. Molecular constituents in the metabolome. External environmental exposures, xenobiotic 

metabolism, endogenous metabolism, and gut microbiota all contribute to the metabolome.  

 

To gain a better understanding of the molecules in the metabolome and exposome, numerous 

analytical strategies have been employed.11 Unfortunately despite advances in nuclear magnetic 

resonance (NMR) spectroscopy, chromatography, and mass spectrometry (MS), only ~10% of the 

tens of thousands of small molecule features to date are reliably annotated.2,12 These unknown 

molecules, together with those that are not detected by the specific analytical platform used, are 

collectively known as the “dark metabolome”.2 Thus, our ability to better understand this 

unexplored fraction of the metabolome must improve in order to draw more informative 

connections between human health and the environment.2,12 Unfortunately there are many 

challenges involved in these measurements. For example, xenobiotic compounds in pesticides, 

cosmetics, and air pollutants can be taken into the body by a variety of avenues with the 
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metabolome reflecting both chronic and acute exposure to such substances.13,14 Additionally, the 

various molecular properties of these compounds require both polar and nonpolar sample 

extractions, specific concentration steps, and analytical platforms having dual ionization methods 

and different chromatography types. Furthermore, the resulting complex datasets require 

alignment and mining by sophisticated computational tools, which often demand machine learning 

(ML) capabilities.15–17 However, as automated analytical capabilities and computational 

approaches advance, our ability to address these challenges continues to grow with each year. 

Computational approaches are extensively leveraged to map xenobiotics within the complexity 

of the dark metabolome.18,19 Xenobiotics of great interest due to their known high toxicities include 

per- and polyfluoroalkyl substances (PFAS),20,21 polycyclic aromatic hydrocarbons (PAHs),22,23 

polychlorinated biphenyls (PCBs)24,25 and polybrominated diphenyl ethers (PBDEs).26–28 Each of 

these classes includes a variety of subclasses and also unknowns from metabolism and 

degradation. The numerous resulting species therefore require progressively more sophisticated 

techniques to detect their presence, enable structural characterization, and evaluate their temporal 

evolution and distribution. Since many of these xenobiotic classes have characteristic molecular 

and structural traits, such as PFAS all sharing the presence of C-F bonds and PCBs having 

chlorinated biphenyl moieties, these can be exploited to increase detection specificity. For 

example, Kendrick mass defect (KMD) analysis has been important for distinguishing different 

molecular classes as it can probe repetitive patterns in complex datasets by normalization to 

specific atomic or functional group components. In the case of PFAS, KMD analysis with a CF2 

repeating unit pinpoints molecules with and without CF2 functional groups.20,21 Furthermore, since 

PFAS have varying head groups and linkages including hydrocarbon regions (fluorotelomer 

sulfonate (FTSs)), ether bonds (PFECAs) and branched C-F backbones,10,12 subclass distinction is 
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possible even within this single xenobiotic class.29–35 Orthogonal separation dimensions have also 

shown utility for PFAS analyses. In a study coupling liquid chromatography, ion mobility 

spectrometry and MS (LC-IMS-MS), the multidimensional evaluations uncovered specific PFAS 

trends as the m/z versus IMS collision cross section (CCS) plots distinguished each PFAS subclass 

studied.36,37 These CCS and m/z evaluations are progressively being utilized in more unknown 

small molecule identification efforts with specific utility in database matching.36,38 However if 

standards are not available, CCS prediction with ML as a structural filter is necessary and has been 

readily applied with several groups showcasing theoretical and experimental CCS value 

differences of less than 2%.36,39,40 As such, CCS prediction through ML has great promise in 

elucidating information for the many metabolites and xenobiotics without standards.40,41 

In this manuscript, we present a xenobiotic structural annotation workflow that utilizes mass 

defects and CCS values to filter down large metabolomic feature lists and elucidate potential 

detected xenobiotic classes and species. Due to its recent linkages to significant health impacts, 

PFAS were of particular interest for this evaluation, however since only a few PFAS experimental 

CCS values were available, initially we evaluated 88 different PFAS standards with drift tube IMS. 

These values were utilized to create a targeted library that we uploaded to the free repository 

Panorama42 within the open-source software tool Skyline,43 so that it is available to the research 

community. Next, the PFAS CCS values and PCBs, PBDEs, and PAHs values available in the 

Unified CCS Compendium44–46  were inputted into the open-source ML CCS prediction tool, 

CCSP 2.0, to calculate theoretical CCS values since many standards are not available for 

xenobiotics in these classes. Finally, a xenobiotic annotation workflow utilizing the CCS values 

and mass defect filtering was applied to a nontargeted metabolomic feature list for NIST serum to 

discover potential PFAS. 
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Materials and Methods 

Xenobiotic Chemical Standards and PFAS Serum Extraction. Eighty-seven PFAS standards 

were characterized with LC-IMS-MS to obtain CCS and m/z values (Table S1). Examples of the 

different PFAS subclasses studied include perfluoroalkyl carboxylic acids, perfluoroalkyl sulfonic 

acids, and Nafion byproducts. PFAS standards were obtained from Wellington, EPA, Chemours, 

SynQuest, 3M, Acros Organics, ASM, and Alfa Aesar (Table S1). Each standard was diluted in 

water (Thermo Fisher, Waltham, MA) or methanol (Thermo Fisher, Waltham, MA) to 5-10 µg 

mL-1 for LC-IMS-MS analyses and CCS IMS measurements, as outlined below. The dilution 

solvent was chosen based on the solubility of the target compound and the degradation properties 

of each PFAS standard (Table S1). For PAHs, PCBs and PBDEs, CCS values were obtained from 

the CCS Compendium47 and other literature sources.46  

PFAS were extracted from NIST human serum 909c (Gaithersburg, MD). In this extraction, 

50 µL of thawed serum was mixed with 1 µL of the heavy labeled PFAS mixture MPFAC-C-ES 

(Wellington Laboratories, ON, Canada) and 2 µL of the heavy labeled standard M3HFPO-DA or 

GenX (Wellington Laboratories, ON, Canada) for quantitation. The serum mixture was then 

vortexed for 30 s, followed by protein precipitation with 300 µL of cold (-20ºC) acetonitrile 

(Thermo Fisher, Waltham, MA). The sample was vortexed again for 30 s and chilled for 30 min 

at -20ºC, followed by centrifugation at 12,500 g for 5 min. After centrifugation, 200 µL of the 

acetonitrile supernatant was transferred to a microcentrifuge tube and placed in a SpeedVac until 

dry. The residue was then reconstituted in 100 µL of a 40% methanol (Thermo Fisher, Waltham, 

MA) and 60% water (Thermo Fisher, Waltham, MA) solution containing 2 mM ammonium acetate 

(Thermo Fisher, Waltham, MA). Finally, the sample was vortexed for 30 s and transferred to a LC 

vial for analysis. Blanks containing methanol were also used in the study to determine extraction 
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and instrumental PFAS contaminates. All blanks underwent the same extraction procedure as the 

NIST serum. 

LC-IMS-MS Analyses. The reverse phase LC method utilized for measuring monoisotopic 

masses and CCS values for the PFAS standards and serum extracts has been previously 

described.27 Briefly, this method uses an Agilent 1290 Infinity LC system (Agilent Technologies, 

Santa Clara, CA) equipped with a C18 column (Agilent ZORBAX Eclipse Plus, 2.1 × 50 mm, 1.8 

μm). The mobile phases utilized contained 18 MΩ cm water from an ELGA Purelab Flex 

purification system (High Wycombe, UK), ammonium acetate (Fisher Scientific, Waltham, MA), 

and/or LC-IMS grade methanol (Fisher Scientific, Waltham, MA). The composition of Mobile 

Phase A (MPA) was 5 mM ammonium acetate in water, while Mobile Phase B (MPB) consisted 

of 5 mM ammonium acetate 95% methanol and 5% water. The LC gradient was as follows (% 

MPB, Time (min)): 10%:0 min, 10%:0.5 min, 30%:2 min, 95%:14 min, 100%:16.5 min, followed 

by 6 min re-equilibration at 10% MPB. 

For the IMS-MS analyses, an Agilent 6560 IM-QTOF MS (Agilent Technologies, Santa Clara, 

CA) was utilized in negative ion mode with an electrospray ionization (ESI) source (Agilent Jet 

Stream). Since negative mode analyses were performed, the deprotonated ion species of all PFAS 

were monitored, in addition to the [M-COOH]- decarboxylated species for PFAS containing 

carboxylic acid functionalities such as the polyfluoroalkyl ether carboxylic acids and 

perfluoroalkyl carboxylic acids. Following ionization, the ions were pulsed into the drift tube, 

containing ~3.950 Torr N2 gas every 60 ms, with 100 µs ion gating to minimize peak broadening 

and obtain the highest possible resolving power. An electric field of 17.2 V cm-1 was utilized in 

the drift tube and the TOF was operated in the 50-1700 m/z range. IMS-MS nested spectra were 

acquired using the MassHunter Acquisition Software B.09, and data were analyzed using IMS-
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MS Browser Version 10.0 preceding spreadsheet exportation (Microsoft Excel) for further data 

analysis. All DTCCSN2 values were calculated using a single-field method that has been extensively 

tested by multiple laboratories.27,33–36 This method utilizes Agilent tune mix ions as IMS calibrants 

and triplicate CCS values are measured for the different ions in separate experiments over three 

days to confirm both method reproducibility and instrument stability. The CCS values collected 

with this method were all highly precise, with an RSD lower than 0.3%. 

Mass Defect and Kendrick Mass Defect Calculations. To evaluate the mass defect and KMDs 

for CF2 and CH2-containing species, Equations 1 through 3 were utilized.20–22,24 

𝐾𝑒𝑛𝑑𝑟𝑖𝑐𝑘 𝑀𝑎𝑠𝑠 = 𝑆𝑐𝑎𝑙𝑎𝑟 ∗ 𝐼𝑈𝑃𝐴𝐶 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑀𝑎𝑠𝑠    Equation 1 

𝑆𝑐𝑎𝑙𝑎𝑟 =  
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑀𝑎𝑠𝑠 𝑜𝑓 𝐴𝑡𝑜𝑚 𝑜𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐺𝑟𝑜𝑢𝑝

𝐸𝑥𝑎𝑐𝑡 𝑀𝑎𝑠𝑠 𝑜𝑓 𝐴𝑡𝑜𝑚 𝑜𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐺𝑟𝑜𝑢𝑝
     Equation 2 

 

𝐾𝑀𝐷 = 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐾𝑒𝑛𝑑𝑟𝑖𝑐𝑘 𝑀𝑎𝑠𝑠 − 𝐾𝑒𝑛𝑑𝑟𝑖𝑐𝑘 𝑀𝑎𝑠𝑠     Equation 3 

Since the scalar factor in Equation 2 is obtained as the nominal mass of the target compound 

divided by its exact mass, it varies for each repeating unit or functional group of interest. For 

example, for CF2 it is 50/49.9968 and for CH2 it is 14/14.0156 (showing the exact mass to 4 

decimal points). Since mass defect is based on 12C, its scalar factor is equal to one since the nominal 

and exact masses of carbon are both defined as 12 Da (or 12/12). Additionally, all mass defects 

and KMDs are reported in parts per thousand (ppt) for optimal visualization. 

Machine Learning CCS Prediction. For the ML analyses, PFAS, PCBs/PBDEs, and PAHs 

were utilized to develop a Python-based ML CCS prediction approach for xenobiotics. A previous 

version of the CCS Predictor (CCSP)48,49 was used as a starting point, and new CCSP 2.0 code 

was prepared in JupyterLab V2.2.6 using Python V3.8.5 and the following dependencies: RDKit 

V2020.09.1, PubChemPy V1.0.4, Pandas V1.1.3, Numpy V1.19.2, Matplotlib V3.3.2, and Plotly 

V4.14.3. For the PFAS study set, 102 PFAS experimental CCS values obtained from drift tube 
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IMS were utilized. Seventy-eight of these CCS values corresponded to deprotonated species and 

the remaining were for polyfluoroalkyl ether carboxylic acid and perfluoroalkyl carboxylic acid 

subclasses which can also be detected in their decarboxylated form ([M-COOH]-). For ML, all 

species were neutralized through proton addition in ChemDraw Professional V16.0 (Perkin-Elmer, 

Waltham, MA). The PBDEs/PCBs set consisted of 16 parent PBDEs, 20 hydroxide PBDE 

derivatives, 23 PCBs and 13 PCB hydroxide derivatives. The 72 CCS values were obtained from 

the Unified CCS Compendium,44 and included compounds detected in their [M-Cl+O]- and [M-

Br+O]- forms. Again, all ions were neutralized using Chem Draw Professional. Finally, the PAH 

dataset consisted of 26 parent PAHs and 4 PAH ketone derivatives. Here 29 PAHs were obtained 

from the Unified CCS Compendium and one was retrieved from CCSBase.50  Each detected 

protonated PAH ion was neutralized through deprotonation prior to ML. Additionally, structural 

representations for each molecule were encoded as a MOL file based on its IUPAC International 

Chemical Identifier (InChI) using RDKit. When available, the InChI was obtained from the 

structure’s PubChem entry. Any structure without a PubChem entry was drawn in ChemDraw 

Professional and its InChI exported. For each InChI, 1613 2D molecular descriptors were 

calculated with the Python package Mordred V1.2.0.51 Evaluation of each ML algorithm randomly 

assigned half of the molecules in each set to a calibration (training) group for model construction 

and the other half were held for validation. Molecular descriptors remaining constant across all 

calibration sets were discarded and any descriptor not applicable to one or more molecules in the 

calibration or validation sets was excluded. The remaining descriptors were z-transformed using 

the mean and standard deviation of the descriptors in the calibration set. 

The PFAS, PDBE/PCB and PAH sets were next used to train the support vector regression 

models employing a linear kernel. Two hyperparameters were tuned in model development: (1) 
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the regularization parameter C, which determines the penalty gradient associated with non-zero 

residuals and (2) ϵ, the radius of an epsilon-tube in which no penalty is accrued for non-zero 

residuals. Hyperparameters were selected using a grid search approach, where C and ϵ were 

evaluated pairwise using 5-fold cross-validation. C was selected from nine options (0.015625, 

0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4), and ϵ from five options (0.01, 0.05, 0.1, 0.5, 1). The 

hyperparameter pair yielding the lowest root mean squared error of cross-validation (RMSECV) 

was chosen for further evaluation. Linear-SVR model construction was performed using the SVR 

module of the Python project SciKit-Learn V0.23.2 (scikit-learn.org), and the grid search used the 

GridSearchCV module of the same project. Feature selection was carried out using Recursive 

Feature Elimination (RFE) to reduce the feature (molecular descriptor) space. Features with the 

lowest model weight were iteratively removed until RMSECV increased and RFE was performed 

using the RFECV module of SciKit-Learn. The full CCSP 2.0 Jupyter notebook is publicly 

available at https://github.com/facundof2016/CCSP2.0. 

 

Results and Discussion 

CCS versus m/z Separation of Biomolecules and Xenobiotics  

In this study, 88 PFAS standards were characterized with IMS-MS to evaluate their CCS 

values, mass defects and various KMDs (Table S1). These CCS values were utilized both to 

populate a targeted Skyline database and for ML prediction of theoretical CCS values since 

standards are not available for many of the possible 9000+ PFAS proposed by the EPA. The 

Skyline database can be found in Table S2 and also online at 

https://panoramaweb.org/NCSU%20-%20Baker%20Lab/PFAS%20Library/project-begin.view. 

Due to both deprotonation and decarboxylation of some PFAS species such as those for the 
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polyfluoroalkyl ether carboxylic acid and perfluoroalkyl carboxylic acid subclasses, 102 unique 

PFAS CCS values were obtained from the IMS-MS analyses. CCS versus m/z plots for the 

measured PFAS showed linearity and distinction for the different subclasses as previously 

observed in a smaller PFAS study36 (Figure 2A).  The trends were then further evaluated in 

relation to other biological and xenobiotic molecules by using CCS values from the Unified CCS 

Compendium44 for fatty acids, phosphatidylcholines, bile acids, nucleosides, nucleotides, 

carbohydrates, PCBs, PBDEs, and PAHs. Interestingly, the biomolecules had higher slopes in the 

CCS versus m/z plots than molecules with more halogen atoms such as the PFAS and PBDEs 

(Figure 2B). One exception was for the bile acids as they had a flatter slope than all the other 

biomolecules studied since they have a common steroid backbone, but because they were initially 

shifted up in the graph due to the steroid atomic composition, they a higher CCS per m/z 

relationship compared to the halogenated molecules. The PCB trend was also notable as PCBs 

with fewer chlorines were initially observed between the biological and halogenated regions, 

however as the number of chlorines grew, they dipped into the halogenated region. Upon 

investigation, the observed separation between biomolecules and halogenated xenobiotics was 

attributed to the fact that halogens have a much larger mass than the hydrogens in biomolecules, 

but their atomic size is not as massive. Thus, when a hydrogen is replaced by a halogen, a large 

m/z change is noted, but the molecular size change is not of the same magnitude. For example, a 1 

Da hydrogen atom replaced by a 19 Da fluorine atom greatly increases the m/z of the molecule but 

does not significantly increase its structural size as the van der Waals radius of fluorine is ~1.47 Å 

while hydrogen is ~1.20 Å.52 This effect emphasizes the power of utilizing IMS-MS for the 

detection of xenobiotics as it allowed clear separation of halogenated species, which is particularly 
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powerful in PFAS and lipids studies as they both can be extracted from the same sample and 

ionized in negative ESI mode. 

 
Figure 2. Mass-to-charge versus ion mobility size separations for classes and subclasses of xenobiotics 

and biomolecules. A) In an investigation of the 88 PFAS studied, trend lines were noted for each of the 

distinct PFAS subclasses (e.g., FTSA, PFCA and PFSA) allowing their identification and separation by 

IMS-MS. Several PFAS subclasses are highlighted to illustrate their main structural characteristics and 

trends. B) Biomolecules and heavily halogenated xenobiotics also showed clear distinction in their m/z 

versus CCS plots due to the greatly increased m/z of halogens versus hydrogen, but small size difference. 

All noted CCS values are DTCCSN2. 
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Utilizing CCS, Mass Defect, KMD and m/z for PFAS Identification  

Mass defect and KMD analyses were next performed for 201 PFAS frequently found in the 

environment and of particular interest to the Environmental Protection Agency (EPA) (Figure 3). 

Since evaluation of mass defects only requires accurate m/z values (see Equations in the Methods 

section), no IMS experimental measurements or standards were necessary. The 290 resulting 

values shown in Table S3 are based on the evaluation of both deprotonated and decarboxylated 

ions for PFAS containing a carboxylic acid headgroup. Since PFAS have such a high number of 

fluorine atoms and CF2 repeat units, KMD-CF2 values were studied first. In the analyses of m/z 

versus KMD-CF2 space, a slope of zero was observed for the PFAS in the plots, and each distinct 

homologous series separated into different KMD-CF2 values depending on the composition of 

their headgroup (left side of Figure 3A). To further illustrate this separation, 3D plots of the KMD-

CF2, m/z and CCS values are shown for PFSA, PFCA and FTSA subclasses on the right side of 

Figure 3A. KMD-CH2 analyses were performed next to understand if any relationships existed for 

the studied datasets. As illustrated in Figure 3B, the PFAS separated into two lines with a distinct 

slope in the KMD-CH2 versus m/z plots. Finally, the mass defect evaluations showed very similar 

plots to the KMD-CF2 analyses since the KMD-CF2 scalar was extremely close to 1, Equation 2, 

however a slight slope was observed for each mass defect homologous series (Figure 3C).  
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Figure 3. Evaluation of PFAS homologous series. Specific homologous series corresponding to 201 

PFAS including PFSA, PFCA and FTSA were assessed by comparing m/z values, mass defects, KMDs and 

CCS values.  A) In the 2D evaluations of m/z versus KMD-CF2 (left), the PFAS fall on horizontal lines with 

a slope of zero. The 3D plots of m/z, CCS and KMD-CF2 plots (right) also illustrated the flat KMD slope 

but showcased different CCS values for each PFAS. These relationships were also explored for B) KMD-

CH2 and C) mass defect. While two sloped lines were observed for the PFAS with KMD-CH2, the mass 

defect analyses were similar to the KMD-CF2 plots but showed a slight slope. 

 

 

The specific mass defect versus m/z relationships observed for the PFAS subclass analyses 

warranted examination of other molecular types to understand if PFAS were distinct and could be 

confirmed by the nontargeted analyses. In Figure 4, the mass defect and KMDs for PFAS, fatty 

acids (FAs), bile acids (BAs), pesticides, PCBs, PBDEs, and PAHs were plotted against m/z. In 
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the m/z versus KMD-CF2 plots (Figure 4A), the PFAS were all positioned between -100 ppt and 

100 ppt on the KMD-CF2 axis for the whole mass range examined (Figure 4A). Since the other 

molecules studied did not have a high amount of CF2 functional groups, they illustrated different 

mathematical relationships with some having specific slopes (e.g., PCBs and PBDEs) and others 

being scattered throughout the graph (e.g., FAs and pesticides). In the m/z versus KMD-CH2 plots, 

the two lines for the PFAS intersected with the other molecule types making the small m/z value 

PFAS difficult to distinguish (Figure 4B), while the higher m/z PFAS were well separated. Finally, 

in the m/z versus mass defect plots, all molecules behaved similar to the KMD-CF2 plots as 

previously observed in the PFAS only studies (Figure 4C). Overall, the KMD and mass defect 

molecular evaluations showed KMD-CF2 and KMD-CH2 had the most orthogonality and potential 

for adding confidence to PFAS annotations, while mass defect and KMD-CF2 values greatly 

overlapped and did not provide additional confidence for the molecular identifications. 

Furthermore, the unique trend lines observed in these plots and the CCS versus m/z analyses 

illustrated their potential for distinguishing PFAS. However, since only a few hundred PFAS 

chemical standards are available and the EPA estimates over 9,000 PFAS exist due to metabolism 

and degradation, this lack of standards greatly limits identification capabilities if only experimental 

values are utilized. In this context, the prediction of CCS values is essential for aiding in the 

identification of features that are suspected to be new PFAS from mass defect filtering and accurate 

mass measurements. 
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Figure 4. KMD and mass defect evaluations of different molecule types. KMD and mass defect separate 

PFAS from other molecular classes when plotted against m/z. A) In the m/z versus KMD-CF2 plots, all 88 

PFAS standards studied were observed between -100 and 100 ppt on the KMD-CF2 axis, while other 

molecular types had different mathematical relationships. B) In the m/z versus KMD-CH2 plots, the PFAS 

have a distinct slope and C) in the mass defect versus m/z plots, the PFAS behaved similar to the KMD-

CF2 plots. 
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CCS Prediction for Xenobiotics via Machine Learning  

A number of quantum mechanical and ML approaches have been reported to predict CCS 

values, but xenobiotic applications have been largely lacking in this area.48,49,53–57 Though accurate 

m/z and various types of KMD analyses can be used to narrow down chemical classes, many 

isobaric or isomeric species still exist within the same class. For example, the CompTox database7 

lists 39 PFAS with the same chemical formula of C8HF15O2, therefore indistinguishable by either 

KMD or accurate mass analysis. Although tandem MS experiments can potentially distinguish 

some of these species, many chemically related compounds exhibit similar fragmentation patterns 

or are present in such low concentrations that even MS/MS analysis is not feasible. While 

experimentally measured CCS values could be used to filter false positives by matching against a 

database, CCS databases tend to be largely incomplete due to the lack of available standards. Thus, 

ML prediction of CCS values is an essential tool in filling in for the lack of standards and providing 

a way to filter out false positive matches during structural assignments. 

Our implementation of ML CCS predictions relies on a linear support vector regression 

(SVR) model, first trained on a set of known xenobiotic CCS values using molecular descriptors 

as the input (Figure S1). These molecular descriptors are functions that accept molecular 

identifiers as an input and output numerical data such as molecular weight and volume, atom and 

ring counts, and average atomic electronegativity. Molecular descriptors are used to predict CCS 

values via multiple ML algorithms including partial least squares regression (PLSR)48–50, SVR, 

and artificial neural networks (ANN).57 Once a ML model is accurately trained with low errors, it 

is used to compute predicted CCS values for all possible xenobiotic candidate structures matching 

accurate mass and KMD values, and filtering out those falling outside experimental CCS value 

tolerances.  
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To evaluate the accuracy of predicted xenobiotic CCS values, PFAS, PBDEs, PCBs and 

PAHs were studied. Due to similarities in structure, PBDEs and PCBs were combined in a 

PCB/PDBE group. A total of 1001 ML SVR models were created for each group using a different 

allocation of molecules for the training (calibration) and test (validation) sets. The models 

producing the median root mean square error of cross-validation (RMSECV) were then selected 

for further examination (Figure 5, Tables S4-S6). The PFAS model yielded a median prediction 

error of 1.0% with a root mean square error of validation (RMSEV) of 4.6 Å2. Of the 50 PFAS in 

the validation set, 70% of predictions fell within 3% error, and 90% of predictions were within 5% 

error. However, five predictions were within 8% error, consisting of four fluoroether species and 

one cycloalkane. These errors were explained by the steric hindrance of bulky fluorinated alkyl 

substituents causing systematic overprediction of fluoroethers, and the lack of both fluoroethers 

and cyclic compounds in the PFAS training set leading to poorer predictions. In the PBDE/PCB 

SVR model, a median prediction error of 0.49% and a RMSEV of 1.5 Å2 were observed. Of the 

36 validation compound predictions, 75% fell within 1% error, 92% were within 2% error, and all 

predictions were within 3% error. Finally, the median prediction error and RMSEV for the PAH 

validation set were 0.79% and 2.5 Å2, respectively. Of the 15 PAH validation predictions, 93% 

fell within 3% error and all predictions were within 4% error. The only xenobiotic standard outside 

of the 3% error range was coronene, likely due to its large planar structure that induces enhanced 

aromaticity. Overall, the prediction errors of ≤1% for all three SVR models compared favorably 

to other ML-based CCS prediction methods.48,49,55,57 For example, the MetCCS SVR approach 

using a radial basis function has been reported to have median prediction errors of ~3%;55 a deep 

learning model produced predictions with median errors of 2.6%,57 and a partial least squares 

approach predicted CCS values with median errors close to 2%.48,49  
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Figure 5. CCS predictions for PFAS, PBDEs/PCBs and PAHs using CCSP 2.0. Three sets of 

xenobiotics including PFAS (𝑛 = 102), a combination of PBDEs/PCBs (𝑛 = 72), and PAHs (𝑛 = 30) 

were evaluated with CCSP 2.0. Predictions were made for each set 1001 times with each iteration randomly 

allocating 50% of the molecules to calibration and 50% to validation. The allocation producing the median 

root mean squared error (RMSE) of cross-validation is illustrated for each set in their calibration, cross-

validation, and validation studies. Calibration and validation points are shown by markers and the ML and 

1:1 fits are shown by the colored and dotted lines. 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.11.21.469449doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.21.469449


The ML modeling applied here also gives insight into which molecular descriptors are most 

critical for predictions of each xenobiotic class. Because RFE selects different subsets of molecular 

descriptors when the train/test allocation is varied, the conservation of descriptors across different 

allocations indicates their importance in the CCS prediction of a xenobiotic class. The most 

conserved molecular descriptor classes across these datasets included distance matrices, Barysz 

matrices, and autocorrelations in topological structure (Table S7). Each descriptor class also 

utilizes information about the relative positions of atoms or sites of unsaturation to describe 

molecules, enabling this ML approach to produce accurate CCS predictions even among 

constitutional isomers. Furthermore, the conserved molecular descriptors often utilized weighing 

schemes based on electronegativity, ionizability and volume, rather than simply mass or elemental 

formula, which is identical for isomeric species.  

The high accuracy of our ML approach combined with its potential to discriminate isobaric 

species makes it a powerful tool for the structural identification of xenobiotics in the absence of 

standards. Furthermore, CCS predictions can help detect false discoveries based on exact mass 

alone. To aid in the annotation of PFAS species not measured in our Skyline library, we used 

CCSP 2.0 to populate a database of predicted CCS values for a subset of the CompTox PFAS 

Master List (https://comptox.epa.gov/dashboard/chemical_lists/pfasmaster). The predicted 

database includes 6138 [Cofta-Woerpel,  #750]- and 506 [M-COOH]- CCS predictions (Tables S8 

and S9). The molecules used to build these models are listed in Table S4 and Table S10, while 

the model evaluations are available in Figure S2 and Figure S3. 

 

Xenobiotic Selection Workflow  

The potential to greatly reduce nontargeted metabolomic feature lists using ML CCS 

predictions and mass defect filtering prompted us to develop a comprehensive xenobiotic structural 
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annotation workflow. In this workflow, feature information from nontargeted experimental 

analyses including CCS, m/z, KMD-CF2, KMD-CH2 and mass defect values, were utilized to 

narrow down thousands of features to those specifically matching xenobiotic properties. 

Additional information such as GC or LC retention time and fragmentation can also be 

incorporated at the end of the workflow to increase identification confidence (Figure 6). To 

showcase the application of this xenobiotic annotation workflow, we chose PFAS due to their 

important toxicological properties and fluorinated structural properties. The workflow was then 

implemented as follows. First, following instrumental analysis and creation of the feature list 

through peak alignment and detection, mass defect filtering was utilized to focus on features 

belonging to the specific class or classes of interest (Figure 6A.1). Here, specific tolerances for 

the mass defect, KMD-CF2 and/or KMD-CH2 are set to either include or remove a feature from 

the list of candidates. Since PFAS mainly occur between -100 ppt and 100 ppt KMD-CF2 (Figure 

6B) and have specific slopes in the KMD-CH2 versus m/z plots, tolerances can be set to remove 

other molecular classes. Additional class filtering can then be achieved by utilizing subclass-

specific relationships between CCS and m/z, based on either experimental or ML-predicted CCS 

values (Figure 6A.2 and Figure 6C). Finally, the set of target features is evaluated with KMD-

CF2 homologous series to determine their formula (Figure 6A.3) with further validation using GC 

or LC dimensions and fragmentation if necessary. 
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Figure 6. Xenobiotic structural annotation workflow applied to serum. The xenobiotic structural 

annotation workflow includes A.1) mass defect filtering to discriminate molecular species and homologous 

series, A.2) CCS filtering with either experimental or ML values to determine class and subclass matches, 

and A.3) homologous series molecular annotations. To illustrate how selective the first two steps are for 

PFAS, KMD-CF2 filtering based on A.1 is shown in B) and CCS filtering (A.2) is shown in C). All collision 

cross sections are DTCCSN2. 

 

To evaluate the xenobiotic selection workflow, it was applied to a PFAS-specific metabolomic 

extract from NIST human serum (909c). Since PFAS have been observed in the blood of over 98% 

of Americans, it was expected that PFAS would be found in this specific reference serum 
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sample.58,59 After evaluation with the LC-IMS-MS platform, the resulting serum dataset was 

evaluated with our Skyline targeted PFAS database containing LC, IMS and MS information. The 

raw dataset is available on MassIVE (https://massive.ucsd.edu/) with the accession number of 

MSV000088215. In the targeted data analysis, 17 PFAS were detected at levels significantly 

higher than those of the blank. These PFAS included 6 perfluorocarboxylic acids, 7 

perfluorosulfonic acids, 2 fluorotelomers, 1 perfluoroethercarboxylic acid and 1 

perfluoroethersulfonic acid (Table S11). Upon comparison with other studies in serum, we 

observed 7 PFAS that have also been noted in multiple serum studies. These PFAS include 

perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid 

(PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane 

sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS).60 We were also able to identify 10 

additional species in the targeted analyses, which may result from the serum or could be coming 

from the NIST serum storage conditions as PFAS contaminants are common in vials and storage 

containers. 

The complete set of nontargeted LC-IMS-MS features were next assessed with our annotation 

workflow to determine additional PFAS not included in our targeted Skyline library. A total of 

2,423 LC-IMS-MS features having an absolute abundance greater than 500 were illustrated with 

Mass Profiler 10.0. This number was then reduced to 129 potential PFAS features using the various 

mass defect filtering steps described in Figure 6A.1 as features with mass defects exceeding ±100 

ppt or having KMD-CF2 exceeding ±80 ppt were discarded. Of the remaining features, those 

located within two specific regions of a KMD-CH2 versus m/z plot were investigated; the first 

region (between 0 Da and 550 Da) included features in the area bounded by 𝑌 = 1.2018𝑋 + 39.24 

and 𝑌 = 1.2018𝑋 − 63.18, while the second region (between 450 Da and 1000 Da) was bounded 
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by 𝑌 = 1.173𝑋 − 948.43 and 𝑌 = 1.173𝑋 − 1027.92. The 129 potential PFAS features were 

then further reduced to 80 using the CCS versus m/z plot described in Figure 6A.2, where features 

above 𝑌 = 0.1751𝑋 + 92.958 were discarded.  

To evaluate the efficacy of the filtering steps to select potential PFAS, the 80 remaining 

features were compared to the subset of the CompTox PFAS Master List selected for CCS 

prediction. In this comparison, 48 features had masses that matched at least one Master List entry 

within an error of 20 ppm (Table S12). To increase our confidence in the number of PFAS features 

discovered, the experimental CCS of each feature was compared to the experimentally measured 

or ML-predicted CCS values of their annotation candidates. Of the 48 features with candidate 

matches based on mass, only 30 have CCS values within 4% of their candidates. These 

observations suggest that, though the features may be PFAS, their exact structural isomer may not 

be present in the database. Thus, additional work utilizing NMR or novel fragmentation 

approaches such as ultraviolet photodissociation (UVPD) and electron activated dissociation 

(EAD) is needed to validate potential isomers. Challenges however still occur in these 

fragmentation analyses as they favor positive mode ionization and PFAS are mainly observed in 

negative mode.  

To help assign structures for the remaining features, we utilized automated CF2-homologous 

series analyses. Here a series was defined as any set of two or more molecules with KMD values 

matching within 0.0005 and with masses that differ by multiples of CF2 (also within 0.0005 Da 

error). Sixteen serum features matched homologous series identified within the EPA Priority List 

and PFAS Master List, though most matched entries in the lists and did not require the homologous 

series analysis. Three previously unannotated features belonged to homologous series (Table S13), 

allowing tentative chemical formula annotation of C6F6O, C11H5ClF14O2 and C14H18F11NO4S2. The 
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potential chemical formula of C14H18F11NO4S2 was of particular interest as it had a mass of 

536.0431 Da and KMD-CF2 of -77.34 ppt. These values placed it within the range of the 

fluorotelomer thioether amido sulfonic acid (FtTAoS) homologous series (KMD-CF2 of ≈ -77.1 

ppt). Though this mass does not match any PFAS in the EPA Priority List, it falls directly between 

4:2 FtTAoS and 6:2 FtTAoS. The feature’s mass also matches that of 5:2 FtTAoS within 1.5 ppm 

and its experimental CCS deviates from the predicted CCS of 5:2 FtTAoS by 1.7%, supporting 

this annotation. The potential presence of this molecule in serum is however particularly 

interesting as FtTAoS are typically observed with an even number of CF2 repeats due to their 

synthesis protocols, however metabolism could cleave a single CF2 unit. While this approach is 

providing new information of possible PFAS, one caveat to using the homologous series, is that it 

does not provide information for any PFAS not containing CF2 repeat units. Therefore, further 

investigations are taking place for the other features that survived all filtering steps except the 

homologous series to determine potential new species of possible interest to the EPA.  

 

Conclusion 

In this manuscript, we evaluated the ability of IMS CCS values and mass defect filtering 

techniques in a xenobiotic annotation workflow to narrow large metabolomic feature lists to 

uncover detected xenobiotics of interest. Due to recent connections between exposure and 

significant health impacts, PFAS were initially studied with the workflow, but it was also extended 

to PAHs, PCBs, PDBEs and pesticides to show its utility. Initially, we analyzed 88 PFAS standards 

using LC-IMS-MS to develop a Skyline library and values for ML since very few CCS values for 

PFAS are currently available. The experimental PFAS CCS and m/z values were then compared 

to other biomolecule and xenobiotic classes, illustrating clear differentiation between the 
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biomolecules and the halogenated xenobiotics. ML was then applied to predict CCS values for 

PFAS, PCBs, PBDEs and PAHs due to the lack of numerous standards for these xenobiotics. 

Median errors of ≤1.0% were illustrated for all the xenobiotics CCS values derived from ML when 

compared to their experimental values. The xenobiotic annotation workflow containing 

experimental and theoretical CCS values and mass defects was then applied to features obtained 

for the nontargeted analysis of NIST serum to discover potential PFAS. From the 2,423 

metabolomic LC-IMS-MS detected features, the targeted xenobiotic workflow identified 17 PFAS 

and the nontargeted workflow illustrated 48 potential unknown PFAS candidates. Many of these 

candidates are being investigated, but one feature matched the formula and ML CCS value for 5:2 

FtTAoS, which is currently not on the EPA Priority List but could be a PFAS of future interest. 

Since this workflow is also applicable to xenobiotics such as PCBs, PBDEs, and PAHs, it shows 

great promise in targeting other xenobiotics as industries and manufacturers continue to release 

new chemicals, and the need to evaluate their presence and toxicity, often without standards, is 

imperative.  
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