








Figure 3: Primary variables for upper bounded special case. Let u and w be two arbitrary internal nodes
that do not form a cherry. v is an ancestor of u that is a descendent of r = LCA(u,w). Z represents the
number of mutations that occurred on the path from r to v. X represents the number of mutations that are
shared between u and w due to homoplasy. If Z > X, then (u,w) will not be the first incorrect pair to be
merged by the algorithm.

the mutation at that character. By lemma 5, we see that the probability of this occurring is at most 2λ2c`q2
j .

Requiring that in both u and w we have an occurrence of at lease one of these scenarios, we get:

E(X) ≤ ke−λd
∑
j

((1− e−λ(α+
√
c`))qj + e−λ(α+

√
c`)2λ2c`q2

j )2

≤ ke−λd
∑
j

((1− e−λ(α+
√
c`))qj + 2λ2c`q2

j )2

= ke−λd
∑
j

(1− e−λ(α+
√
c`) + 2λ2c`qj)

2q2
j

≤ ke−λd(1− e−λ(α+
√
c`) + 2λ2c`max

j
qj)

2q

Let qmax = maxj qj . Assume E(Z) > E(X) and let ∆ = E(Z) − E(X). Again by the above versions of
Hoeffding’s inequality, we have the following concentration inequalities:

Pr[Z < E[Z]−∆/2] ≤ exp(− ∆2

8E(Z)
)

≤ exp(− ∆

10E(Z)
)

Pr[X ≥ E(X) + ∆/2] ≤ exp(− ∆2

8E(X) + 2∆
)

≤ exp(− ∆2

8E(X) + 2(E(Z)− E(X))
)

≤ exp(− ∆

10E(Z)
)
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Suppose λq ≤ β
max(1,c) . Let γ = 2

√
c`. Then, we have:

∆ ≥ ke−λd(1− e−λα − (1− e−λ(α+
√
c`) + 2λ2c`qmax)2q)

= ke−λd(1− e−λα − (1− e−λαe−λ
√
c` + 2λ2c`qmax)2q)

≥ ke−λd(1− e−λα − (1− e−λα(1− λ
√
c`) + 2λ2c`qmax)2q)

= ke−λd(1− e−λα − (1− e−λα + e−λαλ
√
c`+ 2λ2c`qmax)2q)

= ke−λd(1− e−λα − (1− e−λα + λ
√
c`(e−λα + λγqmax))2q)

= ke−λd(1− e−λα − (1− e−λα)2q − 2λ(1− e−λα)(e−λα + λγqmax)
√
c`q − λ2(e−λα + λγqmax)2c`q)

≥ ke−λd((1− e−λα)(1− (1− e−λα)q − βγ(e−λα + λγqmax))− βλ(e−λα + λγqmax)2`)

≥ ke−λd((1− e−λα)(1− λαq − βγ(e−λα + λγqmax))− βλ(e−λα + λγqmax)2`)

≥ ke−λd((1− e−λα)(1− β(α+ γe−λα + λγ2qmax))− βλ(e−λα + λγqmax)2`)

≥ ke−λd((1− e−λα)(1− β(1 + γe−λ + λγ2qmax))− βλ(e−λα + λγqmax)2`)

Where the last line follows from the fact that the maximum of the function α+ γe−λα occurs at α = 1.

Now, it remains to find a bound on β so that ∆ > 0 and ∆2

E[Z] is lower bounded. Let C = γe−λ+λγ2qmax. To

ensure that ∆ > 0, we see that the last line from the previous block needs to be > 0. Taking this inequality
and rearranging terms, it suffices to show that:

1 > β(1 + C +
λ`(e−λα + λγqmax)2

1− e−λα
)

Note that
λ`(e−λα + λγqmax)2

1− e−λα
≤ λ`(e−λ` + λγqmax)2

1− e−λ`
≈ (e−λ` + λγqmax)2

so our sufficient condition can be written as

1 > β(1 + C + (e−λ` + λγqmax)2)

We lower bound ∆2

E[Z] by the following:

∆2

E[Z]
≥ min
α∈[`,1]

k2e−2λd((1− e−λα)(1− β(1 + C))− βλ(e−λα + λγqmax)2`)2

ke−λd(1− e−λα)

=
k2e−2λd((1− e−λ`)(1− β(1 + C))− βλ(e−λ` + λγqmax)2`)2

ke−λd(1− e−λ`)

≥ ke−λd( (1− e−λ`)2(1− β(1 + C))2 − 2(1− e−λ`)(1− β(1 + C))βλ`(e−λ` + λγqmax)2

(1− e−λ`)
+

(βλ`(e−λ` + λγqmax)2)2

(1− e−λ`)
)

≥ ke−λd((1− e−λ`)(1− β(1 + C))2 − 2(1− β(1 + C))βλ`(e−λ` + λγqmax)2)

≈ ke−λdλ`((1− β(1 + C))2 − 2(1− β(1 + C))β(e−λ` + λγqmax)2)

= ke−λdλ`(1− β(1 + C))(1− β(1 + C)− 2β(e−λ` + λγqmax)2)

In order for this bound to be positive, we need

1 > β(1 + C + 2(e−λ` + λγqmax)2)

Note that this condition satisfies the above condition on β and thus would imply E[Z] > E[X]. Thus, if

β <
1

1 + C + 2(e−λ` + λγqmax)2
=

1

1 + 2
√
c`e−λ + 4λc`qmax + 2(e−λ` + 2λ

√
c`qmax)2
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both ∆ and ∆2

E[Z] are strictly positive.

To bound the probability that Z < E[Z]−∆/2 and X ≥ E(X) + ∆/2) is at most n−2ζ, we need:

exp(− ∆2

10E[Z]
) ≤ n−2ζ

This is satisfied if k satisfies the following:

k ≥ 20 log n+ 10 log (1/ζ)

λe−λ`(1− β(1 + C))(1− β(1 + C)− 2β(e−λ` + λγqmax)2)

In other words, for any pair of vertices u,w that are not children of the same node, there will be a ver-
tex u′ that such that LCA(u, u′) is a descendent of LCA(u,w) and P [s(u, u′) ≤ s(u,w)] ≤ 2n−2ζ. If
s(u, u′) > s(u,w), then (u,w) cannot be the first pair of incorrectly joined vertices. Taking a union bound
over at most n2/2 pairs of vertices, we see that with with probability at least 1− ζ, there is no first pair of
incorrectly joined vertices, which means the algorithm is correct.

An empirical demonstration and validation of the tightness of Theorem 3 using simulations w.r.t. λ and q
is provided in Figure 4, and w.r.t. n in appendix Figure 6. The simulations are described in the appendix.

Proof of Corollaries 4 and 5:

The Bottom-Up Algorithm shows that there exists a polynomial time algorithm that ensures k = O( logn
` )

characters is sufficient asymptotically for exact recovery of the tree. As n→∞ we get that `→ 0 and C → 0.
With these we get that β < 1

3 . With the simpler bound on β, we also get that k = O( logn
` ) characters are

sufficient asymptotically for exact recovery of the tree.

Simulations for the Bottom-Up Algorithm:

Similar to the simulations for the Threshold Algorithm, we begin by examining the theoretical bounds for
the necessary k. In particular, Figure 4A visualizes the bound for k across varying values of λ and q for
high probability (0.9) of exact reconstruction. We consider two regimes: one with ` = 1/9, c = 1/9 and one
with ` = 0.05, c ≈ 3.85. Since q does not explicitly appear in the bound for k, we instead use it to define
a value for β, using its lower bound: β := λq ·max(1, c). Plugging this in provides a lower bound for the
necessary k, which we plot here. Regions where the lower bound on β becomes larger than its upper-bound
requirement (per theorem 3) are excluded.

From this figure it can be seen that k depends on λ in the same way as in Theorem 1. That is, k in-
creases significantly for both excessively small and large values of λ. However, there is a contrast in the
dependence of k on q. Although in the bound for Theorem 3 k does increase with q through the dependence
of β, k is not as sensitive to large values of q as in Theorem 1. Further, as the bound is quadratic in 1

1−β ,

the k increases rapidly with respect to β := λq ·max(1, c).

We tested the Bottom-Up Algorithm in the same simulation regimes (same tree and lineage tracing pa-
rameters) as the Threshold Algorithm (Figure 4B). Concordant with the theoretical results, we observed
that the minimum required k is less sensitive to q, compared with the Threshold Algorithm. Furthermore,
in both results we see similar trends in dependence on λ (Figure 4C, E), and q (Figure 4D, F). The main
discrepancy between the theory and the simulation occurs where β := λq ·max(1, c) approaches our upper
bound for β (i.e., the values that border the regions that were excluded from Figure 4A). In those cases,we
see that the theoretical bound is looser and overestimates k relative to the simulations.

Again, these simulations validate the relationships observed in the asymptotic trends on k and give tighter
empirical conditions on the necessary k for exact reconstruction. In addition, we observe that the empirical
necessary k in the Bottom-Up Algorithm is overall lower than that of the Threshold Algorithm, except the
cases of non-uniform edge length with high value of c in which the minimal k is comparable (Figure 4A-B
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right, and Figure 4E-F). These results suggest that the Bottom-Up Algorithm can achieve exact reconstruc-
tion with fewer characters empirically than the Threshold Algorithm, but requires that the variance in the
division times of the ground truth phylogeny to be small (corresponding to the assumption on upper bounded
edge lengths).
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Figure 4: Comparing the Bottom-Up Algorithm in theory and simulation. Simulated trees with 256 leaves,
n = 256. (A-B) Entries are log10 scaled. (A) Theoretical sufficient lower bound on k required for 0.9
probability of perfect tree reconstruction on varying values of q and λ, taking β = λqmax(1, c). As the state
distributions are uniform, qj = q for each value of q. Left: ` = 1/9 and c = 1/9 for comparison with the
simulated case where the branch lengths are uniform. Right: ` = 0.05 and c ≈ 3.85 such that >99.99% of
simulated branch lengths in the realistic simulation regime fall within the upper bound. (B) Minimum k
required for 0.9 probability of perfect tree reconstruction in simulations, with Left: a cell division topology
with uniform branch lengths, ` = 1/9 and Right: an asynchronous cell division topology (description in
appendix), ` = 0.05. (C-F) Plots comparing the dependence of the minimum k in simulation with the
theoretical lower bound on varying parameters (0.9 probability of perfect reconstruction). We report the
dependence on (C, E) λ for fixed values of q and on (D, F) q for fixed values of λ, in simulations with uniform
edge lengths (C-D) and with asynchronous topologies (E-F). (C-F) For ease of comparison, the values of k
are rescaled by the median value of k in each line. Point-wise 95% confidence intervals for the minimum k
in simulation are generated from the regression coefficients using the delta method, see appendix.
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Discussion:

In this paper we have established sufficient conditions for high probability of exact reconstruction of the
ground truth phylogeny in the CRISPR-Cas9 lineage tracing setting. These guarantees show that despite
complications with the lineage tracing process such as homoplasy, missing data, and lack of mutation in-
formation, exact reconstruction can still be achieved given sufficient information capacity in the experiment
(as measured by the number of recording sites). In addition to showing the feasibility of exact reconstruc-
tion, these theoretical results relate the difficulty of the reconstruction problem in the number of sufficient
characters to the experimental parameters. We anticipate these results can inform researchers as to how to
reduce the number of necessary characters or best aid downstream reconstruction of the phylogeny given
the available number of characters through careful engineering of CRISPR-Cas9 lineage tracing experiments.

The theoretical results shown here provide insight into how the CRISPR-Cas9 lineage tracing experimental
parameters relate to the reconstruction problem. One key insight is that for exact reconstruction, a mutation
rate that is neither too high or low gives the best results, which is in line with the intuition that a middling
rate balances mutation saturation and mutation-less edges. We also formalize the intuition that having a
state distribution with a low rate of collision q makes the reconstruction problem easier in avoiding homo-
plasy. Additionally we show the difficulty that missing data poses for the problem of exact reconstruction.
Using the presented methods, the number of additional characters needed to overcome missing data is cubic
(quadratic in the case of only stochastic missing data) in 1

1−pd , where pd is the probability of missing data.

A final key result is that the (`∗, d∗)-oracle in the Top-down Algorithms allows researchers to tailor the
granularity of their reconstruction accuracy to what is achievable given the number of available characters.
Here, substantially fewer characters are required if one is only interested in correctly resolving triplets that
diverged early in the tree (small d∗) and well-separated triplets (large `∗, regardless of the true minimum
edge length `).

Although having more characters is preferable, we recognize that currently there are practical limits on
the number of recording sites that can be incorporated into CRISPR-Cas9 systems. Current methods to
incorporate recording sites into the genome (such as lentiviral transduction [3, 10, 12] or transposition
[5, 6, 9, 11, 14]) are limited by the low uptake of these sites into the progenitor cell, only offering on the scale
of tens of recording sites [10, 6, 5, 12, 3, 9, 8, 7]. One alternate technology of particular interest is the base-
editor, which uses a modified Cas9 complex to induce direct base-pair substitutions [39]. Base-editors, while
yet to be explored in lineage tracing contexts, have the potential to offer one hundred or more editable sites
[40], although careful engineering is required as q is high in these regimes owing to the limited state space
of nucleotide outcomes. Ultimately though, we see in our simulations that even this increase in characters
is far insufficient for exact reconstruction in most settings, especially considering the considerable amounts
of missing data and the large number of samples (n) that we see in real CRISPR-Cas9 lineage tracing ex-
periments. We thus challenge the field to develop systems that allow for considerably more characters.

The limitations in adding more characters motivates the optimization of the other experimental parameters
in engineering CRISPR-Cas9 lineage tracing experiments. We discuss here current and potential strategies
for engineering the discussed parameters: the editing rate, the collision probability, and the missing data
probability. There is a large body of literature showing that the editing activity of Cas9 (as in lineage tracing
experiments) can be tuned with relative precision using mismatches between the guide RNA and recording
site [9, 18, 10, 12, 14]. In regards to the collision probability, experimenters are currently unable to dictate
the collision rate in state outcomes due to the random indel outcomes of Cas9 editing. Recent strategies
- such as pairing terminal deoxynucleotidyl transferase (TdT) with Cas9 [16] - have shown potential to in-
crease indel diversity. Further, prime editors offer an avenue to more finely control the state distribution
by dictating a-priori which indel will result in a given edit, though this technology has yet to be adopted
for lineage tracing [41, 42, 43]. Fortunately, current CRISPR-Cas9 lineage tracing systems are capable of
generating “un-problematic indel distributions”. In those cases, the collision probabilities q lie outside of
the range where k explodes with q [9, 10, 12]. Additionally, we see in the bounds and simulations that de-
creasing q has diminishing returns on k. Taken together, in designing CRISPR-Cas9 lineage tracing systems
effort is better put on carefully engineering the Cas-9 cutting rate than optimizing the state distribution.
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Unfortunately, current strategies to control for missing data experimentally are more limited. Experimenters
are at the mercy of the efficacy of single-cell assays in the case of low capture (leading to stochastic missing
data), but can attempt to control the rate of resection and transcriptional silencing (both of which leading
to heritable missing data). Recent designs have mostly relied on distributed designs to reduce the rate of
resection, utilizing many “cassettes” (DNA segments that contain many proximal recording sites) with a
small number of recording sites per cassette [8, 9, 10, 12]. Although not addressed in current designs, tran-
scriptional silencing can be potentially limited by placing recording sites in regions of the genome that are
more robust to silencing (“safe-harbor” regions) using emerging methods for guided transposition [44].

In addition to motivating the design of CRISPR-Cas9 lineage tracing experiments, our model motivates
theoretical and algorithmic development for these systems. The sufficient bounds that we reach in our
asymptotic analyses are not tight, as demonstrated by simulation. We believe that these bounds can likely
be further improved to give a better sense of the necessary k analytically. Future approaches may take
advantage of aspects of the model or engineering designs that are not leveraged in this work. For example,
in our analysis we assume that the mutation rate λ is constant throughout the entire phylogeny and across
recording sites. However, using a gradually increasing mutation rate or designing characters with variable
rates, whose affinity is estimated a-priori may lead to better reconstruction results. Such a design can si-
multaneously alleviate issues of mutation saturation near the leaves of the tree as well as lack of sufficient
mutations near the root. We also assume that the characters mutate and acquire missing data independently,
although indels and missing data events can span multiple recording sites. Future approaches could take
advantage of the structure present in these multi-site events. Finally, although our analysis handles missing
data by ignoring missing characters, the structure of heritable data offers additional information that could
be better leveraged (i.e., utilized in the same way as any other mutation). The challenge, naturally, is to
distinguish between the two types of missing data.

Here, we perform a first theoretical analysis of CRISPR-Cas9 phylogenetic reconstruction. In doing so,
we have developed a generative model for this type of data, which we hope will frame future analysis of
CRISPR-Cas9 lineage tracing systems, akin to the Jukes-Cantor model in other molecular phylogenetic
studies. With this theoretical framework and the accompanying algorithms, our work naturally comple-
ments recent efforts to develop and understand algorithms for this lineage tracing data [35]. Ultimately, we
believe that this work will continue to inform and orient both algorithmic and experimental methods as the
technology and field evolve.
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Additional Proofs

Analysis of the δ Function

Since δ(d) is the only part of the bound that varies according to depth, any universal threshold to the oracle

decision must take it into account. It can be verified that d2

dx2 δ(x) ≥ 0 which means δ is convex. Setting
δ′(x) = 0, we have that the minimum of δ occurs at:

0 = −λe−λx(1− q) + qλeλx−2λ

e−2λx =
q

(1− q)e2λ

x =
1

2λ
ln(

1− q
q

) + 1

Let x∗ be the minimum of δ. If q < 1/2, then ln(1−q
q ) > 0, which means that x∗ > 1, so on the interval

[0, 1], the minimum occurs at x = 1, at which point δ(x) = e−λ. On the other hand, if q ≥ 1/2, then the
minimum will occur at δ(x∗) = 2e−λ

√
q(1− q) if x∗ ∈ [0, 1] and δ(0) = 1 − q + qe−2λ if x∗ < 0. Note, x∗

gets smaller as q → 1, so if q = 1, then the minimum is precisely e−2λ. Let d∗ ∈ [0, 1] be an arbitrary depth,
and let δ∗(d∗, q, λ) = minx∈[0,d∗] δ(x). We then have:

δ∗ =


(1− q) + qe−2λ if 1

2λ ln( 1−q
q ) + 1 < 0

2e−λ
√
q(1− q) if 1

2λ ln( 1−q
q ) + 1 ∈ [0, d∗]

e−λd
∗
(1− q) + qe−λ(2−d∗) if 1

2λ ln( 1−q
q ) + 1 > d∗

Proof of lemma 1:

Let (a, b|c) be a triplet with depth(LCA(a, b, c)) = d, and let α = dist(LCA(a, b, c), LCA(a, b)). Let Y =
s(a, b) and X = s(b, c). For a particular character χi, let Yi = 1χi(a)=χi(b) and let Xi = 1χi(b)=χi(c). We use
the following results:

lemma 6 If for every character χi, P [Yi−Xi = −1] is a decreasing function of α and P [Yi−Xi = 1] is an
increasing function of α for all α ∈ [0, 1], then for any t, P [Y −X ≥ t] is an increasing function of α.

Proof: For a given character χi, Yi −Xi = 1χi(a)=χi(b) − 1χi(b)=χi(c) has 3 possible outcomes: {1, 0,−1}.
Thus, if P [Yi −Xi = −1] is a decreasing function of α and P [Yi −Xi = 1] is an increasing function of α for
all α ∈ [0, 1], then P [Yi −Xi ≥ t] for any t is an increasing function of α. Stating that P [Yi −Xi ≥ t] is an
increasing function of α is identical to stating that for any α1 and α2 such that α1 ≥ α2, Pα1 [Yi−Xi ≥ t] ≥
Pα2 [Yi −Xi ≥ t]. We use the known result from probability theory that for random variables Ai

iid∼ A and

Bi
iid∼ B such P [A ≥ t] ≥ P [B ≥ t] for all t, then P [

∑
iAi ≥ t] ≥ P [

∑
iBi ≥ t]. Thus, as Y −X =

∑
i Yi−Xi

and Yi −Xi is independent and identically distributed as we assume each character operates independently
and identically, then Pα1 [Y −X ≥ t] ≥ Pα2 [Y −X ≥ t]. Thus, P [Y −X ≥ t] is an increasing function of α
for any t.

lemma 7 For every character χi, P [Yi − Xi = −1] is a decreasing function of α and P [Yi − Xi = 1] is
an increasing function of α for all α ∈ [0, 1]. Additionally, this result holds in both the general case and
stochastic-only missing data cases.

Proof:

Case with no missing data: First, we examine P [Yi − Xi = −1]. Yi − Xi = −1 for a character χi
corresponds to that character acquiring the same mutation on both the path from LCA(a, b) to b and the
path from LCA(a, b, c) to c, and not acquiring that mutation on the path from LCA(a, b) to a. Additionally,
no mutation must be acquired at χi on the path from the r to LCA(a, b, c) nor the path from LCA(a, b, c)
to LCA(a, b). Thus we have:

P [Yi −Xi = −1] =
∑
j

e−λde−λα(1− e−λ(1−d−α))qj(1− e−λ(1−d))qj(1− (1− e−λ(1−d−α))qj)
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Taking only the terms that depend on α, we have:

e−λα(1− e−λ(1−d−α))qj(1− (1− e−λ(1−d−α))qj)

To show that this value decreases with α, we show that the first derivative is negative with respect to α. We
use the following form of the derivative:

λ(qj − 1)qje
2λ−λ(α+2) − λq2

j e
2λ(d+α)−λ(α+2)

This value is positive owing to the fact that qj ∈ [0, 1] for all j. Thus, the function within the summation
is decreasing in terms of α. Using the fact that the summation of decreasing functions is decreasing, the
overall function is thus decreasing in terms of α.

Secondly, we examine P [Yi − Xi = 1]. Yi − Xi = 1 for χi corresponds to a mutation occurring in both
a and b, but not in c. A mutation can occur in a and b if it appears on the path from LCA(a, b, c) to
LCA(b, c), or if it appears independently in the paths from LCA(a, b) to both a and b. Additionally, this
mutation cannot appear on the path from LCA(a, b, c) to c, and no mutations can occur on the path from
r to LCA(a, b, c). Thus, we have:

P [Yi −Xi = 1] =
∑
j

e−λd((1− e−λα)qj + e−λα((1− e−λ(1−d−α))qj)
2)(1− (1− e−λ(1−d))qj)

Taking on the terms that depend on α, we have:

(1− e−λα) + e−λα(1− e−λ(1−d−α))2qj

To show that this value is increasing with α, we show that the first derivative is positive with respect to α.
We use the following form of the derivative:

λqe2λ(d+α)−λ(α+2) − λ(q − 1)e2λ−λ(α+2)

This value is positive owing to the fact that qj ∈ [0, 1]. Thus, the function within the summation is decreasing
in terms of α. Using the fact that the summation of decreasing functions is decreasing, the overall function
is thus decreasing in terms of α.

General Missing Data Case: Next, we examine the general case with both stochastic and heritable
missing data. In this case, we define s(a, b) (analogously s(b, c)) as the number of characters shared by a, b
that do not have dropout in either a, b or c. As we now simply condition on the fact that a, b, c must all be
present, we add an additional (1− pd) term to both P [Yi−Xi = 1] and P [Yi−Xi = −1]. As this term does
not depend on α, both functions depend on α as they do in the case without missing data.

Stochastic-only Missing Data Case: Finally, we examine the case with only stochastic missing data.
Here we define s(a, b) as the number of mutations shared by a and b in characters that did not suffer dropout
in either sample. Thus, in analyzing Yi −Xi we must consider additional cases in which dropout in one cell
can hide the fact that two cells inherited the same mutation.

First, we examine P [Yi − Xi = −1]. Yi − Xi = −1 for a character χi corresponds to that character
acquiring the same mutation in b and c, not acquiring dropout in neither b nor c, and either observing
dropout or not observing that mutation in a. For this to occur, a mutation can occur on the path from r
to LCA(a, b, c) while a acquires dropout, or the same mutation can occur on the path from LCA(a, b, c) to
LCA(a, b) and the path from LCA(a, b, c) to c while a acquires dropout, or the mutation can occur on the
path from LCA(a, b) to b and the path from LCA(a, b, c) to c while not appearing in a. The probability of
this is:∑
j

(1−pd)2(pd(1−eλd)+eλd(1−e−λ(1−d))qj(pd(1−e−λα)qj+e
−λα(1−e−λ(1−d−α))qj(1−(1−pd)(1−e−λ(1−d−α))qj)
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Taking the terms that depend on α:

pd(1− e−λα)qj + e−λα(1− e−λ(1−d−α))qj(1− (1− pd)(1− e−λ(1−d−α))qj)

To show that this value decreases with α, we show that the first derivative is negative with respect to α. We
use the following form of the derivative:

λqj(pd − 1)e−λ(α+2)(qje
2m(d+α) − e2α(qj − 1))

This value is positive owing to the fact that qj ∈ [0, 1] for all j and that pd ∈ [0, 1). Thus, the function
within the summation is decreasing in terms of α. Using the fact that the summation of decreasing functions
is decreasing, the overall function is thus decreasing in terms of α.

Secondly, we examine P [Yi − Xi = 1]. Yi − Xi = 1 for χi corresponds to a mutation occurring in both
a and b, not acquiring dropout in neither a nor b, and either observing dropout or not observing that mu-
tation in c. For this to occur, a mutation can occur on the path from r to LCA(a, b, c) while c acquires
dropout, on the path from LCA(a, b, c) to LCA(a, b) while the mutation is not acquired in c or c acquires
dropout, or the mutation occurs independently on the path from LCA(a, b) to a and b while not appearing
in c. The probability of this is:∑
j

(1− pd)2(pd(1− e−λd)qj + e−λd(1− (1− pd)(1− e−λ(1−d)))qj((1− e−λα)qj + e−λα((1− e−λ(1−α−d))qj)
2))

Taking on the terms that depend on α, we have:

(1− e−λα) + e−λα(1− e−λ(1−d−α))2qj

Note that this is the same value as above in the case without missing data, and hence the function will have
the same dependence on α as in that case. Hence, the function is overall decreasing with α.

Proof: By lemmas 6 and 7, P [s(a, b) − s(a, c) ≥ t] is an increasing function of α. Thus, the minimum
value of α results in the minimum value of P [s(a, b) − s(a, c) ≥ t]. This value occurs at α = `∗, showing
lemma 1.

Proof of lemma 3:

Given a triplet (a, b|c), with LCA at depth at most d∗, we defined ε to be the probability that no dropout oc-
curs in a particular character of all three cells. First we will justify the assumption that ε ≥ (1 − pd)

3,
which is to say the dropout events are positively correlated. Let ph be the probability that heritable
dropout occurs on the path from r to a. Let pb be the probability that a heritable dropout occurs on
the path from LCA(a, b) to b given that no dropout has occurred on the path from r to LCA(a, b) and
define pc similarly. Note that pb ≤ pc ≤ ph since the probability a dropout occurs along a path in-
creases with the length of the path. Let ps be the probability that a stochastic dropout occurs at given
character on a leaf given that no heritable dropout has occurred yet on that character. Then we have
ε = (1− ph)(1− pb)(1− pa)(1− ps)3 ≥ ((1− ph)(1− ps))3 = (1− pd)3. Since at least one of the cells in the
triplet needs to not incur dropout at a character in order for all three of them to have no dropout, we also
have ε ≤ 1− pd.

To prove the bounds on k we will proceed as in the proof of lemma 2 and assume that
dist(LCA(a, b, c), LCA(a, b)) = `∗, noting that lemma 7 extends the result of lemma 1 to the general case
with missing data. Let Y = sc(a, b) and X = sa(b, c). Thus, we have:
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Pr[Y ≤ E(Y )− kελ`∗δ(d)/4] = Pr[Y ≤ E(Y )(1− kελ`∗δ(d)

4E(Y )
)]

≤ exp(−ε
2k2λ2`∗2δ(d)2

32E(Y )
)

Pr[X ≥ E(X) + kελ`∗δ(d)/4] = Pr[X ≥ E(X)(1 +
kελ`∗δ(d)

4E(X)
)]

≤ exp(− ε2k2λ2`∗2δ(d)2

32E(X) + 4kλ`∗δ(d)
)

Since E(Y ) ≤ kεe−λdλ`∗ and E(X) ≤ kεe−λdλ2q, we see that both probabilities are at most n−3ζ when

k(1− pd)3λ(1− q + qe−2λ)δ(d)`∗2

32(`∗ + (1− e−λ)q)
≥ kελ(1− q + qe−2λ)δ(d)`∗2

32(`∗ + (1− e−λ)q)
≥ 3 log(n) + log 1/ζ

If both bad events don’t happen, then we have Y −X ≥ kελ`∗δ∗/2 ≥ k(1− pd)3λ`∗δ∗/2 = t. This gives the
necessary bound for condition i) to hold.

To get guarantees on the second condition, let X = sb(a, c) for any triplet a, b, c whose LCA has depth
at most d∗ and where c is the outgroup. we have that

Pr[X ≤ E(X)− k(1− pd)3λ`∗δ∗/4] = Pr[X ≤ E(X)(1− k(1− pd)3λ`∗δ∗

4E(X)
)]

≤ exp(−k(1− pd)6`∗2δ∗2

32εq
)

≤ exp(−k(1− pd)5`∗2δ∗2

32q
)

To ensure that this probability is at most n−3ζ, it suffices to take

k ≥ (96 logn+ 32 log 1/ζ)q

`∗2δ∗2(1− pd)5

The rest of the argument is exactly the same as in the proof of lemma 2.

Proof of lemma 4:

For a triplet (a, b|c) in the case without dropout, any mutation that occurred on the path from the root to
LCA(a, b, c) is inherited by each member of the triplet, and thus s(a, b) − s(b, c) = sc(a, b) − sa(b, c). But
in the case of missing data, this is no longer true as mutations that occurred before LCA(a, b, c) may be
obscured by dropout and therefore not present in the character information of a, b, or c. We must now
account for these early mutations in our calculations.

Let ps be the stochastic missing data rate and let s(a, b) be the number of mutations shared between a
and b, ignoring characters that have dropout in either a or b. The number of mutations shared by a, b after
their divergence is now Binomial(k, p) where p is

≥ (1− ps)2(1− e−λd + e−λd((1− e−λ`
∗
) + e−λ`

∗
(1− e−λ(1−`∗−d))2q)

Here (1 − ps)2 is the probability that this character does not acquire dropout in neither a nor b, 1 − e−λd
is the probability that a given mutation occurred before d, and of the remaining terms the left term is the
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probability the mutation occurred on the path from LCA(a, b, c) to LCA(a, b), and the right term is the
probability a given mutation is shared by a, b due to convergent evolution.

Thus:

E[s(a, b)] ≥ k(1− ps)2(1− e−λd + e−λd((1− e−λ`
∗
) + e−λ`

∗
(1− e−λ(1−`∗−d))2q)

Similarly:

E[s(b, c)] ≤ k(1− ps)2(1− e−λd + e−λd(1− e−λ(1−d))2q)

Thus, we have that:

E[s(a, b)− s(b, c)] ≥ (1− ps)2k(1− e−λd + e−λd((1− e−λ`∗) + e−λ`
∗
(1− e−λ(1−`∗−d))2q− (1−

e−λd + e−λd(1− e−λ(1−d))2q))

= (1-ps)
2ke−λd(1− e−λ`∗ + q(e−λ`

∗ − 1 + e−2λ(1−d)+λ`∗ − e−2λ(1−d)))

= (1-ps)
2ke−λd((1− e−λ`∗)(1− q) + qe−2λ(1−d)(eλ`

∗ − 1))

≥ (1− ps)2ke−λd((1− e−λ`∗)(1− q) + qe−2λ(1−d)λ`∗)
≈ (1− ps)2k(e−λdλ`∗(1− q) + qe−λ(2−d)λ`∗)
=(1-ps)

2kλ`∗(e−λd(1− q) + qe−λ(2−d))

Again taking δ(d) = e−λd(1−q)+qe−λ(2−d). We then have that for any triplet (a, b|c), where depth(LCA(a, b, c)) =
d and dist(LCA(a, b, c), LCA(a, b)) ≥ `∗

E[s(a, b)− s(b, c)] ≥ (1− ps)2kλ`∗δ(d)

First, we will show that condition i) will hold with probability 1− ζ if:

(1− ps)2keλdλ(`∗δ(d))2

32(`∗ + (1− e−λ)q + eλdd)
≥ 3 log(n) + log 1/ζ

To see this, let (a, b|c) be any triplet at depth at most d∗ and the distance between their LCAs be at least `∗.
By lemma 1, we can WLOG assume that dist(LCA(a, b, c), LCA(b, c)) = `∗ because that is the worst case,
i.e. the case where P [s(a, b)− s(b, c) ≥ t] is minimized. Note that lemma 7 extends the result of lemma 1 to
the case with only stochastic missing data. Any condition sufficient for this case will be sufficient overall. Let
Y = s(a, b) and X = s(b, c). Since E(Y )−E(X) ≥ (1− ps)2kλ`∗δ∗ = 2t, in order to ensure that Y −X ≥ t,
it suffices to have Y > E(Y ) = t/2 and X < E(X) = t/2. To show that both occur with high probability,
we have:

Pr[Y ≤ E(Y )− (1− ps)2kλ`∗δ(d)/4] = Pr[Y ≤ E(Y )(1− (1− ps)2kλ`∗δ(d)

4E(Y )
)]

≤ exp(− (1− ps)4k2λ2`∗2δ(d)2

32E(Y )
)

≤ exp(− (1− ps)4k2λ2`∗2δ(d)2

32(1− ps)2kλ(e−λd`∗ + e−λd(1− e−λ)q + d)
)

Pr[X ≥ E(X)− (1− ps)2kλ`∗δ(d)/4] = Pr[X ≥ E(X)(1− (1− ps)2kλ`∗δ(d)

4E(X)
)]

≤ exp(− (1− ps)4k2λ2`∗2δ(d)2

32E(X) + 4(1− ps)2kλ`∗δ(d)
)

≤ exp(− (1− ps)4k2λ2`∗2δ(d)2

32(1− ps)2kλ(e−λd`∗ + e−λd(1− e−λ)q + d)
)
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The last line follows from the fact that δ(d) ≤ e−λd and E(X) ≤ (1 − ps)
2ke−λd(1 − e−λ)2q + λd ≤

(1− ps)2ke−λd(1− e−λ)λq+λd. Since eλdδ(d) = 1− q+ qe−2λ(1−d) ≥ 1− q+ qe−2λ and any d < d∗, in order
to ensure that both bad events have probability at most ζn−3, it suffices to take

(1− ps)2kλ(1− q + qe−2λ)δ(d)`∗2

32(`∗ + (1− e−λ)q + eλd∗d∗)
≥ 3 log(n) + log 1/ζ

Applying the same argument to s(a, b)−s(a, c) and combining both results gives P [s(a, b)−max(s(a, c), s(b, c)) <
t] ≤ 4ζn−3. Taking a union bound over all

(
n
3

)
= O(n3) triplets, we see that the probability of condition i)

failing for any triplet is at most ζ.

To get guarantees on the second condition, note that condition i) implies that condition ii) holds for all
triplets separated by an edge of length at least `∗. Thus we can focus on the triplets that are not covered
by condition i). Let (a, b|c) be an arbitrary triplet such that dist(LCA(a, b, c), LCA(a, b)) < `∗ and again
let Y = s(a, b), X = s(b, c) and d be the depth of LCA(a, b, c) (note that we are focusing WLOG on s(b, c)
since it has the same distribution as s(a, c)). We want to show that with high probability, X − Y < t.
Again, it suffices to upper bound P [Y ≤ E(Y )− t/2] and P [X ≥ E(X) ≥ t/2] because E(Y ) ≥ E(X). Note
that we have already bounded the second quantity. To bound the first quantity, note that the worst case
scenario is that dist(LCA(a, b, c), LCA(a, b)) is as small as possible, but since this quantity can be arbitrarily
small, we can assume that in the worst case, dist(LCA(a, b, c), LCA(a, b)) = 0, which means Y has the same
distribution as X. Note that this case technically cannot happen as it would imply that T has a trifurcating
branch but it is possible to get arbitrarily close to this case with no restrictions on edge lengths. This gives:

Pr[X ≤ E(X)− (1− ps)2kλ`∗δ∗/4] = Pr[X ≤ E(X)(1− (1− ps)2kλ`∗δ∗

4E(X)
)]

≤ exp(− (1− ps)4k2λ2`∗2δ∗2

32(1− ps)2kλ(d+ e−λd(1− e−λ)(1− d)2q)
)

≤ exp(− (1− ps)2kλ`∗2δ∗2

32(d+ (1− e−λ)q)
)

Thus, if we take:

k ≥ max
( (96 logn+ 32 log 1/ζ)(`∗ + λq + eλd

∗
d∗)

(1− ps)2λ`∗2δ∗(1− q + qe−2λ)
,

(96 log n+ 32 log 1/ζ)(d∗ + (1− e−λ)q)

(1− ps)2λ`∗2δ∗2

)
then we have P [X − Y ≥ t] < ζn−3. By symmetry, this means P [s(b, c) − s(a, b) ≥ t

⋃
s(a, c) − s(a, b) ≥

t] ≤ 2ζn−3 Since we can union bound over one bad event of probability at most 2ζn−3 for each of the
(
n
3

)
triplets, we have that conditions i) and ii) both hold with probability at least 1− ζ.

Proof of lemma 5:

For this proof, we use the following results:

lemma 8 Let ρ be the maximum edge length in T . For any character, state pair (i, j), if there exists a
number p > 0 which satisfies ((1 − e−λρ)qj + p)2 ≤ p, then p is an upper bound on Pi,j(v) for any node
v ∈ T .

Proof: We will proceed by induction on T . Suppose v is a leaf. Then Pi,j(v) = 0, since if the ith character
does not mutate, it cannot take on state j. Now let v be an arbitrary non-leaf vertex, with children u and
w. By our inductive hypothesis, Pi,j(w) ≤ p and Pi,j(u) ≤ p. Since the length of the edge from v to either
of it’s children is at most ρ, the probability that the character mutates to state j on either edge is at most
(1− e−λρ)qj . Thus, if we condition on the fact that χi is not mutated on v, we have:

Pi,j(v) ≤ ((1− e−λρ)qj + e−λρPi,j(u))((1− e−λρ)qj + e−λρPi,j(w))

≤ ((1− e−λρ)qj + Pi,j(u))((1− e−λρ)qj + Pi,j(w))

≤ ((1− e−λρ)qj + p)2

≤ p
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Where the last inequality follows from our assumption on p. Given the above lemma, we can simply solve
for p to find an upper bound on all Pi,j(v) in T .

lemma 9 Suppose the maximum edge length satisfies:

ρ ≤ − 1

λ
ln[(1− 3

16 maxj(qj)
)]

Then we have Pi,j(v) ≤ 2λ2ρ2q2
j for any node v ∈ T

Proof: Let y = (1− e−λρ)qj . Note that by our above assumption, y ≤ 3/16. By our above assumption, we
have:

ρ ≤ − 1

λ
ln[(1− 3

16 maxj(qj)
)]

(1− e−λρ) max
j

(qj) ≤
3

16

(1− e−λρ)qj ≤
3

16

y ≤ 3

16

Next, by lemma 8, we know that if there is a p > 0 such that (y+ p)2 ≤ p, then such a p would be an upper
bound on all Pi,j(v). We can find such a p by setting the inequality to an equality and finding the smallest
root of the resulting polynomial.

y2 + 2yp+ p2 = p

y2 + (2y − 1)p+ p2 = 0

Our initial assumption of ρ guarantees that 4y < 1, which means the smallest root of the polynomial above
can be given as

p =
1

2
(1− 2y −

√
((2y − 1)2 − 4y2))

=
1

2
(1− 2y −

√
(4y2 − 4y + 1− 4y2))

=
1

2
(
√

1− 4y + 4y2 −
√

(1− 4y)

=
1

2

4y2√
1− 4y + 4y2 +

√
(1− 4y)

Where the last line follows by multiplying the numerator and denominator by
√

1− 4y + 4y2 +
√

(1− 4y.
To upper bound p, we have

p ≤ 1

2

4y2

2
√

1− 4y

=
y2

√
1− 4y

≤ 2y2

Where the last inequality follows from the fact y ≤ 3/16, which means the denominator is at least 1/2.
Finally, we have 2y2 = 2(1− e−λρ)2q2

j ≤ 2λ2ρ2q2
j .

Now simply take ρ =
√
c`∗ and apply lemma 9 to show lemma 5.
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Alternative Analysis of the Bottom-up Algorithm

Theorem 4 The constraint on λ and q in Theorem 3 can be replaced with

λ < min(
1− λ`/2

2qγ2
,− ln(1 + 2γ1 +

γ2
1

1− e−λ
− 1

2q
))

Where γ1 = e−λ
√
c`+ 2λ2c`qmax and γ2 = (

√
`+
√
c+ 2λc

√
`qmax)2. In that case, the Bottom-Up Algorithm

returns the correct tree with probability at least 1− ζ if

k ≥ eλ(20 logn+ 10 log (1/ζ))

min(λ`(1− λ`/2− 2λqγ2), (1− e−λ)(1− 2(1− e−λ + 2γ1 +
γ2
1

1−e−λ )q))

Note this means that as `→ 0, our constraint on λ and q becomes λq < 1
2c and our bound on k approaches

eλ(20 log n+ 10 log(1/ζ))

λ`(1− 2cλq)
= O(

log n

`
)

Proof of Theorem 4:. To upper bound the probabilities of the bad events, it suffices to ensure that

E(Z) > E(X) and bound the quantity (E(Z)−E(X))2

E(Z) = ∆2

E(Z) . Since this quantity depends on α, we will first

derive a lower bound on this quantity and determine where the minimum occurs for α ∈ [`, 1] as follows:

∆2

E[Z]
≥ E[Z]− 2E[X]

≥ ke−λd(1− e−λα − 2(1− e−λ(α+
√
c`) + 2λ2c`qmax)2q)

Now let f(α) = 1− e−λα − 2(1− e−λ(α+
√
c`) + 2λ2c`qmax)2q). Next we will show that for any interval [a, b],

the minimum of f on [a, b] occurs at either a or b. Let y(α) = e−λα, and let g(y) = 1− y−2(1− ye−λ
√

(c`) +
2λ2c`qmax)2q. Then f = g ◦ y. Note that g′ is linear with negative slope, as

g′(y) = −1 + 4(1− ye−λ
√
c` + 2λ2c`qmax)qe−λ

√
c`

Since f ′(x) = −g′(e−λx)e−λx, f ′(x) = 0 only when g′(e−λx) = 0. Since e−λx is an increasing function, there
can be at most one point where f ′ is 0. On the other hand, one can verify that limx→−∞ f ′(x) =∞, which
means that if there is any x where f ′(x) = 0, then f ′ is positive on (∞, x) and negative on (x,∞), which
means x must be a local maximum. Thus, any minimum of f on an interval [a, b] can only occur on the
boundaries.

α = 1 case:

In the case where α = 1, our lower bound can be written as

f(α) = (1− e−λ − 2(1− e−λe−λ
√
c` + 2λ2c`qmax)2q)

≥ (1− e−λ − 2(1− e−λ(1−
√
c`) + 2λ2c`qmax)2q)

= (1− e−λ − 2(1− e−λ + e−λ
√
c`+ 2λ2c`qmax)2q)

To make the notation easier to follow, let γ1 = e−λ
√
c`+ 2λ2c`qmax. Then we have

∆2

E[Z]
≥ (1− e−λ − 2(1− e−λ + γ1)2q)

= (1− e−λ − 2((1− e−λ)2 + 2(1− e−λ)γ1 + γ2
1)q)

= (1− e−λ)(1− 2(1− e−λ + 2γ1 +
γ2

1

1− e−λ
)q)
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Thus, in order for the bound to be non-trivial, we need 2(1− e−λ + 2γ1 +
γ2
1

1−e−λ )q < 1, which means

e−λ > 1 + 2γ1 +
γ2

1

1− e−λ
− 1

2q

λ < − ln(1 + 2γ1 +
γ2

1

1− e−λ
− 1

2q
)

Note that as `→ 0, the RHS approaches λ < ln(1− 1
2q ) which is at least 1

2q , and in general, when λ satisfies

the constraint above, f(1) is lower bounded by a constant independent of `. Also, note that the bound is
bound is trival if the term inside the ln is negative.

α = ` case:

In this case, our lower bound becomes as follows:

f(α) = (1− e−λ` − 2(1− e−λ(`+
√
c`) + 2λ2c`qmax)2q)

≥ (λ`− λ2`2

2
− 2λ2(`+

√
c`+ 2λc`qmax)2q)

= λ`(1− λ`

2
− 2λq(

√
`+
√
c+ 2λc

√
`qmax)2)

Now let γ2 = (
√
`+
√
c+2λc

√
`qmax)2. Then in order for the bound to be non-trivial, we need λ`

2 +2λqγ2 < 1,
which means

λ <
1− λ`/2

2q(
√
`+
√
c+ 2λc

√
`qmax)2

=
1− λ`/2

2qγ2

Note that as `→ 0, the RHS becomes 1
2qc . Since ∆2

E[Z] ≥ ke
−λdf(α), when the constraints:

λ < min(
1− λ`/2

2qγ2
,− ln(1 + 2γ1 +

γ2
1

1− e−λ
− 1

2q
))

are satisfied, and if we take

k ≥ eλ(20 logn+ 10 log (1/ζ))

min(λ`(1− λ`/2− 2λqγ2), (1− e−λ)(1− 2(1− e−λ + 2γ1 +
γ2
1

1−e−λ )q))

the probability that either of the above events occur is at most n−2ζ. In other words, for any pair of ver-
tices u,w that are not children of the same node, there will be a vertex u′ that such that LCA(u, u′) is a
descendent of LCA(u,w) and P [s(u, u′) ≤ s(u,w)] ≤ 2n−2ζ. If s(u, u′) > s(u,w), then (u,w) cannot be the
first pair of incorrectly joined vertices. Taking a union bound over at most n2/2 pairs of vertices, we see
that with with probability at least 1− ζ, there is no first pair of incorrectly joined vertices, which means the
algorithm is correct.

Since the bound on f(`) depends on `, it is general much smaller than the bound on f(1), which is lower
bounded by a constant. Thus, asymptotically, the bound on k is

eλ(20 logn+ 10 log (1/ζ))

λ`(1− 2cλq)
= O(

log n

`
)
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Description of Simulations and Scoring Criteria:

Simulations and algorithms are implemented in Python in Cassiopeia software suite [10]
(https://github.com/YosefLab/Cassiopeia), utilizing the NetworkX package [45].

Implementation of Algorithms:

Threshold Algorithm: Due to ties in the number of shared characters, sometimes the edge-removal pro-
cedure produces more than two connected components on the sample graph G. If this occurs, we enforce a
bifurcation in the tree by merging the components C1, C2, ..., Cn into two groups. We expand the previous
pseudocode as follows:

1: procedure SplitSamples(V )
2: G← Complete graph over V
3: while G is connected do
4: (u∗, v∗) = argmin(u,v)∈Es(u, v)
5: Delete (u∗, v∗) from G
6: end while
7: C1, C2, ..., Cn ← connected components of G
8: if length(C1, C2, ..., Cn) > 2 then
9: C1, C2 ←MergeComponents(C1, C2, ..., Cn)

10: end if
11: T1, T2 ← SplitSamples(C1), SplitSamples(C2)
12: Return binary tree with T1 and T2 as children of the root.
13: end procedure
14:

15: procedure MergeComponents(C1, C2, ..., Cn)
16: LCA1, LCA2, ..., LCAn ← InferParsimoniousStates(C1, C2, ..., Cn)
17: m← FindMostFrequentMutation(LCA1, LCA2, ..., LCAn)
18: for i in n do
19: if m in LCAi then
20: Add Ci to GroupA
21: else
22: Add Ci to GroupB
23: end if
24: end for
25: Return GroupA, GroupB
26: end procedure

Here, we use a naive parsimony approach. We infer the character states of the LCA of each component as
the most parsimonious states given the states of the leaves in that component (a mutation appears in the
LCA of a component only if it shared by all samples in that component, discounting samples with missing
data at that character). Then, the mutation shared by the most LCAs is found. Heuristically, this mutation
occurred early in the phylogeny and thus components sharing this mutation are more closely related. Thus,
we separate components into two groups based on whether or not the LCA has this mutation.

This algorithm is implemented as the “PercolationSolver” class in the “solver” module of the Cassiopeia
codebase. Here, the default arguments are used, with “joining solver” specified as an instance of the “Vanil-
laGreedySolver” class.

Bottom-Up Algorithm: The implementation of the Bottom-Up Algorithm follows the description in
the main text. If a tie occurs in the number of shared mutations between nodes, then an arbitrary pair is
chosen to be merged first.

This algorithm is implemented as the “SharedMutationSolver” class in the “solver” module of the Cas-
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siopeia codebase. Here, the default arguments are used.

Simulating Lineage Tracing Experiments:

In our simulations, we simulated forward-time lineage tracing experiments using our generative model. We
split the simulation into two steps.

Simulating Cell Division Topologies: First, we simulate a continuous-time, binary, symmetric cell
division topology. Then, we simulate CRISPR-Cas9 lineage tracing data over the given topology. The end
result is a phylogenetic tree representing the single-cell lineage tracing experiment. The tree topology also
records the ground truth phylogenetic relationships between the observed cells.

We begin by describing the two simulation schemes used for the tree topology. The first scheme simu-
lates a cell division regime with regular cell division (uniform edge lengths). We start with a complete
binary tree and add an implicit root, attaching this root to the root of the complete binary tree by an edge.
The edge represents the lifetime of the root along which mutations can be acquired. For all figures besides
Figure 6, we generated trees with 256 leaves representing cells observed at the end of the experiment. For
Figure 6, we generated trees of various sizes, exponentially increasing n. Given that the number of edges
in the path from the implicit root to each leaf has log(n) + 1 edges, each edge has uniform length, and the
length of the experiment is normalized to one, each edge has length 1

log(n)+1 .

The second simulation scheme represents an asynchronous cell division regime, with stochastic waiting times
between cell divisions and cell death. We model a forward-time Bellman-Harris model with extinction [46].
This generalizes the birth-death process [47], a commonly used phylogenetic model, such that the distribution
of waiting times between division and death events are arbitrary. In our case, waiting times between division
events are distributed according to an exponential distribution that is shifted by a constant a = 0.05, repre-
senting minimum time between cell division events. The distribution of death waiting times is distributed
exponentially, as we assume that cell death does not have a minimum time. The stopping condition is when
all lineages reach time = 1, meaning that each lineage will have total path length from the root of 1. We
present the pseudocode used for this simulation here:

1: procedure Forward Simulation(λbirth, λdeath)
2: Lineages← Queue();
3: T ← new empty tree;
4: Leaves← {}
5: Lineages.push((root,None, 0))
6: SampleLineageEvent(node, parent, time, T, Leaves, Lineages, λbirth, λdeath)
7: while Lineages is not empty do
8: node, parent, time← Lineages.pop()
9: SampleLineageEvent(node, parent, time, T, Leaves, Lineages, λbirth, λdeath)

10: end while
11: Remove all nodes in T that do not have a descendant in Leaves
12: Return T
13: end procedure
14:

15: procedure SampleLineageEvent(node, parent, time, T, Leaves, Lineages, λbirth, λdeath))
16: tbirth, tdeath ← Exp(λbirth) + a,Exp(λdeath);
17: if time+min(tbirth, tdeath) > 1 then
18: T ← T ∪ {(parent, node), weight = 1− time};
19: Leaves← Leaves ∪ {node};
20: else if tbirth < tdeath then
21: T ← T ∪ {(parent, node), weight = tbirth};
22: Lineages.push(Node(), node, time+ tbirth);
23: end if
24: end procedure
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To control for the number of leaves in the simulated trees, we take only trees that have between 205 and
307 leaves (if the procedure terminates with no living lineages, then we consider that tree to have 0 leaves).
Note that in the trees generated by this process sister nodes need not have the same edge length and the
root will have a singleton edge as in the binary case along which mutations can occur. We chose rates for
the division and death waiting distributions (23.70 and 2.12, respectively) that gave an average of around
256 leaves over 1000 simulations. These rates were chosen assuming that the rate of division was 10 times
that of the rate of death, and then correcting the death rate to increase the mean waiting time by a = 0.05
to match the shift in mean in the distribution of division times.

Due to the stochastic nature of this division process, we cannot exactly control for ` if we stop the ex-
periment at a specified time. This is due to the fact that edges at the leaves of the tree may be very small
if the stopping criterion is reached before the length can reach a, thus making the minimum edge length in
the tree technically potentially smaller than a. We contend that these edges should not impact the analy-
sis though. Small edges make it difficult to discern which neighboring clades are actually closer in relation.
These small edges only occur at the bottom of the tree though and would only affect the edge lengths leading
to single leaves, which are trivially discerned as a cherries with their neighbors, meaning that ` would still
effectively be 0.05 in this case.

This topology simulation framework is implemented in the Cassiopeia codebase as the “BirthDeathFitness-
Simulator” class in the “simulator” module. Here, “birth waiting distribution” is set to a lambda function
that takes a rate and returns a random waiting time from an exponential distribution with that rate, shifted
by 0.05. “initial birth scale” is set to ≈ 23.70. “death waiting distribution” is set to a lambda function
that takes no arguments and returns a random waiting time from an exponential distribution with that rate
1/ ≈ 23.70 + 0.05. “experiment time” is set to 1. The other arguments are set to their defaults.

Simulating CRISPR-Cas9 Lineage Tracing Data: Given a tree topology, we simulate a CRISPR-
Cas9 mutagenesis process over it. Along each edge with length t, independently for each character, we
simulate the probability that a mutation will occur as 1 − eλt. If a character has been chosen to mutate,
we then draw from the state distribution to determine the state the character acquires. In this case, this is

a uniform distribution with m = 1/q states (note that in the uniform case, q =
∑m
j=1

1
m

2
= 1/m). Once a

mutation is acquired on an edge, that mutation persists in all downstream nodes. Then the mutations ac-
quired along the path from the implicit root is maintained for each leaf node, which then forms the observed
character information for all observed cells. If the simulation involves missing data, then ps proportion of
characters are uniformly at randomly changed to a state representing missing data (-1). This character
information is the input to the reconstruction algorithm.

This lineage tracing simulation framework is implemented in the Cassiopeia codebase as the
“Cas9LineageTracingDataSimulator” class in the “simulator” module. Here, “number of cassettes” is set
to the respective k, “size of cassette” is set to 1, “mutation rate” is set to the respective λ, “state priors”
is set to a dictionary representing the q distribution, “heritable silencing rate” is set to 0, and “stochas-
tic silencing rate” is set to 0 and 0.1, depending on whether the particular simulation has missing data. All
other arguments are set to default.

Finding the Minimum Necessary k:

Exploring the Space of k: Here we describe the process by which we determined the minimum k necessary
for 90% probability of a given criterion in our simulations, either full reconstruction, partial reconstruction,
or triplets correct. For a given value of k and a given a set of parameters, we verify if it is sufficient for 90%
probability of full reconstruction as follows: we simulate 10 ground truth trees, reconstruct each tree from
its observed cells (leaves) using the relevant algorithm, and comparing the corresponding reconstructed tree
to each ground truth tree. If ≥ 9 out of those 10 trees meet a scoring criterion, then we say that this k
is sufficient. To alleviate the effect of noise, if 7-8 out of 10 trees meet the criterion, then we construct 20
additional trees and say k is sufficient if ≥ 18 of those trees meet the criterion.
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To efficiently explore the space of k, we first exponentially (base 2) increase the value of k until a max
value is reached (4098 in the case of no missing data and 16384 in the case of missing data). Once we find
a sufficient k, we perform a binary search in the bin between that value and the value before it. Finally,
we record the number of trees correctly reconstructed out of 10 for each value of k in the binary search
and perform a logistic regression on these data points. We report the value of k that first reaches 90%
reconstruction probability predicted by the logistic regression. If no k is sufficient up to the max value, then
we deem that the necessary value of k is too large for our simulations to discern and we report a missing
value. To calculate the point-wise confidence intervals used in Figures 2, 4, 6 for each regression on a set
of parameters, we calculate the upper and lower bounds of the 95% confidence interval from the regression
coefficients using the delta method. Then, we take the upper bound on the necessary k as the first k where
the lower bound exceeds 90%, and we take the lower bound as the first k where the upper bound exceeds 90%.

Full reconstruction: We say the reconstructed tree achieves perfect reconstruction if it has a Robinson-
Foulds Distance of 0, meaning the trees are isomorphic with regard to their labels.

Robinson-Foulds Distance is implemented in the codebase as the “robinson foulds” method in the “cri-
tique” module. This method makes use of the the Ete3 package [48].

Partial Reconstruction: To determine the sufficient k needed for exact partial reconstruction for triplets
whose LCA is up to depth d, we use the same framework as in the case of full reconstruction but we change
the scoring criterion. We can no longer compare ground truth and reconstructed trees by Robinson-Foulds
Distance, which compares the entire tree. We instead present and show the correctness of an algorithm to
determine if all triplets in a tree up to depth d are resolved correctly in the reconstructed tree. The algorithm
is as follows. Let T be the ground truth tree, T ′ be the reconstructed tree, and d be the depth:

1: procedure CheckPartialReconstruction(T , T ′, d)
2: CheckSplit(root(T ), root(T ′))
3: Return TRUE
4: end procedure
5:

6: procedure CheckSplit(n, n′, d)
7: if depth(n) < d then
8: return
9: end if

10: l, r = children(n)
11: l′, r′ = children(n′)
12: if leaves beneath(l) == leaves beneath(l′) and leaves beneath(r) == leaves beneath(r′) then
13: CheckSplit(l, l′, d), CheckSplit(r, r′, d)
14: else
15: Return FALSE
16: end if
17: end procedure

Next we prove its correctness:

Claim: All triplets whose LCA is at depth < d in T are resolved correctly in T ′ iff for every node n < d
in T there exists a node n′ in T ′ whose daughter clades partition the set of leaf descendants of that node in
the same way.

Proof: if: For a triplet (a, b|c) whose LCA is node n, a, b must be in the clade of one daughter of n
and c on the other. If there exists a node n′ in T ′ that partitions the leaf nodes into the same two clades,
then for each triplet whose LCA is at n, a, b will be grouped together in the same clade with c on other
side, hence every triplet will be resolved correctly. If there exists n′ for each n < d, then all triplets with
LCA < d will be resolved correctly. only if: If there is a node n < d in T with no node n′ in T ′ with an
analogous partition, this implies that there is some partition of the leaves in T ′ starting from the root at or
above n that does not match the partition in T , as if all partitions were correct then n′ must exist. If there
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is a non-matching partition, there is some partition {a1, ..., am}|{b1, ..., bn} in T where in T ′ there is at least
one incorrect member in one of the partitioned sets: {a1, ..., a

′
m, b1, ..., b

′
n}|{a′m+1, ..., am, bn′+1, ..., bn}. Then

in T ′, WLOG b1 is closer to some ai than some bi, and all triplets involving b1 and ai are incorrect in T ′.
As the partition with the non-analogous partition is at depth < d in T , then some triplets whose LCA is at
depth < d in are incorrectly resolved in T ′.

The algorithm will find n′ for every n < d by matching it to a node in T ′ that has the same partition.
If the algorithm does not find n′ for a certain n < d, then it does not exist as if all partitions checked by the
algorithm match up to and including n in T ′ then it must exist, and the given partition cannot be formed
later as leaf descendant sets cannot add members down the tree.

Triplets Correct: Additionally, we report the necessary k needed for 95% triplets correct in simulation.
The triplets correct score is determined by sampling 500 triplets uniformly from the ground truth tree and
counting the proportion of triplets resolved accurately in the reconstructed tree.
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Additional Simulations:

Visualization of the (`∗, d∗)−Oracle:

The (`∗, d∗)−Oracle presented above attempts to determine the outgroup of a triplet using the difference
in the number of shared mutations between its members. In Figure 5 we visualize how well the deci-
sion rule holds for correctly and incorrectly resolved triplets. We plot s(a, b) −max(s(a, c), s(b, c)) against
dist(LCA(a, b), LCA(a, b, c)) for triplets (a, b, c) on simulated trees. The blue points show the difference
between the mutations shared by the ingroup versus the mutations shared by the outgroup, and the orange
points show the difference between the mutations shared by the outgroup and the ingroup. We see that 10%
of triplets are such that s(a, b)−max(s(a, c), s(b, c)) ≤ t with (a, b) as the ingroup and thus violate condition
i), and that 2.3% are such that s(a, b) −max(s(a, c), s(b, c)) ≤ t with (a, b) as the outgroup. Note that as
s(a, b) − max(s(a, c), s(b, c)) ≤ s(a, b) − s(a, c), requiring that s(a, b) − max(s(a, c), s(b, c)) < t is a slightly
weaker condition than condition ii) and thus at most 2.3% of triplets violate it. For the set of parameters
used here, t is chosen such that the probability that a triplet is indeterminable is low and the probability
that the outgroup is given incorrectly is low, showing that the oracle is relatively accurate on this regime
for the low number of characters (k = 10). For for exact reconstruction of a tree though, we require that all
triplets on that tree be separated by the threshold t.

As dist(LCA(a, b), LCA(a, b, c)) increases, this difference in the number of shared mutations between the
ingroup and the non-ingroup pairs grows, making the triplets more separable. This gives us the V-shape in
the figure. As the distance increases, the number of triplets that cross the threshold and thus violate either
condition decreases, and after a certain point no triplets cross the threshold. This illustrates that in the
result in Theorem 2 that, as we are only interested in triplets where dist(LCA(a, b), LCA(a, b, c)) > `∗ for
larger values of `∗, them the bound on the number of characters k needed to separate these triplets decreases.

Figure 5: Visualizing the (`∗, d∗)−Oracle decision rule in simulation. We sample 100 triplets uniformly for
each of 100 trees simulated under the Asynchronous simulation framework described in the appendix with
k = 10, λ = 0.5, q = 0.05 and n ≈ 256. For each triplet, we plot s(a, b) − max(s(a, c), s(b, c)) for two
cases: when (a, b) notates the true ingroup of the triplet (blue) and 2) when (a, b) notates one member of
the ingroup and the outgroup (orange). The histograms show the density of each case for each triplet along
the axes.
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Dependence on n:

To compare the asymptotic dependence of k on n in the theoretical bounds with the dependence of the
necessary k in the empirical case, we simulate varying trees of size. In Figure 6 we plot the values of k in
simulation against the bounds for both algorithms, in a regime where ` = 0.5, q = 0.05. From this figure
it can be seen that the bounds are tight (within a constant factor) against the empirical values and share
the same shape in the dependence of k on n. These results offer empirical validation of the asymptotic
dependence of k in the bounds for both algorithms.

Figure 6: Comparing the dependence of minimum necessary k on n of the Threshold Algorithm (left) and
the Bottom-Up Algorithm (right) with the theoretical bounds for each case (90% of full reconstruction).
Simulations performed with the uniform edge length regime for trees of size 22, 23, ..., 211 leaves. For each
value of n, edge lengths were re-scaled to be 1

log2(n)+1 to maintain uniform edge lengths. The bounds are

rescaled by a constant factor, 100 for the Threshold Algorithm and 25 for the Bottom-Up Algorithm. Point-
wise 95% confidence intervals are generated from the regression coefficients using the delta method, see
appendix.

Missing Data:

Here we present simulations for the minimum k to give 0.9 probability of exact reconstruction for the case
of stochastic missing data only (lemma 4). The simulations are performed with uniform edge lengths and
use ps = 0.1 proportion of stochastic missing data. Visualizing the bounds for lemma 4 show that indeed
higher values of k are necessary to overcome the lost information (Figure 7A), consistent with the additional
(1 − pd)2 term in the denominator and gap term of eλd

∗
d∗ when compared to the bounds of Theorem 1.

Notably, the reconstruction now becomes increasingly intractable for high values of λ, due to the gap term
being exponential in λ. In simulation (Figure 7B) we see that the necessary k is higher across the board,
especially for values with high λ, validating the theoretical trends.

Surprisingly, unlike in lemma 2, the bound on k in lemma 4 has no asymptotic dependence on q. Tak-
ing q to be arbitrarily small (or even q < `/λ) causes the bound in lemma 2 to become O( logn

` ), yet an

arbitrarily small q causes the bound in lemma 4 to remain in O( logn
`2 ). Examining the difference in the

bounds between lemma 4 and lemma 2 (Figure 7C (Top)), we see that the difference grows larger in regions
where q < `/λ, indicating that the bound changes asymptotically in these regions. This same pattern is
reflected in the empirical results, validating this change in dependence on q (Figure 7C (Bottom)).
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Figure 7: Comparison of the Threshold Algorithm in simulation and theory in the case of missing data,
using the missing data strategy outlined in lemma 4. Simulated trees with 256 leaves, n = 256. Entries are
log10 scaled. (A) Theoretical lower bound on k required for 0.9 probability of perfect tree reconstruction for
varying values of q and λ in the case of missing data, with ` = 1/9, d∗ = 1, and ps = 0.1. (B) Minimum k
required for 0.9 probability of perfect reconstruction in simulation with a cell division topology with uniform
branch lengths, ` = 1/9, d∗ = 1, and ps = 0.1. (C) Scalar difference in the values of k in the case with and
without missing data. Top: Difference in theoretical bounds for k for 0.9 probability of perfect reconstruction,
` = 1/9, d∗ = 1, and ps = 0.1. Bottom: Difference in minimum k required for 0.9 probability of perfect
reconstruction in simulation with a cell division topology with uniform branch lengths, ` = 1/9, d∗ = 1, and
ps = 0.1.

Triplets Correct:

Previous benchmarking works do not use exact reconstruction as a metric for the accuracy of phylogenetic
reconstructions. A common, more relaxed metric is the triplets correct metric (or the closely related triples
distance), which measures the proportion of sampled leaf triplets that are correctly (incorrectly in the case
of triplets distance) inferred by the reconstructed tree [10, 49, 35]. We present the minimum k necessary
in simulation for high probability of a high (≥ 95%) triplets correct score on uniformly sampled triplets,
showing the necessary k when exact reconstruction is not required (Figure 8). We see that the empirical
necessary k decreases substantially overall compared to the case of exact reconstruction for both algorithms,
showing that these algorithms can perform well in practice with a low number of characters according to
traditional standards of accuracy.

Regarding the Threshold Algorithm, the reduction in the necessary k is potentially due to the fact that
if triplets are sampled uniformly, most of them will have an LCA close to the root. We saw from the partial
reconstruction results that the necessary k decreases across the board as d∗ (the depth up to which triplets
must be correct) decreases. We see also that large values of λ coincide with lower relative k in the triplets
case than in the case of full reconstruction, just as in the case of d∗ << 1. Thus, we can treat the case of
uniformly sampling triplets as similar to setting a low d∗. We see that both of these effects, the lower overall
necessary k and the lower k for high values of λ, also hold true of the Bottom-Up Algorithm in the case of
uniformly sampling triplets. This indicates that perhaps reconstruction of triplets that diverge at the top of
the tree is easier and less affected by mutation saturation in the case of the Bottom-Up Algorithm as well.
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Figure 8: Triplets correct scores for both algorithms. Simulated trees with 256 leaves, n = 256. Entries are
log10 scaled. Minimum k required for 0.9 probability of ≤ 0.95 proportion of 500 uniformly sampled triplets
correctly reconstructed in simulation. Top row: Results for the Threshold Algorithm in the case of (From
left to right) uniform edge length topology without missing data (` = 1/9, ps = 0.1), uniform edge length
topology with missing data (` = 1/9, ps = 0.1), asynchronous topology (` = 0.05). Bottom row: Results for
the Bottom-Up Algorithm in the case of (From left to right) uniform edge length topology (` = 1/9) and
asynchronous topology (` = 0.05).
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