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Abstract

CRISPR-Cas9 lineage tracing technologies have emerged as a powerful tool for investigating develop-
ment in single-cell contexts, but exact reconstruction of the underlying clonal relationships in experiment
is plagued by data-related complications. These complications are functions of the experimental param-
eters in these systems, such as the Cas9 cutting rate, the diversity of indel outcomes, and the rate of
missing data. In this paper, we develop two theoretically grounded algorithms for reconstruction of the
underlying phylogenetic tree, as well as asymptotic bounds for the number of recording sites necessary
for exact recapitulation of the ground truth phylogeny at high probability. In doing so, we explore the
relationship between the problem difficulty and the experimental parameters, with implications for ex-
perimental design. Lastly, we provide simulations validating these bounds and showing the empirical
performance of these algorithms. Overall, this work provides a first theoretical analysis of phylogenetic
reconstruction in the CRISPR-Cas9 lineage tracing technology.

Introduction

Phylogenetic trees are routinely constructed to describe the developmental relationships within sets of extant
taxa such as different organisms, proteins, or single cells. A landmark early example of using phylogenetics
to describe cellular relationships was that of Sulston and colleagues reporting the development of C. elegans
as deduced from meticulous visual observation [1, 2]. Recent progress in CRISPR-Cas9 based lineage tracing
technologies now enables the inference of cellular lineage relationships in more complex organisms where
visual observation is not possible. This is owing CRISPR-Cas9’s ability to generate heritable, irreversible,
and information-rich mutation events that can be read through single-cell assays (such as RNA-seq) and sub-
sequently used to infer the underlying phylogeny [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Typically, these technologies
start by engineering a single progenitor cell with artificial transcribed recording sites that accumulate stable
insertions or deletions (“indels”) as a result of repair of Cas9 double-stranded breaks. These indel mutations
are subsequently inherited by future descendants, and the accumulation of these mutations is used to infer
the clonal relationships between the observed cells, stratifying them into clades of increasing resolution. Thus
far, studies have paired these technologies with single-cell transcriptomic profiling [13] to study questions
in development (e.g., inferring lineage relationships between cellular compartments) [7, 8, 6, 5, 9, 11] and
cancer progression (e.g., inferring rates and routes of metastases) [12, 14].

Despite the many advantages of CRISPR-Cas9 lineage tracing systems, an outstanding goal is develop
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methods to accurately infer the underlying developmental process and to determine under what experimen-
tal conditions the problem is tractable. Exact reconstruction of the ground truth phylogenetic tree, defined
here as having a reconstructed tree that exactly matches that of the ground truth clonal relationships, is
plagued by various data-related complications (Fig.1). First, convergent evolution (or homoplasy) events
can occur whereby the cells might appear to be incorrectly related to each other because the same indel
occurs in unrelated clades. [15, 16, 10]. Second, substantial missing data is observed in these experiments
in which the information at recording sites is lost due to partial RNA capture, recording site resection,
or transcriptional silencing [10, 17, 18, 5, 6]. Finally, a mis-tuned “Cas9 editing rate” - the rate at which
Cas9 induces heritable mutations used for lineage tracing - can lead to scenarios where there is a lack of
mutation information sufficient for discerning relationships between cells. If the editing rate is too low, then
“mutation-less edges” will occur in which a cell divides before it acquires a mutation, generating a irre-
solvable polytomy on the underlying phylogeny. If the editing rate is too high, then “mutation saturation”
occurs in which the recording sites all acquire mutations before cell division ceases, making differentiation
of the bottom of the phylogeny impossible [18]. As these complications are functions of parameters of the
CRISPR-Cas9 lineage tracing system, a question of experimental design arises. Specifically, which configu-
rations of the many experimental parameters involved in the CRISPR-Cas9 lineage tracing technology can
alleviate these complications and make the problem of exact reconstruction more feasible? Our goal in this
study is to address this question and identify configurations that are sufficient to theoretically guarantee
exact reconstruction while also providing the accompanying phylogeny inference algorithms.

While there is extensive work establishing theoretical guarantees for exact reconstruction in other (arguably
simpler) phylogenetic models, these models do not capture the specific features of CRISPR-Cas9 lineage trac-
ing. One such example is the Cavender-Farris-Neyman (CFN) 2-state mdoel (a.k.a. binary Jukes-Cantor).
In this setting, for n taxa, algorithms have been developed to exactly reconstruct subtrees with the number

of characters k = O( log(n)
`2 ) [19, 20, 21] if the length (duration) of every edge is greater than some value `,

and complete reconstruction is possible if the length of each edge is also upper-bounded by log(2)
4 [22, 23].

Unfortunately, the CFN model cannot be readily applied to data of this type as it differs from the CRISPR-
Cas9 settings in several critical ways: there are only two states (mutated, non-mutated) as opposed to the
arbitrary state space of indels caused by Cas9 repair, reversibility of mutations is allowed as opposed to the
irreversible mutations of Cas9, and there is no missing data [24, 25]. This motivates the development of
theoretical bounds for the CRISPR-Cas9 lineage tracing model in particular.

Despite this need, to our knowledge there has yet to be any work directly exploring guarantees for ex-
act reconstruction in the general CRISPR-Cas9 lineage tracing model. There do exist a few regimes where
theoretical guarantees exist (e.g., under perfect phylogeny where every mutation occurs exactly once [26, 10]),
but these regimes rarely exist in experimental settings. When these conditions are not met, other meth-
ods rely on criteria defined over the reconstructed phylogeny to guide reconstruction. Maximum-likelihood
[27, 17], parsimony-based [28, 3, 10, 8] and distance-based [29, 30] methods optimize over likelihood, the
minimum number of mutations, and variations of the ME (minimal evolution) criterion respectively [31, 32].
Unfortunately, optimizing these criteria does not necessarily correspond to reconstructing the correct tree.
While there have been results regarding exact reconstruction for Neighbor-Joining in particular given certain
error bounds between the true and observed distance metric [33, 34], there has yet to be work characteriz-
ing how and when mutation-based distances meet these criteria. Additionally, while existing studies have
used simulations to provide insight into the relationship between reconstruction accuracy and experimental
parameters [18, 10, 35], there has been limited theoretical exploration into CRISPR-Cas9 lineage tracing
experimental design and how to optimize parameters in order to achieve accurate reconstruction.

In this paper, we derive such bounds for the CRISPR-Cas9 lineage tracing model. We develop two al-
gorithms with theoretical guarantees for exact reconstruction of the underlying phylogenetic tree of a group
of cells, showing that exact reconstruction can indeed be achieved with high probability given sufficient
information capacity in the experimental parameters. In particular, we begin with an algorithm for a lower
bounded edge constraint model whereby we prove that, in the absence of missing data, high probability

of exact reconstruction can be achieved in polynomial time with O( log(n)
`2 ) characters, matching the CFN
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Parameters of Interest
Parameters Description
k Number of characters
n Number of leaves in the tree. i.e. number of observable samples
` The minimum edge length on the ground truth phylogeny, normalized to the

height of the tree
λ Rate at which each character mutates. Corresponds to rate at which recording

sites are cut by Cas9
q Probability of collision for independent mutation events
pd The probability that the state at a given character/leaf pair is indeterminable

because of missing data
d∗ Depth such that any triplet rooted above d∗ that is well separated enough can

be recovered with high probability. Normalized to the height of the tree
δ(d) When all other parameters are fixed, δ(d) is a function that is proportional

to the expected difference between ingroup-ingroup similarity and ingroup-
outgroup similarity for triplet at depth d. It is the primary function used for
the triplets oracle for making decision

Table 1: A summary of key model variables

2-state model. The lower bound assumption translates to a reasonable assumption over the minimal time
until cell division [36]. We further extend this algorithm and bound to account for missing data, showing
that the same bounds still hold assuming a constant probability of missing data. We then consider the case
of imposing an additional upper bound on edge lengths in our tree, to which we apply a bottom up approach

that decreases the asymptotic number of characters required to O( log(n)
` ) characters, improving on previous

bounds. The upper bound corresponds to an assumption on the maximum time until cell division, which
can be evaluated in lineage-traced populations, as they by definition should not be post-mitotic. Using these
asymptotic bounds we characterize the dependence between the necessary number of characters and other
experimental parameters, such as the mutation rate (controlled by guide affinity [9]), thus offering insight
into how experimental design may be improved as the field develops. Lastly, we validate these relationships
between k and the experimental parameters via a large set of simulations and present empirical bounds on
the k required for exact reconstruction.

Taken together, our results provide a first theoretical analysis into the feasibility of phylogeny inference
in the single-cell CRISPR-Cas9 based setting. As this field continues to grow and generate excitement as
exemplified by the recent Allen Institute Dream Challenge [35], we anticipate that this work will inform the
emerging dependencies between the experimental parameters and will serve to guide future studies both in
terms of technology development (which parameters should be optimized) and tailoring the CRISPR-Cas9
lineage tracing system for specific case studies (e.g., dependent on the expected number of cell generations
in the entire process). The algorithms and simulation engine presented here are available as an open source
software in https://github.com/YosefLab/Cassiopeia.

Problem Setup and Model Assumptions

In order to tackle the problems of guarantees on exact reconstruction and optimizing experimental design,
it is helpful to consider a more abstract theoretical model. We begin with a single-cell with k unmutated
characters, corresponding to k unedited recording sites at which CRISPR-Cas9 can induce mutations. This
cell then undergoes cell division. Over time, characters may mutate from their unedited states at instanta-
neous rate λ according to an exponential distribution. While previous models have assumed a per-generation
mutation rate [10, 37, 17], in our model, mutations occur independently from cell division. We believe this
is a more accurate representation of current experimental regimes.

When a mutation occurs, the respective character adopts a state (corresponding to an indel) according
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Figure 1: General problem setup. In particular, we note that a and b are the ingroup, whereas c is the
outgroup. In addition, we point out some of the key variables used throughout this manuscript: d∗, k, n, q,
λ, `.

to some probability distribution over the space of possible indels. We assume that once a character mutates,
it can never change its state again and that this mutation will be inherited by all descendants of this cell.
This irreversibility assumption is derived from the fact that after an indel is introduced at a recording site
by Cas9, the guide RNA no longer has affinity at that site preventing future edits [18, 38]. After a set period
of time has elapsed, a subset of the contemporary cells (leaves of the tree) are collected for sequencing. We
denote the size of this set by n.

Finally, some proportion with expectation pd of each cell’s characters will have their states rendered in-
determinable. This missing data may be due to low capture at the sequencing step and affect only one cell,
or through resection (excision) or transcriptional silencing events which are inherited throughout the cell
division process and persist in all descendant cells [10, 18, 5, 27, 6]. We refer to the former as stochastic
missing data and the latter as heritable missing data.

Given the set of samples collected at the end of the experiment, the goal is to construct the phyloge-
netic tree that relates the observed cells to one another, based on their character/state information. Note
that even though we collect a subset of the cells, the underlying “ground truth” phylogeny is still a binary
tree. Formally, this problem can therefore be viewed as a character-based inference of a rooted phylogeny
where the tree is binary, the root is unmutated, the mutations are irreversible, and some mutation data may
be missing. In addition to offering algorithms to the problem, our goal is to shed light on the relationship
between the various experimental parameters k, q, n, λ, and pd (summarized in Table 1), finding the regimes
in which exact lineage reconstruction is tractable. We next explore the generative model in more detail.

Generative Process

Let T be a binary tree representing the ground truth phylogeny in a CRISPR-Cas9 lineage tracing exper-
iment. Let S be the set of leaves in T , with each leaf representing a single cell in our input. Each edge
(u, v) of T has a length, l(u, v), representing the duration of time between the two respective cell division
events. Furthermore, we define the distance dist(u, v) between two vertices u, v as the sum of the lengths of
the edges in the path between u and v. In addition, we denote the root node by r and say that a vertex u is
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at depth d if dist(r, u) = d. Finally we assume that the distance between the root and any leaf is equal to 1
(normalizing arbitrary time units), as all leaves are sampled at one time point, making the tree an ultrametric.

Each node in the tree has k independently evolving characters, each of which can take on states in {0, 1, ...m}.
Each character starts in an unedited state (0) at the root. Once a cell acquires a mutation at a certain char-
acter, this mutation is inherited by all descendants of that cell, and mutations cannot occur at that character
in these descendants (irreversibility). For each character, the time it takes for a mutation to occur on a path
in the tree is exponentially distributed with rate λ, and is independent of cell division events. That is, if
r = 0k is the root then the probability that a mutation occurs along the path from r to some downstream
descendant vertex u for any particular character is∫ dist(r,u)

0

λe−λtdt = 1− e−λdist(r,u)

We assume that each character mutates independently of all other characters. Once a character mutates, it
takes on state j ∈ {1, ...m} with probability qj . Let q =

∑m
j=1 q

2
j be the probability that two independent

mutations at the same character index arrive at the same state. At the end of the experiment, each character
in the leaves has a pd probability of becoming indeterminable and adopting the “missing” state. Finally,
another measure of similarity between nodes, which we will use throughout, is derived from their mutation
profiles. Here, we define by s(u, v) the number of mutations shared by nodes (cells) u and v. The definitions
of the primary variables used in our analysis are summarized in Table 1 and Figure 1.

Additional Definitions

For a triplet of nodes a, b, c ∈ T , we use the notation of (a, b|c) to denote that c is the “outgroup”, namely
that LCA(a, b) is a descendent of LCA(a, b, c), where LCA gives the lowest common ancestor in T . This
leads us naturally to the concept of a triplets oracle.

Definition 1 (Triplets Oracle) We say that a function O : S3 → S is a triplets oracle if for every leaf
triplet (a, b|c) ∈ S, O(a, b, c) = c.

It is known that T can be reconstructed exactly in O(n log n) time given a triplets oracle. Typically, it is
unreasonable to expect to have exact triplet oracles in practical applications, so instead we define a relaxed
version of this oracle.

Definition 2 ((`∗, d∗)−accurate partial oracle) We say that O is an (`∗, d∗)−accurate partial oracle, if
for every triplet (a, b|c) such that depth(LCA(a, b, c)) ≤ d∗, then O(a, b, c) returns either c or Null. In
addition, if it also follows that dist(LCA(a, b), LCA(a, b, c)) ≥ `∗, then the oracle is guaranteed to return the
correct answer, i.e. O(a, b, c) = c.

In other words, the partial oracle does not return the wrong answer for triplets whose LCA is close to the
root (max depth d∗). If in addition the triplet is separated by a distance of at least `∗ it is guaranteed to
return the correct outgroup. In the remaining cases (e.g., triplets with an LCA far from the root, which are
thus more difficult to resolve), the partial oracle can be wrong.

Throughout the paper, we will use the first order approximation 1 − e−x ≈ x when suitable. We will
also be using the following versions of Hoeffding’s inequality:

If Y ∼ Bin(n, p), and µ = np = E(Y ), then we have:

Pr[Y ≥ (1 + β)µ] ≤ exp(− β2µ

2 + β
) for β > 0

Pr[Y ≤ (1− β)µ] ≤ exp(−β
2µ

2
) for β ∈ (0, 1)
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Summary of Results

In the first section of this paper we show that in an experiment where each sample has sufficiently high
number of characters and states (where the required number of characters and states depends on λ, q, `, d∗

and pd), that it is possible to construct (`, d∗)−partial oracles with high probability. Given these partial
oracles, we have top-down algorithms that can exactly reconstruct T up to depth d∗, either with or without
missing data. In particular, note that if d∗ = 1 and ` is at most the minimum edge length, then an
(`, d∗)−partial oracle is a triplets oracle, which leads to an exact reconstruction of T in O(n log n) time. In
this paper, we study guarantees in full and partial exact reconstruction of the ground truth tree. We will
give the guarantees about full reconstruction as corollaries of our main theorems as follows:

Corollary 1 Given a ground truth tree, T , of height normalized to 1 under the lineage tracing model with
k characters, n samples, minimum edge length `, and constant mutation rate and state space, there exists a
polynomial time algorithm to reconstruct T with high probability when k = O( logn

`2 ).

Accounting for the possibility of missing data (incomplete information on the mutation profile of each cells
in our study), we get:

Corollary 2 Under the same conditions above, assume that information of the state of any given character
in a given cell can be masked with probability pd independently for each character. In that case, there exists
polynomial time algorithms to reconstruct T with high probability when k = O( logn

`2(1−pd)3 ).

As another extension, we consider a less constrained case with no lower bound on edge length. We show
that in that case we can still get partial recovery as follows:

Corollary 3 Under the same conditions as in corollary 1 and with no lower bound on edge length `, there
exists a polynomial time algorithm that with high probability will return a tree which correctly resolves all
triplets, (a, b|c) such that dist(LCA(a, b, c), LCA(a, b) ≥ `∗ when k = O( logn

`∗2 ).

Finally, we consider a more constrained case, where edge lengths are both upper- and lower-bounded. We
demonstrate that it is possible to achieve a stronger lower bound on the number of characters required via a
bottom-up algorithm. This part is based on an alternative strategy, in which we conduct a bottom up tree
reconstruction without using an oracle. This alternative approach gives the following theoretical guarantee:

Corollary 4 If we assume that edge lengths are between ` and O(
√
`) then for a sufficiently low mutation

rate, there exists polynomial time algorithms to reconstruct T with high probability when k = O( logn
` ).

Partial Reconstruction of Phylogenies with Top-down Oracle-based
Algorithms

For a triplet a, b, c, suppose WLOG that s(a, b) ≥ s(b, c) ≥ s(a, c). Our goal is to define a sufficiently high
threshold t such if s(a, b)−max(s(b, c), s(a, c)) > t then with high probability, c is the outgroup. Since leaf
node similarities can be readily computed from our input, this will help define a triplets oracle.

First, consider the case in which there is no missing data and all character states are determinable at
the end of the experiment. Let (a, b|c) be a triplet where

dist(LCA(a, b), LCA(a, b, c)) ≥ `∗and dist(LCA(a, b), LCA(a, b, c)) = d ≤ d∗

Given our assumptions on the mutation process, the similarities s(a, c) and s(b, c) have the same distribution,
since c is the outgroup. Thus, we will focus on analyzing the quantity E[s(a, b)−s(b, c)] WLOG. Let sw(u, v)
be the number of mutations shared by u and v that occurred after the point when the three lineages diverged
from LCA(u, v, w). Then we have that s(a, b)− s(b, c) = sc(a, b)− sa(b, c) since any mutation that occurred
before LCA(a, b, c) is inherited by all three nodes and will contribute equally to s(a, b) and s(b, c). The
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number of mutations shared by a and b after their divergence is distributed according to Binomial(k, p)
where p, the probability of a given character having the same mutation in a and b, is

≥ e−λd((1− e−λ`
∗
) + e−λ`

∗
(1− e−λ(1−`∗−d))2q)

where e−λd is the probability that the mutation did not occur before LCA(a, b, c). The left term inside the
parentheses is the probability that the shared mutation came from a single event that occurred on the path
from LCA(a, b, c) to LCA(a, b). The right term is the probability that the shared mutation came from two
independent events that happened downstream of LCA(a, b) (i.e., homoplasy).

Considering there are k characters, we then have:

E[sc(a, b)] ≥ ke−λd((1− e−λ`
∗
) + e−λ`

∗
(1− e−λ(1−`∗−d))2q)

A similar computation shows that:

E[sa(b, c)] ≤ ke−λd(1− e−λ(1−d))2q

Thus, we have that:

E[s(a, b)− s(b, c)] ≥ ke−λd(1− e−λ`
∗

+ qe−λ`
∗
(1− 2e−λ(1−`∗−d) + e−2λ(1−`∗−d))− q(1− 2e−λ(1−d) + e−2λ(1−d)))

= ke−λd(1− e−λ`
∗

+ q(e−λ`
∗
− 1 + e−2λ(1−d)+λ`∗ − e−2λ(1−d)))

= ke−λd((1− e−λ`
∗
)(1− q) + qe−2λ(1−d)(eλ`

∗
− 1))

≥ ke−λd((1− e−λ`
∗
)(1− q) + qe−2λ(1−d)λ`∗)

≈ k(e−λdλ`∗(1− q) + qe−λ(2−d)λ`∗)

= kλ`∗(e−λd(1− q) + qe−λ(2−d))

Let δ(d) = e−λd(1− q) + qe−λ(2−d). We then have that for any triplet (a, b|c), where depth(LCA(a, b, c)) = d
and dist(LCA(a, b, c), LCA(a, b)) ≥ `∗:

E[s(a, b)− s(b, c)] ≥ kλ`∗δ(d)

Defining a (`∗, d∗)−Oracle

We are now ready to define the decision rule that will be used by the partial oracle. Let d∗ ∈ [0, 1] be an
arbitrary depth to which we expect the oracle to be correct, and let δ∗ = minx∈[0,d∗] δ(x). Notably, the δ∗

function has a closed form that depends on λ, q, and d∗ (see appendix). For a particular triplet a, b, c, the
oracle proceeds as follows:

i) Set a threshold t = 1
2kλ`

∗δ∗.

ii) If there exists a pair a, b out of the triplet, such that s(a, b)−max(s(a, c), s(b, c)) > t, then return c as
the outgroup. Otherwise return Null.

In the following we will prove that for a sufficiently large k, the function defined above is a (`∗, d∗)−Oracle.
In particular, let (a, b|c) be any triplet where LCA(a, b, c) is at depth d < d∗. We will prove that the following
two conditions hold with high probability:

i) If dist(LCA(a, b), LCA(a, b, c)) ≥ `∗, then s(a, b)−max(s(b, c), s(a, c)) > t

ii) In all cases, min(s(b, c), s(a, c))− s(a, b) < t.

To see that conditions i) and ii) imply correctness of the (`∗, d∗)-Oracle, note that the second condition
guarantees that it is unlikely that the oracle will return the wrong answer when called on a triplet rooted at
depth at most d∗. It will therefore return either the correct outgroup or Null. The first condition guarantees
that if the triplet is also separated by a path of length at least `∗, then the outgroup will be correctly returned.
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Figure 5 in the appendix provides an empirical visualization of the (`∗, d∗)-Oracle using simulations. The
simulations mimic the CRISPR-Cas9 lineage tracing system, and are also described in the appendix.

Before computing the k necessary to make conditions i) and ii) hold, we first state the following lemma
(proof in the appendix) which allow us to derive a worst case bound on the probability of triplets failing to
satisfy condition i).

lemma 1 Let (a, b|c) be a triplet with α = dist(LCA(a, b, c), LCA(a, b)). P [s(a, b)−s(b, c) ≥ t] is increasing
with α.

Now we can compute the k that ensures that both conditions i) and ii) are satisfied with high probability.

lemma 2 Condition i) holds with probability at least 1 − ζ if we have the following guarantees on the
parameters q, λ, `∗, d∗ and k:

k ≥ (96 logn+ 32 log 1/ζ)(`∗ + (1− e−λ)q)

λ`∗2δ∗(1− q + qe−2λ)

Both conditions i and ii hold with probability at least 1− ζ if we have:

k ≥ max
( (96 logn+ 32 log 1/ζ)q

`∗2δ∗2
,

(96 logn+ 32 log 1/ζ)(`∗ + (1− e−λ)q)

λ`∗2δ∗(1− q + qe−2λ)

)

Proof: First, we will show that condition i) will hold with probability 1− ζ if:

keλdλ(`∗δ(d))2

32(`∗ + (1− e−λ)q)
≥ 3 log(n) + log 1/ζ

To see this, first note that dist(LCA(a, b, c), LCA(b, c)) ≥ `∗. By lemma 1, we can WLOG assume that
dist(LCA(a, b, c), LCA(b, c)) = `∗ because that is the worst case, i.e. the case where P [s(a, b)−s(b, c) ≥ t] is
minimized. Any condition sufficient for this case will be sufficient overall. Let Y = sc(a, b) and X = sa(b, c).
Since E(Y ) − E(X) ≥ kλ`∗δ(d) ≥ kλ`∗δ∗ = 2t, in order to ensure that Y − X ≥ t, it suffices to have
Y − X ≥ kλ`∗δ(d)/2 which holds when Y ≥ E(Y ) − kλ`∗δ(d)/4 and X ≤ E(X) + kλ`∗δ(d)/4. Thus, we
have

P [Y −X < t] ≤ P [Y < E(Y )− kλ`∗δ(d)/4] + P [X > E(X) + kλ`∗δ(d)/4]

To bound the probability of both events using the above versions of Hoeffding’s inequality, we have:

P [Y < E(Y )− kλ`∗δ(d)/4] = Pr[Y ≤ E(Y )(1− kλ`∗δ(d)

4E(Y )
)]

≤ exp(−k
2λ2`∗2δ(d)2

32E(Y )
)

≤ exp(− k2λ2`∗2δ(d)2

32ke−λd(λ`∗ + λ(1− e−λ)q)
)

P [X > E(X) + kλ`∗δ(d)/4] = Pr[X ≥ E(X)(1 +
kλ`∗δ(d)

4E(X)
)]

≤ exp(− k2λ2`∗2δ(d)2

32E(X) + 4kλ`∗δ(d)
)

≤ exp(− k2λ2`∗2δ(d)2

32ke−λd(λ`∗ + λ(1− e−λ)q)
)

The last line follows from the fact that δ(d) ≤ e−λd and E(X) ≤ ke−λd(1 − e−λ)2q ≤ ke−λdλ(1 − e−λ)q.
Since eλdδ(d) = 1− q+ qe−2λ(1−d) ≥ 1− q+ qe−2λ, in order to ensure that both bad events have probability
at most ζn−3, it suffices to take

kλ(1− q + qe−2λ)δ(d)`∗2

32(`∗ + (1− e−λ)q)
≥ 3 log(n) + log 1/ζ
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Since δ∗ ≤ δ(d), the above condition holds as long as

k ≥ (96 logn+ 32 log 1/ζ)(`∗ + (1− e−λ)q)

λ`∗2δ∗(1− q + qe−2λ)

Applying the same argument to sc(a, b)− sb(a, c) and combining both results gives
P [sc(a, b)−max(sb(a, c), sa(b, c)) < t] ≤ 4ζn−3. Taking a union bound over all

(
n
3

)
= O(n3) triplets, we see

that the probability of condition i) failing for any triplet is at most ζ.

To get guarantees on the second condition, note that condition i) implies that condition ii) holds for all
triplets separated by an edge of length at least `∗. Thus we can focus on the triplets that are not covered by
condition i). Let (a, b|c) be an arbitrary triplet such that dist(LCA(a, b, c), LCA(a, b)) < `∗ and again let
Y = sc(a, b), X = sa(b, c) and d be the depth of LCA(a, b, c) (note that we are focusing WLOG on sa(b, c)
since it has the same distribution as sb(a, c)). We want to show that with high probability, X − Y < t.
Again, it suffices to upper bound P [Y ≤ E(Y ) − t/2] and P [X ≥ E(X) ≥ t/2] because E(Y ) ≥ E(X).
Note that we have already bounded the second quantity. To bound the first quantity, note that the worst
case scenario is that dist(LCA(a, b, c), LCA(a, b)) is as small as possible. Since in this lemma we make
no assumption on the minimal edge length, this quantity can be arbitrarily small and in the worst case,
dist(LCA(a, b, c), LCA(a, b)) = 0, which means Y has the same distribution as X. Note that this case tech-
nically cannot happen as it would imply that T has a trifurcating branch but it is possible to get arbitrarily
close to this case with no restrictions on edge lengths. This gives:

Pr[Y ≤ E(Y )− kλ`∗δ∗/4] ≤ Pr[X ≤ E(X)− kλ`∗δ∗/4]

= Pr[X ≤ E(X)(1− kλ`∗δ∗

4E(X)
)]

≤ exp(− k2λ2`∗2δ∗2

32ke−λdλ2(1− d)2q
)

≤ exp(−k`
∗2δ∗2

32q
)

Thus, if we take:

k ≥ max
( (96 logn+ 32 log 1/ζ)q

`∗2δ∗2
,

(96 logn+ 32 log 1/ζ)(`∗ + (1− e−λ)q)

λ`∗2δ∗(1− q + qe−2λ)

)
then we have P [X − Y ≥ t] < ζn−3. By symmetry, this means P [sa(b, c)− sc(a, b) ≥ t

⋃
sb(a, c)− sc(a, b) ≥

t] ≤ 2ζn−3 Since we can union bound over one bad event of probability at most 2ζn−3 for each of the
(
n
3

)
triplets, we have that conditions i) and ii) both hold with probability at least 1− ζ.

An empirical demonstration and validation of the tightness of lemma 2 using simulations w.r.t. λ and q
is provided in Figure 2, and w.r.t. n in appendix Figure 6. The simulations are described in the appendix.

Sufficient Conditions for (`∗, d∗)−Oracle in the Presence of Missing Data:

General Regime

Now we consider the possibility of missing data (dropout) and give several simple strategies to handle it. In
our analysis we consider two types of dropout events that may occur. A stochastic dropout is an event that
occurs in and affects an individual cell (leaf), e.g., due to the limited sensitivity of single-cell RNA sequencing.
A heritable dropout is an event that affects an entire clade, e.g., due to resection. Note that although we
assume dropouts occur independently in each character, dropouts observed in the same character at two
different cells are not necessarily independent as they could have originated from the same heritable dropout
event. Now let pd be the probability that a particular character of a particular cell suffers either heritable or
stochastic dropout. Let (a, b|c) be an arbitrary triplet and let ε be the probability that no dropout occurred
in a particular character in either a, b or c. The probability that at least one cell of this triplet suffers a
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dropout at a particular character is maximized when the three cells share no common lineage and minimized
when the three cells are phylogenetically proximal. We therefore have that (1 − pd)3 ≤ ε ≤ 1 − pd (see
proof in the appendix). To account for this when revising our oracle definition, we now define s(a, b) as
the number of characters shared by a, b that do not have dropout in either a, b or c. Note that in this case
the definition of s(a, b) depends on c but is well defined for every triplet a, b, c so we can consider the same
threshold-based triplet oracle before using this new similarity function. This means that for triplet (a, b|c),
we have the following:

E[s(a, b)− s(b, c)] ≥ kελ`∗δ(d) ≥ k(1− pd)3λ`∗δ(d)

E[s(b, c)] ≤ kλ2(1− pd)q

We can similarly define conditions i) and ii) with the threshold t = 1
2 (1− pd)3kλ`∗δ∗, and see that if these

conditions hold, then we have an (`∗, d∗) partial oracle. We can also apply the same Chernoff bounds from
the previous sections to get the following conditions on k to ensure conditions i) and ii) hold.

lemma 3 (proof in the appendix) In the presence of missing data at a rate of pd, condition i) holds with
probability at least 1− ζ if we we have the following guarantees on the parameters q, λ, `∗, d∗ and k:

k ≥ (96 logn+ 32 log 1/ζ)(`∗ + (1− e−λ)q)

λ`∗2δ∗(1− pd)3(1− q + qe−2λ)

Both conditions i) and ii) hold with probability at least 1− ζ if we have:

k ≥ max
( (96 logn+ 32 log 1/ζ)q

`∗2δ∗2(1− pd)5
,

(96 logn+ 32 log 1/ζ)(`∗ + (1− e−λ)q)

λ`∗2δ∗(1− pd)3(1− q + qe−2λ)

)

Alternative Strategy for Regime with only Stochastic Missing Data

Now we assume that missing data only occurs due to technical difficulties in reading out mutation sequences
in cells, i.e. that only stochastic missing data occurs. Specifically, for any given cell and any given Cas9
recording site, we assume that the sequence of this site is missing from our data with probability ps and that
this omission occurs independently from all other cells or mutation sites. With this definition, we consider a
slightly modified oracle by defining s(a, b) as the number of mutations shared by a and b in characters that
did not suffer dropout in either sample. Note that this definition of s(a, b) is independent of a third cell c
unlike in the general case. Accordingly we revise conditions i) and ii) by setting the decision threshold t to
be k(1− ps)2λ`δ∗. These modified definitions lead to a more relaxed dependency between the mutation rate
and the extent of missing data:

lemma 4 (proof in the appendix): In the presence of stochastic missing data at a rate of ps, condition i)
holds with probability at least 1− ζ if we we have the following guarantees on the parameters q, λ, `∗, d∗, and
k:

k ≥ (96 log n+ 32 log 1/ζ)(`∗ + (1− e−λ)q + eλd
∗
d∗)

(1− ps)2λ`∗2δ∗(1− q + qe−2λ)

Both conditions i and ii hold with probability at least 1− ζ if we have:

k ≥ max
( (96 logn+ 32 log 1/ζ)(`∗ + λq + eλd

∗
d∗)

(1− ps)2λ`∗2δ∗(1− q + qe−2λ)
,

(96 log n+ 32 log 1/ζ)(d∗ + (1− e−λ)q)

(1− ps)2λ`∗2δ∗2

)

An empirical demonstration and validation of the tightness of lemma 4 using simulations is provided in
appendix Figure 7.
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Top-down Algorithms for Oracle-Based Partial Tree Inference

Given our results on the correctness of the (`∗, d∗)−oracle, we are now ready to define the respective algo-
rithm. Assuming `−bounded edge lengths in the ground truth tree, we use an oracle in which `∗ is set to
`. With that (`, d∗)−oracle, the algorithm guarantees accurate reconstruction up to depth d∗ when given a
sufficiently large k.

Theorem 1 In the lineage tracing regime, if

k ≥ (96 logn+ 32 log 1/ζ)(`+ (1− e−λ)q)

λ`2δ∗(1− q + qe−2λ)

and all edges in T at depth at most d∗ have length at least `, there exist polynomial time algorithms that
return a tree which correctly resolves all triplets whose LCA is at depth at most d∗ with probability at least
1− ζ.

Proof: By taking `∗ = `, condition i) will hold for all triplets (a, b|c) whose LCAs are at depth at most d∗ on
T as dist(LCA(a, b, c), LCA(a, b)) ≥ ` for all triplets. The above bound on k, by lemma 2, implies condition
i) is satisfied with probability 1 − ζ. It then suffices to show that whenever condition i) is satisfied, there
exists a polynomial time algorithm that constructs a tree which correctly resolves all triplets whose LCAs
are at depth at most d∗. We present a simple top-down recursive splitting algorithm which is guaranteed to
return correct splits up to depth d∗. This algorithm has a runtime of O(kn2) for each recursive call, where
n is the size of the input to the call.

Threshold Algorithm

1: procedure SplitSamples(V )
2: G← Complete graph over V
3: while G is connected do
4: (u∗, v∗) = argmin(u,v)∈Es(u, v)
5: Delete (u∗, v∗) from G
6: end while
7: C1, C2 ← connected components of G
8: T1, T2 ← SplitSamples(C1), SplitSamples(C2)
9: Return binary tree with T1 and T2 as children of the root.

10: end procedure

To prove correctness, let V be the set of samples at some recursive call in the algorithm. Let r′ be the LCA
of V in T at depth d ≤ d∗. Let L and R be the samples in the left and right subtrees of r′ respectively. Let
a ∈ L and b ∈ R be arbitrary. By condition i), we know that for any c ∈ L, s(a, c) > s(a, b) and for any
c′ ∈ R, s(b, c′) > s(a, b). This means that whenever (a, b) is in the graph, and right after (a, b) is deleted
from the graph if it ever happens, all neighbors of a and b will remain connected to them. Thus, the graph
must remain connected until all all edges in the cut L|R are deleted, and L and R will still remain connected
immediately after all cut edges are deleted, giving us the correct split. This means that the algorithm will
keep returning correct splits as long as the LCA of all samples in a recursive call has depth at most d∗.

Proof of Corollaries 1 and 2: If we take λ and q as constants and d∗ = 1, Theorem 1 implies that
it is asymptotically sufficient to have k = O( logn

`2 ) in order to ensure exact recovery of the entire ground
truth tree with high probability. When dropouts are taken into account in the general case, the bound
becomes k = O( logn

`2(1−pd)3 ) by lemma 3 because 1/(1− pd)3 factor is needed to ensure condition i) still holds.

Notably, when only stochastic dropouts are considered, the bound becomes k = O( logn
`2(1−pd)2 ) by lemma 4.

In the next theorem, we see that when we don’t have a lower bound on edge lengths, we can still con-
struct a tree that correctly resolves all triplets that are well separated.

Theorem 2 In the lineage tracing regime, if the number of characters satisfy

k ≥ max
( (96 logn+ 32 log 1/ζ)q

`∗2δ∗2
,

(96 logn+ 32 log 1/ζ)(`∗ + (1− e−λ)q)

λ`∗2δ∗(1− q + qe−2λ)

)
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and `∗ is an arbitrary parameter, then there exist polynomial time algorithms that return a tree which correctly
resolves all triplets, (a, b|c) such that dist(LCA(a, b, c), LCA(a, b) ≥ `∗ and at depth(LCA(a, b, c)) ≤ d∗ with
probability at least 1− ζ.

Proof: Again, by lemma 2, it suffices to show that if conditions i) and ii) both hold, then there ex-
ists an algorithm which resolves all triplets, (a, b|c) such that dist(LCA(a, b, c), LCA(a, b) ≥ `∗ and at
depth(LCA(a, b, c)) ≤ d∗. We can apply the classical Aho’s algorithm to recover a tree that is consistent
with all triplets resolved by the (`∗, d∗)−oracle, which is guaranteed to us by conditions i) and ii). The
algorithm is specified below for completeness; other supertree algorithms can be used here as well.

Let R be the set of triplets for which we received a non-NULL answer from the oracle, and let V be
the set of leaf nodes. Note that R must include all triplets that are at depth at most d∗ and whose internal
nodes are separated by an path of length at least `∗, since they satisfy condition i). It may also include
incorrect triplets that are of depth more than d∗.

Aho’s Algorithm

1: procedure Aho(R, V )
2: E ← ∅;
3: for (u, v|w) ∈ R do
4: E ← E ∪ {(u, v)}
5: end for
6: if G = (V,E) is connected then
7: If V is a singleton, return the single vertex.
8: Otherwise, return an unresolved star-tree with V as leaves.
9: else

10: T ← new tree with root r′

11: C1, C2, ...Ck ← connected components of G
12: for i = 1 to k do
13: Ri = {(a, b|c) ∈ R : a, b, c ∈ Ci}
14: Ti ← AHO(Ri, Ci)
15: Connect each Ti to T by adding an edge from r′.
16: end for
17: Return T
18: end if
19: end procedure

To prove the correctness of the algorithm, we must show that if (a, b|c) is a triplet in the ground truth tree
with depth(LCA(a, b, c)) ≤ d∗ and dist(LCA(a, b), LCA(a, b, c)) ≥ `∗, then (a, b|c) is correctly resolved in
the tree returned by the algorithm. First, assume by contradiction that the triplet is represented wrongly
(WLOG) as (a, c|b) in the returned tree. The presence of a wrong triplet (a, c|b) in the returned tree
means that at some point, there was a recursive call on a set of leaves, V 3 a, b, c such that a, c were in
a connected component of G not containing b. However, condition i), combined with the assumption that
dist(LCA(a, b), LCA(a, b, c)) ≥ `∗, implies that if a, b, c ∈ V then there is an edge between a and b, which
means b must be in the same connected component as a and c.

Next, assume by contradiction that a, b, c all have the same parent in the tree returned by the algorithm.
First note that this cannot happen in line 15. This follows trivially since by definition a and b are initially
in the same connected component. Therefore, the only way a trifurcation can happen is if a connected
component that contains a, b and c is split into three or more component (with a, b and c on different
components), each sent to a separate recursive call (line 14). This cannot happen since the presence of
a, b and c entails the inclusion of an edge between a and b in that component (per line 4). This means
that there was a recursive call on a set of leaves V 3 a, b, c such that the connectivity graph, G over V
is connected (i.e. the algorithm reached step 8). Let r′ be the LCA of all vertices of V in T . Let L and
R be the vertices in V descended from the left and right children of r′ respectively. Since r′ < d∗ condi-
tion ii) implies that any triplet with all leaves in V will be either correctly classified or assigned “Null” by
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the oracle. But, there are no edges between L and R, which means V is not connected, thus arriving at a
contradiction once again. Thus, the only possibility is for (a, b|c) to be correctly classified in the inferred tree.

Proof of corollary 3: We take λ and q as constants and d∗ = 1. Additionally, we make no lower bound
assumptions on the edge length ` and take `∗ to be an arbitrary parameter. Theorem 2 then implies that it
is asymptotically sufficient to have k = O( logn

`∗2 ) in order to ensure exact recovery of all triplets (a, b|c) such
that dist(LCA(a, b, c), LCA(a, b) ≥ `∗ with high probability.

Simulations for the Threshold Algorithm:

Theorem 1 gives a lower bound on the number of characters k sufficient for exact phylogenetic reconstruction
in the case where there is a minimum edge length `. In order to both validate our asymptotic relationships
between experimental parameters, as well as get a better sense for the number of characters that may be
necessary in practice (a number that may be lower than our estimated of sufficiency), we turn to simulations.
Specifically we chose to explore the empirical number of k necessary for exact reconstruction (all triplets
resolved correctly) up to some depth d∗ and as a function of the state collision probability q and the mutation
rate λ (see Appendix for description of our simulations).

Figures 2A,C depict the dependence of k for high probability (0.9) of exact reconstruction with varying
λ and q for ` = 1

9 or 0.05. We observe that in the regions where q > `/λ, the sufficient k increases sharply.

This is since for lower values of q the asymptotic requirement for k becomes O( log(n)
` ), whereas for higher

values of q we get the general result of O( log(n)
`2 ) . Additionally, we observe interesting behaviors in λ. In

particular when d∗ is large enough (requiring exact reconstruction of the entire ground truth phylogeny or
its top half), both excessively small and large values of λ lead to a larger requirement for k. Intuitively
this is due to the lack of mutations or due to mutation saturation, in both cases leading to less informative
input (Figure 2H). When the goal becomes partial reconstruction of only the top (20%) of the phylogeny
and d∗ is small, k no longer increases with large λ. This is because δ∗ in the denominator of the bound
shifts from e−λ to 1 as d∗ → 0. Intuitively, towards the top of the phylogeny characters are yet to be
saturated, allowing cells whose LCAs are near the top of the tree to be resolved. This suggests that sat-
uration is less problematic if only distal relationships need to be resolved correctly, i.e. in the case of d∗ << 1.

In order to test the performance of the Threshold Algorithm in realistic settings, we simulate CRISPR-Cas9
induced phylogenies over two topological regimes: one with uniform edge lengths separating cell divisions
with ` = 1

9 and one with an asynchronous cell division topology (` = 0.05) described in the appendix (Figure
2B,D). The first regime aims to mimic a cell division process that has a regular molecular clock with bounded
edges lengths both from above and below. The second regime is meant to mimic a more general stochastic
cell division process that only has a minimum bound on edge length.

We find that the theoretical analysis and the simulations are consistent, both in terms of the direction
dependence on the parameters, and on the inflection points at which the minimal k increases more rapidly.
The largest discrepancies in the trends occur in the regions in which λq is high. In these regions the em-
pirical increase in k is not nearly as sharp as the theoretical bound suggests. Hence the theoretical bound
overestimates k relative to other values in these regions. Additionally, we observe that as d∗ decreases the
empirical k decreases (Figure 2I). This last result validates the trend in the bounds regarding d∗. Ultimately,
the theoretical estimate predicts the empirical trends well, however, we do find that the absolute number of
necessary characters (as found by the simulation) is much lower than the theoretical estimate.

Overall, these simulations provide validation that the asymptotic trends on k given by the theoretical pa-
rameters apply in realistic scenarios under the Threshold Algorithm. In addition, we provide necessary
conditions for the number of characters required for exact reconstruction via the Threshold Algorithm for a
series of parameter regimes.
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Figure 2: Comparing the Threshold Algorithm in theory and simulation. Simulated trees with 256 leaves, n =
256. (A, C) Theoretical sufficient lower bound on k required for 0.9 probability of perfect tree reconstruction
up to depth d for varying values of d, q and λ for (A) ` = 1/9 and (C) ` = 0.05. (B, D) Minimum k
required for 0.9 probability of perfect tree reconstruction in simulation with a cell division topology with
(B) uniform edge lengths (` = 1/9) and with (D) an asynchronous cell division topology (` = 0.05). (A-D)
Entries are log10 scaled. (E, F) Plots comparing the dependence of the minimum k in simulation with the
theoretical bound on varying parameters (0.9 probability of perfect reconstruction, ` = 0.05, d∗ = 1). We
report the dependence of k on (E) λ for fixed values of q and (F) q for fixed values of λ. (H) Comparison
of the dependence of the bound on k for 0.9 probability of perfect reconstruction on λ for various values
of d. (I) Comparison of the dependence of minimum k for 0.9 probability of perfect reconstruction in the
asynchronous simulation on λ for various values of d. (E, F, I) For ease of comparison, the values of k are
rescaled by the median value of k in each line. (E, F, I) Point-wise 95% confidence intervals for the minimum
k in simulation are generated from the regression coefficients using the delta method, see appendix.
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Upper-Bounded Edge Lengths and Bottom-Up Approaches:

In the previous sections, we saw that when λ and q are fixed to be a constant, then the number of characters
needed for exact recovery with high probability is O( logn

`2 ), where ` is the minimum edge length. It can
also be shown that if we are able to bound λ and q such that λq ≤ ` then the bound becomes tighter:
k = O( logn

` ). However, while λ can be controlled experimentally by calibrating the affinity of the lineage
tracer’s guide RNAs, there is currently no way to control the entropy of the indel state distribution - a
quantity which relies on the endogenous DNA repair process.

In order to achieve this tighter bound without direct dependence on q, we instead use an additional as-
sumption on ` - namely that there is some maximal (in addition to a minimal) possible period of time
between the birth of a given node and the birth of its parent. If our set of leaves includes all the cells in the
phylogeny, then this translates to an upper bound on the time between cell divisions. In the more common
scenario of sampling only a small subset of cells from a given clone, each edge in the ground truth tree can
correspond to a series of cell division events. However, in either case, a strict upper bound on the length
always exists, corresponding to the duration of the lineage tracing experiment. In the following section, we
show that with such an upper bound on edge length, we can achieve exact recovery with high probability
when k = O( logn

` ), provided an upper bound on the probability of the most likely mutation (maxj(qj)) and
on λq. The latter bound can be less strict than `, depending on the ratio between the lengths of the longest
and shortest edges. More importantly, under these revised assumptions, we can achieve a bound on the
minimal required k that is independent of the value of q.

Theorem 3 Let T be a tree of height 1 over n leaves. Let ` and c be constants such that each edge,
(u, v) ∈ T has ` ≤ l(u, v) ≤

√
c`. Suppose that for each character we have: qmax := maxj(qj) ≤ 3

16(1−e−λ
√
c`)

and λq < β
max(1,c) where β < 1

1+C+2(e−λ`+2λ
√
c`qmax)2

and C = 2
√
c`e−λ + 4λc`qmax. Then there exists an

algorithm that, with high probability, will recover T if the number of characters satisfies:

k ≥ 20 log n+ 10 log (1/ζ)

λe−λ`(1− β(1 + C))(1− β(1 + C)− 2β(e−λ` + 2λ
√
c`qmax)2)

If we take the limit as `→ 0 or n→∞ we get the following result:

Corollary 5 Let T be a tree of height 1 over a sufficiently large number of leaves n. Define `, c and qmax

as in Theorem 3 with similar bounds. If λq ≤ β
max(1,c) where β < 1

3 then there exists an algorithm that can,

with high probability, recover T if the number of characters satisfies:

k ≥ 20 log n+ 10 log (1/ζ)

λe−λ`(1− β)(1− 3β)

Note that the bound on β is not the tightest possible, and it was chosen to simplify calculations. Addition-
ally, we present an alternative analysis in the appendix (Theorem 4) that yields a bound which has a looser
constraint on the λ and q parameters as ` tends to 0.

Proof of Theorem 3: Consider the following greedy bottom-up algorithm which iteratively joins partially
constructed subtrees by picking the pair with the most similar roots, and then joining them by inferring a
new root by maximum parsimony. Let S denote the set of subtrees at any particular iteration. Let T ∈ S
denote an inferred subtree, and let r(T ) denote the root of that subtree. Let r(T )i denote the state of the
inferred ith character of r(T ).

Bottom-Up Algorithm

1: procedure Build Tree
2: S ← leaves of T
3: while |S| > 1 do
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4: T1, T2 = argmin(T,T ′)∈Ss(r(T ), r(T ′))
5: r ← new node
6: for i = 1 to k do
7: if r(T1)i = r(T2)i then
8: ri ← r(T1)i
9: else

10: ri ← 0
11: end if
12: end for
13: T ← new tree with r as root and T1 and T2 as subtrees under the root
14: S ← S ∪ {T}
15: end while
16: end procedure

(We note a similar algorithm has been presented in Sugino et. al [37], although no theoretical guarantees on
accuracy are given in that work.)

In the following we show that under the conditions in Theorem 3, this algorithm correctly returns the
ground truth tree T with high probability.

To show this, we must first bound the effects of incorrectly inferred mutations at internal nodes. As-
sume that r′ is an internal node generated in line 5 of the algorithm. Further assume that the tree rooted
by r′ is correct (i.e., it is a sub-graph of T ). The process of assigning a mutation state to r′ (lines 6–12)
may incorrectly include mutations that emerged independently at its two child trees. To account for this,
we define Pi,j(r

′) to be the probability that every leaf beneath r′ has character i mutated to state j, given
that character i is not mutated at r′. This probability is bounded according to the following lemma (proof
in appendix).

lemma 5 Given the constraints on λ, ` and q in Theorem 3, it follows that Pi,j(r
′) ≤ 2λ2c`q2

j for any
internal node r′ ∈ T , character i and state j.

To guarantee that the algorithm has a low probability of making mistakes in forming cherries (line 13), we
focus on a pair of “active” nodes u,w in a given iteration of the algorithm (i.e., nodes that are roots of trees in
the current set S; defined in lines 2 and 14). We assume that up until this point, the algorithm did not form
any incorrect cherries (i.e., all trees in S are sub-graphs of T ). It suffices to show that with high probability,
if u and w do not form a cherry in T , there must be some internal node, v on the path from r′ = LCA(u,w)
to u such that s(u, v) > s(u,w) (note that r′ is LCA in T ). If this holds, then if u,w are the first incorrect
pair to be merged, then there must be some descendent u′ of v such that s(u, u′) ≥ s(u, v) > s(u,w), con-
tradicting the fact that u,w was the most similar pair (Figure 3). Note that u and w can be either leaves or
internal nodes.

Let d be the depth of r′ and let α = dist(r′, v). Since the maximum edge length is
√
c`, we have WLOG

that dist(r′, u), dist(r′, w) ≤ α +
√
c` (if dist(r′, w) is greater than this quantity we can simply switch the

roles of u and w and redefined α to be the distance from r′ to the parent of w). Let Z be the number of
mutations that occurred on the path from r′ to v. This gives:

E(Z) = ke−λd(1− e−λα)

Note that due to irreversibility the mutations tallied in Z will be present in all nodes under v, including u
and u′. Let X be the number of character assignments that are shared between u and w (per lines 7–11)
and that are not present in r′ (per the ground truth). There are two ways in which these can happen: in
the ground truth tree, a character can mutate to state j on the paths from r′ to u (or w), which occurs with

probability at most 1 − e−λ(α+
√
c`)qj . In that case, the mutation will be present in all downstream leaves,

and thus assigned by the algorithm to u (or to w). If it did not mutate on that path, it could instead have
mutated in enough places in the sub-tree rooted beneath u (or w) such that every leaf in that sub-tree has
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Figure 3: Primary variables for upper bounded special case. Let u and w be two arbitrary internal nodes
that do not form a cherry. v is an ancestor of u that is a descendent of r = LCA(u,w). Z represents the
number of mutations that occurred on the path from r to v. X represents the number of mutations that are
shared between u and w due to homoplasy. If Z > X, then (u,w) will not be the first incorrect pair to be
merged by the algorithm.

the mutation at that character. By lemma 5, we see that the probability of this occurring is at most 2λ2c`q2
j .

Requiring that in both u and w we have an occurrence of at lease one of these scenarios, we get:

E(X) ≤ ke−λd
∑
j

((1− e−λ(α+
√
c`))qj + e−λ(α+

√
c`)2λ2c`q2

j )2

≤ ke−λd
∑
j

((1− e−λ(α+
√
c`))qj + 2λ2c`q2

j )2

= ke−λd
∑
j

(1− e−λ(α+
√
c`) + 2λ2c`qj)

2q2
j

≤ ke−λd(1− e−λ(α+
√
c`) + 2λ2c`max

j
qj)

2q

Let qmax = maxj qj . Assume E(Z) > E(X) and let ∆ = E(Z) − E(X). Again by the above versions of
Hoeffding’s inequality, we have the following concentration inequalities:

Pr[Z < E[Z]−∆/2] ≤ exp(− ∆2

8E(Z)
)

≤ exp(− ∆

10E(Z)
)

Pr[X ≥ E(X) + ∆/2] ≤ exp(− ∆2

8E(X) + 2∆
)

≤ exp(− ∆2

8E(X) + 2(E(Z)− E(X))
)

≤ exp(− ∆

10E(Z)
)
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Suppose λq ≤ β
max(1,c) . Let γ = 2

√
c`. Then, we have:

∆ ≥ ke−λd(1− e−λα − (1− e−λ(α+
√
c`) + 2λ2c`qmax)2q)

= ke−λd(1− e−λα − (1− e−λαe−λ
√
c` + 2λ2c`qmax)2q)

≥ ke−λd(1− e−λα − (1− e−λα(1− λ
√
c`) + 2λ2c`qmax)2q)

= ke−λd(1− e−λα − (1− e−λα + e−λαλ
√
c`+ 2λ2c`qmax)2q)

= ke−λd(1− e−λα − (1− e−λα + λ
√
c`(e−λα + λγqmax))2q)

= ke−λd(1− e−λα − (1− e−λα)2q − 2λ(1− e−λα)(e−λα + λγqmax)
√
c`q − λ2(e−λα + λγqmax)2c`q)

≥ ke−λd((1− e−λα)(1− (1− e−λα)q − βγ(e−λα + λγqmax))− βλ(e−λα + λγqmax)2`)

≥ ke−λd((1− e−λα)(1− λαq − βγ(e−λα + λγqmax))− βλ(e−λα + λγqmax)2`)

≥ ke−λd((1− e−λα)(1− β(α+ γe−λα + λγ2qmax))− βλ(e−λα + λγqmax)2`)

≥ ke−λd((1− e−λα)(1− β(1 + γe−λ + λγ2qmax))− βλ(e−λα + λγqmax)2`)

Where the last line follows from the fact that the maximum of the function α+ γe−λα occurs at α = 1.

Now, it remains to find a bound on β so that ∆ > 0 and ∆2

E[Z] is lower bounded. Let C = γe−λ+λγ2qmax. To

ensure that ∆ > 0, we see that the last line from the previous block needs to be > 0. Taking this inequality
and rearranging terms, it suffices to show that:

1 > β(1 + C +
λ`(e−λα + λγqmax)2

1− e−λα
)

Note that
λ`(e−λα + λγqmax)2

1− e−λα
≤ λ`(e−λ` + λγqmax)2

1− e−λ`
≈ (e−λ` + λγqmax)2

so our sufficient condition can be written as

1 > β(1 + C + (e−λ` + λγqmax)2)

We lower bound ∆2

E[Z] by the following:

∆2

E[Z]
≥ min
α∈[`,1]

k2e−2λd((1− e−λα)(1− β(1 + C))− βλ(e−λα + λγqmax)2`)2

ke−λd(1− e−λα)

=
k2e−2λd((1− e−λ`)(1− β(1 + C))− βλ(e−λ` + λγqmax)2`)2

ke−λd(1− e−λ`)

≥ ke−λd( (1− e−λ`)2(1− β(1 + C))2 − 2(1− e−λ`)(1− β(1 + C))βλ`(e−λ` + λγqmax)2

(1− e−λ`)
+

(βλ`(e−λ` + λγqmax)2)2

(1− e−λ`)
)

≥ ke−λd((1− e−λ`)(1− β(1 + C))2 − 2(1− β(1 + C))βλ`(e−λ` + λγqmax)2)

≈ ke−λdλ`((1− β(1 + C))2 − 2(1− β(1 + C))β(e−λ` + λγqmax)2)

= ke−λdλ`(1− β(1 + C))(1− β(1 + C)− 2β(e−λ` + λγqmax)2)

In order for this bound to be positive, we need

1 > β(1 + C + 2(e−λ` + λγqmax)2)

Note that this condition satisfies the above condition on β and thus would imply E[Z] > E[X]. Thus, if

β <
1

1 + C + 2(e−λ` + λγqmax)2
=

1

1 + 2
√
c`e−λ + 4λc`qmax + 2(e−λ` + 2λ

√
c`qmax)2
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both ∆ and ∆2

E[Z] are strictly positive.

To bound the probability that Z < E[Z]−∆/2 and X ≥ E(X) + ∆/2) is at most n−2ζ, we need:

exp(− ∆2

10E[Z]
) ≤ n−2ζ

This is satisfied if k satisfies the following:

k ≥ 20 log n+ 10 log (1/ζ)

λe−λ`(1− β(1 + C))(1− β(1 + C)− 2β(e−λ` + λγqmax)2)

In other words, for any pair of vertices u,w that are not children of the same node, there will be a ver-
tex u′ that such that LCA(u, u′) is a descendent of LCA(u,w) and P [s(u, u′) ≤ s(u,w)] ≤ 2n−2ζ. If
s(u, u′) > s(u,w), then (u,w) cannot be the first pair of incorrectly joined vertices. Taking a union bound
over at most n2/2 pairs of vertices, we see that with with probability at least 1− ζ, there is no first pair of
incorrectly joined vertices, which means the algorithm is correct.

An empirical demonstration and validation of the tightness of Theorem 3 using simulations w.r.t. λ and q
is provided in Figure 4, and w.r.t. n in appendix Figure 6. The simulations are described in the appendix.

Proof of Corollaries 4 and 5:

The Bottom-Up Algorithm shows that there exists a polynomial time algorithm that ensures k = O( logn
` )

characters is sufficient asymptotically for exact recovery of the tree. As n→∞ we get that `→ 0 and C → 0.
With these we get that β < 1

3 . With the simpler bound on β, we also get that k = O( logn
` ) characters are

sufficient asymptotically for exact recovery of the tree.

Simulations for the Bottom-Up Algorithm:

Similar to the simulations for the Threshold Algorithm, we begin by examining the theoretical bounds for
the necessary k. In particular, Figure 4A visualizes the bound for k across varying values of λ and q for
high probability (0.9) of exact reconstruction. We consider two regimes: one with ` = 1/9, c = 1/9 and one
with ` = 0.05, c ≈ 3.85. Since q does not explicitly appear in the bound for k, we instead use it to define
a value for β, using its lower bound: β := λq ·max(1, c). Plugging this in provides a lower bound for the
necessary k, which we plot here. Regions where the lower bound on β becomes larger than its upper-bound
requirement (per theorem 3) are excluded.

From this figure it can be seen that k depends on λ in the same way as in Theorem 1. That is, k in-
creases significantly for both excessively small and large values of λ. However, there is a contrast in the
dependence of k on q. Although in the bound for Theorem 3 k does increase with q through the dependence
of β, k is not as sensitive to large values of q as in Theorem 1. Further, as the bound is quadratic in 1

1−β ,

the k increases rapidly with respect to β := λq ·max(1, c).

We tested the Bottom-Up Algorithm in the same simulation regimes (same tree and lineage tracing pa-
rameters) as the Threshold Algorithm (Figure 4B). Concordant with the theoretical results, we observed
that the minimum required k is less sensitive to q, compared with the Threshold Algorithm. Furthermore,
in both results we see similar trends in dependence on λ (Figure 4C, E), and q (Figure 4D, F). The main
discrepancy between the theory and the simulation occurs where β := λq ·max(1, c) approaches our upper
bound for β (i.e., the values that border the regions that were excluded from Figure 4A). In those cases,we
see that the theoretical bound is looser and overestimates k relative to the simulations.

Again, these simulations validate the relationships observed in the asymptotic trends on k and give tighter
empirical conditions on the necessary k for exact reconstruction. In addition, we observe that the empirical
necessary k in the Bottom-Up Algorithm is overall lower than that of the Threshold Algorithm, except the
cases of non-uniform edge length with high value of c in which the minimal k is comparable (Figure 4A-B
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right, and Figure 4E-F). These results suggest that the Bottom-Up Algorithm can achieve exact reconstruc-
tion with fewer characters empirically than the Threshold Algorithm, but requires that the variance in the
division times of the ground truth phylogeny to be small (corresponding to the assumption on upper bounded
edge lengths).
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Figure 4: Comparing the Bottom-Up Algorithm in theory and simulation. Simulated trees with 256 leaves,
n = 256. (A-B) Entries are log10 scaled. (A) Theoretical sufficient lower bound on k required for 0.9
probability of perfect tree reconstruction on varying values of q and λ, taking β = λqmax(1, c). As the state
distributions are uniform, qj = q for each value of q. Left: ` = 1/9 and c = 1/9 for comparison with the
simulated case where the branch lengths are uniform. Right: ` = 0.05 and c ≈ 3.85 such that >99.99% of
simulated branch lengths in the realistic simulation regime fall within the upper bound. (B) Minimum k
required for 0.9 probability of perfect tree reconstruction in simulations, with Left: a cell division topology
with uniform branch lengths, ` = 1/9 and Right: an asynchronous cell division topology (description in
appendix), ` = 0.05. (C-F) Plots comparing the dependence of the minimum k in simulation with the
theoretical lower bound on varying parameters (0.9 probability of perfect reconstruction). We report the
dependence on (C, E) λ for fixed values of q and on (D, F) q for fixed values of λ, in simulations with uniform
edge lengths (C-D) and with asynchronous topologies (E-F). (C-F) For ease of comparison, the values of k
are rescaled by the median value of k in each line. Point-wise 95% confidence intervals for the minimum k
in simulation are generated from the regression coefficients using the delta method, see appendix.
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Discussion:

In this paper we have established sufficient conditions for high probability of exact reconstruction of the
ground truth phylogeny in the CRISPR-Cas9 lineage tracing setting. These guarantees show that despite
complications with the lineage tracing process such as homoplasy, missing data, and lack of mutation in-
formation, exact reconstruction can still be achieved given sufficient information capacity in the experiment
(as measured by the number of recording sites). In addition to showing the feasibility of exact reconstruc-
tion, these theoretical results relate the difficulty of the reconstruction problem in the number of sufficient
characters to the experimental parameters. We anticipate these results can inform researchers as to how to
reduce the number of necessary characters or best aid downstream reconstruction of the phylogeny given
the available number of characters through careful engineering of CRISPR-Cas9 lineage tracing experiments.

The theoretical results shown here provide insight into how the CRISPR-Cas9 lineage tracing experimental
parameters relate to the reconstruction problem. One key insight is that for exact reconstruction, a mutation
rate that is neither too high or low gives the best results, which is in line with the intuition that a middling
rate balances mutation saturation and mutation-less edges. We also formalize the intuition that having a
state distribution with a low rate of collision q makes the reconstruction problem easier in avoiding homo-
plasy. Additionally we show the difficulty that missing data poses for the problem of exact reconstruction.
Using the presented methods, the number of additional characters needed to overcome missing data is cubic
(quadratic in the case of only stochastic missing data) in 1

1−pd , where pd is the probability of missing data.

A final key result is that the (`∗, d∗)-oracle in the Top-down Algorithms allows researchers to tailor the
granularity of their reconstruction accuracy to what is achievable given the number of available characters.
Here, substantially fewer characters are required if one is only interested in correctly resolving triplets that
diverged early in the tree (small d∗) and well-separated triplets (large `∗, regardless of the true minimum
edge length `).

Although having more characters is preferable, we recognize that currently there are practical limits on
the number of recording sites that can be incorporated into CRISPR-Cas9 systems. Current methods to
incorporate recording sites into the genome (such as lentiviral transduction [3, 10, 12] or transposition
[5, 6, 9, 11, 14]) are limited by the low uptake of these sites into the progenitor cell, only offering on the scale
of tens of recording sites [10, 6, 5, 12, 3, 9, 8, 7]. One alternate technology of particular interest is the base-
editor, which uses a modified Cas9 complex to induce direct base-pair substitutions [39]. Base-editors, while
yet to be explored in lineage tracing contexts, have the potential to offer one hundred or more editable sites
[40], although careful engineering is required as q is high in these regimes owing to the limited state space
of nucleotide outcomes. Ultimately though, we see in our simulations that even this increase in characters
is far insufficient for exact reconstruction in most settings, especially considering the considerable amounts
of missing data and the large number of samples (n) that we see in real CRISPR-Cas9 lineage tracing ex-
periments. We thus challenge the field to develop systems that allow for considerably more characters.

The limitations in adding more characters motivates the optimization of the other experimental parameters
in engineering CRISPR-Cas9 lineage tracing experiments. We discuss here current and potential strategies
for engineering the discussed parameters: the editing rate, the collision probability, and the missing data
probability. There is a large body of literature showing that the editing activity of Cas9 (as in lineage tracing
experiments) can be tuned with relative precision using mismatches between the guide RNA and recording
site [9, 18, 10, 12, 14]. In regards to the collision probability, experimenters are currently unable to dictate
the collision rate in state outcomes due to the random indel outcomes of Cas9 editing. Recent strategies
- such as pairing terminal deoxynucleotidyl transferase (TdT) with Cas9 [16] - have shown potential to in-
crease indel diversity. Further, prime editors offer an avenue to more finely control the state distribution
by dictating a-priori which indel will result in a given edit, though this technology has yet to be adopted
for lineage tracing [41, 42, 43]. Fortunately, current CRISPR-Cas9 lineage tracing systems are capable of
generating “un-problematic indel distributions”. In those cases, the collision probabilities q lie outside of
the range where k explodes with q [9, 10, 12]. Additionally, we see in the bounds and simulations that de-
creasing q has diminishing returns on k. Taken together, in designing CRISPR-Cas9 lineage tracing systems
effort is better put on carefully engineering the Cas-9 cutting rate than optimizing the state distribution.
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Unfortunately, current strategies to control for missing data experimentally are more limited. Experimenters
are at the mercy of the efficacy of single-cell assays in the case of low capture (leading to stochastic missing
data), but can attempt to control the rate of resection and transcriptional silencing (both of which leading
to heritable missing data). Recent designs have mostly relied on distributed designs to reduce the rate of
resection, utilizing many “cassettes” (DNA segments that contain many proximal recording sites) with a
small number of recording sites per cassette [8, 9, 10, 12]. Although not addressed in current designs, tran-
scriptional silencing can be potentially limited by placing recording sites in regions of the genome that are
more robust to silencing (“safe-harbor” regions) using emerging methods for guided transposition [44].

In addition to motivating the design of CRISPR-Cas9 lineage tracing experiments, our model motivates
theoretical and algorithmic development for these systems. The sufficient bounds that we reach in our
asymptotic analyses are not tight, as demonstrated by simulation. We believe that these bounds can likely
be further improved to give a better sense of the necessary k analytically. Future approaches may take
advantage of aspects of the model or engineering designs that are not leveraged in this work. For example,
in our analysis we assume that the mutation rate λ is constant throughout the entire phylogeny and across
recording sites. However, using a gradually increasing mutation rate or designing characters with variable
rates, whose affinity is estimated a-priori may lead to better reconstruction results. Such a design can si-
multaneously alleviate issues of mutation saturation near the leaves of the tree as well as lack of sufficient
mutations near the root. We also assume that the characters mutate and acquire missing data independently,
although indels and missing data events can span multiple recording sites. Future approaches could take
advantage of the structure present in these multi-site events. Finally, although our analysis handles missing
data by ignoring missing characters, the structure of heritable data offers additional information that could
be better leveraged (i.e., utilized in the same way as any other mutation). The challenge, naturally, is to
distinguish between the two types of missing data.

Here, we perform a first theoretical analysis of CRISPR-Cas9 phylogenetic reconstruction. In doing so,
we have developed a generative model for this type of data, which we hope will frame future analysis of
CRISPR-Cas9 lineage tracing systems, akin to the Jukes-Cantor model in other molecular phylogenetic
studies. With this theoretical framework and the accompanying algorithms, our work naturally comple-
ments recent efforts to develop and understand algorithms for this lineage tracing data [35]. Ultimately, we
believe that this work will continue to inform and orient both algorithmic and experimental methods as the
technology and field evolve.
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Additional Proofs

Analysis of the δ Function

Since δ(d) is the only part of the bound that varies according to depth, any universal threshold to the oracle

decision must take it into account. It can be verified that d2

dx2 δ(x) ≥ 0 which means δ is convex. Setting
δ′(x) = 0, we have that the minimum of δ occurs at:

0 = −λe−λx(1− q) + qλeλx−2λ

e−2λx =
q

(1− q)e2λ

x =
1

2λ
ln(

1− q
q

) + 1

Let x∗ be the minimum of δ. If q < 1/2, then ln(1−q
q ) > 0, which means that x∗ > 1, so on the interval

[0, 1], the minimum occurs at x = 1, at which point δ(x) = e−λ. On the other hand, if q ≥ 1/2, then the
minimum will occur at δ(x∗) = 2e−λ

√
q(1− q) if x∗ ∈ [0, 1] and δ(0) = 1 − q + qe−2λ if x∗ < 0. Note, x∗

gets smaller as q → 1, so if q = 1, then the minimum is precisely e−2λ. Let d∗ ∈ [0, 1] be an arbitrary depth,
and let δ∗(d∗, q, λ) = minx∈[0,d∗] δ(x). We then have:

δ∗ =


(1− q) + qe−2λ if 1

2λ ln( 1−q
q ) + 1 < 0

2e−λ
√
q(1− q) if 1

2λ ln( 1−q
q ) + 1 ∈ [0, d∗]

e−λd
∗
(1− q) + qe−λ(2−d∗) if 1

2λ ln( 1−q
q ) + 1 > d∗

Proof of lemma 1:

Let (a, b|c) be a triplet with depth(LCA(a, b, c)) = d, and let α = dist(LCA(a, b, c), LCA(a, b)). Let Y =
s(a, b) and X = s(b, c). For a particular character χi, let Yi = 1χi(a)=χi(b) and let Xi = 1χi(b)=χi(c). We use
the following results:

lemma 6 If for every character χi, P [Yi−Xi = −1] is a decreasing function of α and P [Yi−Xi = 1] is an
increasing function of α for all α ∈ [0, 1], then for any t, P [Y −X ≥ t] is an increasing function of α.

Proof: For a given character χi, Yi −Xi = 1χi(a)=χi(b) − 1χi(b)=χi(c) has 3 possible outcomes: {1, 0,−1}.
Thus, if P [Yi −Xi = −1] is a decreasing function of α and P [Yi −Xi = 1] is an increasing function of α for
all α ∈ [0, 1], then P [Yi −Xi ≥ t] for any t is an increasing function of α. Stating that P [Yi −Xi ≥ t] is an
increasing function of α is identical to stating that for any α1 and α2 such that α1 ≥ α2, Pα1 [Yi−Xi ≥ t] ≥
Pα2 [Yi −Xi ≥ t]. We use the known result from probability theory that for random variables Ai

iid∼ A and

Bi
iid∼ B such P [A ≥ t] ≥ P [B ≥ t] for all t, then P [

∑
iAi ≥ t] ≥ P [

∑
iBi ≥ t]. Thus, as Y −X =

∑
i Yi−Xi

and Yi −Xi is independent and identically distributed as we assume each character operates independently
and identically, then Pα1 [Y −X ≥ t] ≥ Pα2 [Y −X ≥ t]. Thus, P [Y −X ≥ t] is an increasing function of α
for any t.

lemma 7 For every character χi, P [Yi − Xi = −1] is a decreasing function of α and P [Yi − Xi = 1] is
an increasing function of α for all α ∈ [0, 1]. Additionally, this result holds in both the general case and
stochastic-only missing data cases.

Proof:

Case with no missing data: First, we examine P [Yi − Xi = −1]. Yi − Xi = −1 for a character χi
corresponds to that character acquiring the same mutation on both the path from LCA(a, b) to b and the
path from LCA(a, b, c) to c, and not acquiring that mutation on the path from LCA(a, b) to a. Additionally,
no mutation must be acquired at χi on the path from the r to LCA(a, b, c) nor the path from LCA(a, b, c)
to LCA(a, b). Thus we have:

P [Yi −Xi = −1] =
∑
j

e−λde−λα(1− e−λ(1−d−α))qj(1− e−λ(1−d))qj(1− (1− e−λ(1−d−α))qj)
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Taking only the terms that depend on α, we have:

e−λα(1− e−λ(1−d−α))qj(1− (1− e−λ(1−d−α))qj)

To show that this value decreases with α, we show that the first derivative is negative with respect to α. We
use the following form of the derivative:

λ(qj − 1)qje
2λ−λ(α+2) − λq2

j e
2λ(d+α)−λ(α+2)

This value is positive owing to the fact that qj ∈ [0, 1] for all j. Thus, the function within the summation
is decreasing in terms of α. Using the fact that the summation of decreasing functions is decreasing, the
overall function is thus decreasing in terms of α.

Secondly, we examine P [Yi − Xi = 1]. Yi − Xi = 1 for χi corresponds to a mutation occurring in both
a and b, but not in c. A mutation can occur in a and b if it appears on the path from LCA(a, b, c) to
LCA(b, c), or if it appears independently in the paths from LCA(a, b) to both a and b. Additionally, this
mutation cannot appear on the path from LCA(a, b, c) to c, and no mutations can occur on the path from
r to LCA(a, b, c). Thus, we have:

P [Yi −Xi = 1] =
∑
j

e−λd((1− e−λα)qj + e−λα((1− e−λ(1−d−α))qj)
2)(1− (1− e−λ(1−d))qj)

Taking on the terms that depend on α, we have:

(1− e−λα) + e−λα(1− e−λ(1−d−α))2qj

To show that this value is increasing with α, we show that the first derivative is positive with respect to α.
We use the following form of the derivative:

λqe2λ(d+α)−λ(α+2) − λ(q − 1)e2λ−λ(α+2)

This value is positive owing to the fact that qj ∈ [0, 1]. Thus, the function within the summation is decreasing
in terms of α. Using the fact that the summation of decreasing functions is decreasing, the overall function
is thus decreasing in terms of α.

General Missing Data Case: Next, we examine the general case with both stochastic and heritable
missing data. In this case, we define s(a, b) (analogously s(b, c)) as the number of characters shared by a, b
that do not have dropout in either a, b or c. As we now simply condition on the fact that a, b, c must all be
present, we add an additional (1− pd) term to both P [Yi−Xi = 1] and P [Yi−Xi = −1]. As this term does
not depend on α, both functions depend on α as they do in the case without missing data.

Stochastic-only Missing Data Case: Finally, we examine the case with only stochastic missing data.
Here we define s(a, b) as the number of mutations shared by a and b in characters that did not suffer dropout
in either sample. Thus, in analyzing Yi −Xi we must consider additional cases in which dropout in one cell
can hide the fact that two cells inherited the same mutation.

First, we examine P [Yi − Xi = −1]. Yi − Xi = −1 for a character χi corresponds to that character
acquiring the same mutation in b and c, not acquiring dropout in neither b nor c, and either observing
dropout or not observing that mutation in a. For this to occur, a mutation can occur on the path from r
to LCA(a, b, c) while a acquires dropout, or the same mutation can occur on the path from LCA(a, b, c) to
LCA(a, b) and the path from LCA(a, b, c) to c while a acquires dropout, or the mutation can occur on the
path from LCA(a, b) to b and the path from LCA(a, b, c) to c while not appearing in a. The probability of
this is:∑
j

(1−pd)2(pd(1−eλd)+eλd(1−e−λ(1−d))qj(pd(1−e−λα)qj+e
−λα(1−e−λ(1−d−α))qj(1−(1−pd)(1−e−λ(1−d−α))qj)
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Taking the terms that depend on α:

pd(1− e−λα)qj + e−λα(1− e−λ(1−d−α))qj(1− (1− pd)(1− e−λ(1−d−α))qj)

To show that this value decreases with α, we show that the first derivative is negative with respect to α. We
use the following form of the derivative:

λqj(pd − 1)e−λ(α+2)(qje
2m(d+α) − e2α(qj − 1))

This value is positive owing to the fact that qj ∈ [0, 1] for all j and that pd ∈ [0, 1). Thus, the function
within the summation is decreasing in terms of α. Using the fact that the summation of decreasing functions
is decreasing, the overall function is thus decreasing in terms of α.

Secondly, we examine P [Yi − Xi = 1]. Yi − Xi = 1 for χi corresponds to a mutation occurring in both
a and b, not acquiring dropout in neither a nor b, and either observing dropout or not observing that mu-
tation in c. For this to occur, a mutation can occur on the path from r to LCA(a, b, c) while c acquires
dropout, on the path from LCA(a, b, c) to LCA(a, b) while the mutation is not acquired in c or c acquires
dropout, or the mutation occurs independently on the path from LCA(a, b) to a and b while not appearing
in c. The probability of this is:∑
j

(1− pd)2(pd(1− e−λd)qj + e−λd(1− (1− pd)(1− e−λ(1−d)))qj((1− e−λα)qj + e−λα((1− e−λ(1−α−d))qj)
2))

Taking on the terms that depend on α, we have:

(1− e−λα) + e−λα(1− e−λ(1−d−α))2qj

Note that this is the same value as above in the case without missing data, and hence the function will have
the same dependence on α as in that case. Hence, the function is overall decreasing with α.

Proof: By lemmas 6 and 7, P [s(a, b) − s(a, c) ≥ t] is an increasing function of α. Thus, the minimum
value of α results in the minimum value of P [s(a, b) − s(a, c) ≥ t]. This value occurs at α = `∗, showing
lemma 1.

Proof of lemma 3:

Given a triplet (a, b|c), with LCA at depth at most d∗, we defined ε to be the probability that no dropout oc-
curs in a particular character of all three cells. First we will justify the assumption that ε ≥ (1 − pd)

3,
which is to say the dropout events are positively correlated. Let ph be the probability that heritable
dropout occurs on the path from r to a. Let pb be the probability that a heritable dropout occurs on
the path from LCA(a, b) to b given that no dropout has occurred on the path from r to LCA(a, b) and
define pc similarly. Note that pb ≤ pc ≤ ph since the probability a dropout occurs along a path in-
creases with the length of the path. Let ps be the probability that a stochastic dropout occurs at given
character on a leaf given that no heritable dropout has occurred yet on that character. Then we have
ε = (1− ph)(1− pb)(1− pa)(1− ps)3 ≥ ((1− ph)(1− ps))3 = (1− pd)3. Since at least one of the cells in the
triplet needs to not incur dropout at a character in order for all three of them to have no dropout, we also
have ε ≤ 1− pd.

To prove the bounds on k we will proceed as in the proof of lemma 2 and assume that
dist(LCA(a, b, c), LCA(a, b)) = `∗, noting that lemma 7 extends the result of lemma 1 to the general case
with missing data. Let Y = sc(a, b) and X = sa(b, c). Thus, we have:
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Pr[Y ≤ E(Y )− kελ`∗δ(d)/4] = Pr[Y ≤ E(Y )(1− kελ`∗δ(d)

4E(Y )
)]

≤ exp(−ε
2k2λ2`∗2δ(d)2

32E(Y )
)

Pr[X ≥ E(X) + kελ`∗δ(d)/4] = Pr[X ≥ E(X)(1 +
kελ`∗δ(d)

4E(X)
)]

≤ exp(− ε2k2λ2`∗2δ(d)2

32E(X) + 4kλ`∗δ(d)
)

Since E(Y ) ≤ kεe−λdλ`∗ and E(X) ≤ kεe−λdλ2q, we see that both probabilities are at most n−3ζ when

k(1− pd)3λ(1− q + qe−2λ)δ(d)`∗2

32(`∗ + (1− e−λ)q)
≥ kελ(1− q + qe−2λ)δ(d)`∗2

32(`∗ + (1− e−λ)q)
≥ 3 log(n) + log 1/ζ

If both bad events don’t happen, then we have Y −X ≥ kελ`∗δ∗/2 ≥ k(1− pd)3λ`∗δ∗/2 = t. This gives the
necessary bound for condition i) to hold.

To get guarantees on the second condition, let X = sb(a, c) for any triplet a, b, c whose LCA has depth
at most d∗ and where c is the outgroup. we have that

Pr[X ≤ E(X)− k(1− pd)3λ`∗δ∗/4] = Pr[X ≤ E(X)(1− k(1− pd)3λ`∗δ∗

4E(X)
)]

≤ exp(−k(1− pd)6`∗2δ∗2

32εq
)

≤ exp(−k(1− pd)5`∗2δ∗2

32q
)

To ensure that this probability is at most n−3ζ, it suffices to take

k ≥ (96 logn+ 32 log 1/ζ)q

`∗2δ∗2(1− pd)5

The rest of the argument is exactly the same as in the proof of lemma 2.

Proof of lemma 4:

For a triplet (a, b|c) in the case without dropout, any mutation that occurred on the path from the root to
LCA(a, b, c) is inherited by each member of the triplet, and thus s(a, b) − s(b, c) = sc(a, b) − sa(b, c). But
in the case of missing data, this is no longer true as mutations that occurred before LCA(a, b, c) may be
obscured by dropout and therefore not present in the character information of a, b, or c. We must now
account for these early mutations in our calculations.

Let ps be the stochastic missing data rate and let s(a, b) be the number of mutations shared between a
and b, ignoring characters that have dropout in either a or b. The number of mutations shared by a, b after
their divergence is now Binomial(k, p) where p is

≥ (1− ps)2(1− e−λd + e−λd((1− e−λ`
∗
) + e−λ`

∗
(1− e−λ(1−`∗−d))2q)

Here (1 − ps)2 is the probability that this character does not acquire dropout in neither a nor b, 1 − e−λd
is the probability that a given mutation occurred before d, and of the remaining terms the left term is the
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probability the mutation occurred on the path from LCA(a, b, c) to LCA(a, b), and the right term is the
probability a given mutation is shared by a, b due to convergent evolution.

Thus:

E[s(a, b)] ≥ k(1− ps)2(1− e−λd + e−λd((1− e−λ`
∗
) + e−λ`

∗
(1− e−λ(1−`∗−d))2q)

Similarly:

E[s(b, c)] ≤ k(1− ps)2(1− e−λd + e−λd(1− e−λ(1−d))2q)

Thus, we have that:

E[s(a, b)− s(b, c)] ≥ (1− ps)2k(1− e−λd + e−λd((1− e−λ`∗) + e−λ`
∗
(1− e−λ(1−`∗−d))2q− (1−

e−λd + e−λd(1− e−λ(1−d))2q))

= (1-ps)
2ke−λd(1− e−λ`∗ + q(e−λ`

∗ − 1 + e−2λ(1−d)+λ`∗ − e−2λ(1−d)))

= (1-ps)
2ke−λd((1− e−λ`∗)(1− q) + qe−2λ(1−d)(eλ`

∗ − 1))

≥ (1− ps)2ke−λd((1− e−λ`∗)(1− q) + qe−2λ(1−d)λ`∗)
≈ (1− ps)2k(e−λdλ`∗(1− q) + qe−λ(2−d)λ`∗)
=(1-ps)

2kλ`∗(e−λd(1− q) + qe−λ(2−d))

Again taking δ(d) = e−λd(1−q)+qe−λ(2−d). We then have that for any triplet (a, b|c), where depth(LCA(a, b, c)) =
d and dist(LCA(a, b, c), LCA(a, b)) ≥ `∗

E[s(a, b)− s(b, c)] ≥ (1− ps)2kλ`∗δ(d)

First, we will show that condition i) will hold with probability 1− ζ if:

(1− ps)2keλdλ(`∗δ(d))2

32(`∗ + (1− e−λ)q + eλdd)
≥ 3 log(n) + log 1/ζ

To see this, let (a, b|c) be any triplet at depth at most d∗ and the distance between their LCAs be at least `∗.
By lemma 1, we can WLOG assume that dist(LCA(a, b, c), LCA(b, c)) = `∗ because that is the worst case,
i.e. the case where P [s(a, b)− s(b, c) ≥ t] is minimized. Note that lemma 7 extends the result of lemma 1 to
the case with only stochastic missing data. Any condition sufficient for this case will be sufficient overall. Let
Y = s(a, b) and X = s(b, c). Since E(Y )−E(X) ≥ (1− ps)2kλ`∗δ∗ = 2t, in order to ensure that Y −X ≥ t,
it suffices to have Y > E(Y ) = t/2 and X < E(X) = t/2. To show that both occur with high probability,
we have:

Pr[Y ≤ E(Y )− (1− ps)2kλ`∗δ(d)/4] = Pr[Y ≤ E(Y )(1− (1− ps)2kλ`∗δ(d)

4E(Y )
)]

≤ exp(− (1− ps)4k2λ2`∗2δ(d)2

32E(Y )
)

≤ exp(− (1− ps)4k2λ2`∗2δ(d)2

32(1− ps)2kλ(e−λd`∗ + e−λd(1− e−λ)q + d)
)

Pr[X ≥ E(X)− (1− ps)2kλ`∗δ(d)/4] = Pr[X ≥ E(X)(1− (1− ps)2kλ`∗δ(d)

4E(X)
)]

≤ exp(− (1− ps)4k2λ2`∗2δ(d)2

32E(X) + 4(1− ps)2kλ`∗δ(d)
)

≤ exp(− (1− ps)4k2λ2`∗2δ(d)2

32(1− ps)2kλ(e−λd`∗ + e−λd(1− e−λ)q + d)
)
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The last line follows from the fact that δ(d) ≤ e−λd and E(X) ≤ (1 − ps)
2ke−λd(1 − e−λ)2q + λd ≤

(1− ps)2ke−λd(1− e−λ)λq+λd. Since eλdδ(d) = 1− q+ qe−2λ(1−d) ≥ 1− q+ qe−2λ and any d < d∗, in order
to ensure that both bad events have probability at most ζn−3, it suffices to take

(1− ps)2kλ(1− q + qe−2λ)δ(d)`∗2

32(`∗ + (1− e−λ)q + eλd∗d∗)
≥ 3 log(n) + log 1/ζ

Applying the same argument to s(a, b)−s(a, c) and combining both results gives P [s(a, b)−max(s(a, c), s(b, c)) <
t] ≤ 4ζn−3. Taking a union bound over all

(
n
3

)
= O(n3) triplets, we see that the probability of condition i)

failing for any triplet is at most ζ.

To get guarantees on the second condition, note that condition i) implies that condition ii) holds for all
triplets separated by an edge of length at least `∗. Thus we can focus on the triplets that are not covered
by condition i). Let (a, b|c) be an arbitrary triplet such that dist(LCA(a, b, c), LCA(a, b)) < `∗ and again
let Y = s(a, b), X = s(b, c) and d be the depth of LCA(a, b, c) (note that we are focusing WLOG on s(b, c)
since it has the same distribution as s(a, c)). We want to show that with high probability, X − Y < t.
Again, it suffices to upper bound P [Y ≤ E(Y )− t/2] and P [X ≥ E(X) ≥ t/2] because E(Y ) ≥ E(X). Note
that we have already bounded the second quantity. To bound the first quantity, note that the worst case
scenario is that dist(LCA(a, b, c), LCA(a, b)) is as small as possible, but since this quantity can be arbitrarily
small, we can assume that in the worst case, dist(LCA(a, b, c), LCA(a, b)) = 0, which means Y has the same
distribution as X. Note that this case technically cannot happen as it would imply that T has a trifurcating
branch but it is possible to get arbitrarily close to this case with no restrictions on edge lengths. This gives:

Pr[X ≤ E(X)− (1− ps)2kλ`∗δ∗/4] = Pr[X ≤ E(X)(1− (1− ps)2kλ`∗δ∗

4E(X)
)]

≤ exp(− (1− ps)4k2λ2`∗2δ∗2

32(1− ps)2kλ(d+ e−λd(1− e−λ)(1− d)2q)
)

≤ exp(− (1− ps)2kλ`∗2δ∗2

32(d+ (1− e−λ)q)
)

Thus, if we take:

k ≥ max
( (96 logn+ 32 log 1/ζ)(`∗ + λq + eλd

∗
d∗)

(1− ps)2λ`∗2δ∗(1− q + qe−2λ)
,

(96 log n+ 32 log 1/ζ)(d∗ + (1− e−λ)q)

(1− ps)2λ`∗2δ∗2

)
then we have P [X − Y ≥ t] < ζn−3. By symmetry, this means P [s(b, c) − s(a, b) ≥ t

⋃
s(a, c) − s(a, b) ≥

t] ≤ 2ζn−3 Since we can union bound over one bad event of probability at most 2ζn−3 for each of the
(
n
3

)
triplets, we have that conditions i) and ii) both hold with probability at least 1− ζ.

Proof of lemma 5:

For this proof, we use the following results:

lemma 8 Let ρ be the maximum edge length in T . For any character, state pair (i, j), if there exists a
number p > 0 which satisfies ((1 − e−λρ)qj + p)2 ≤ p, then p is an upper bound on Pi,j(v) for any node
v ∈ T .

Proof: We will proceed by induction on T . Suppose v is a leaf. Then Pi,j(v) = 0, since if the ith character
does not mutate, it cannot take on state j. Now let v be an arbitrary non-leaf vertex, with children u and
w. By our inductive hypothesis, Pi,j(w) ≤ p and Pi,j(u) ≤ p. Since the length of the edge from v to either
of it’s children is at most ρ, the probability that the character mutates to state j on either edge is at most
(1− e−λρ)qj . Thus, if we condition on the fact that χi is not mutated on v, we have:

Pi,j(v) ≤ ((1− e−λρ)qj + e−λρPi,j(u))((1− e−λρ)qj + e−λρPi,j(w))

≤ ((1− e−λρ)qj + Pi,j(u))((1− e−λρ)qj + Pi,j(w))

≤ ((1− e−λρ)qj + p)2

≤ p
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Where the last inequality follows from our assumption on p. Given the above lemma, we can simply solve
for p to find an upper bound on all Pi,j(v) in T .

lemma 9 Suppose the maximum edge length satisfies:

ρ ≤ − 1

λ
ln[(1− 3

16 maxj(qj)
)]

Then we have Pi,j(v) ≤ 2λ2ρ2q2
j for any node v ∈ T

Proof: Let y = (1− e−λρ)qj . Note that by our above assumption, y ≤ 3/16. By our above assumption, we
have:

ρ ≤ − 1

λ
ln[(1− 3

16 maxj(qj)
)]

(1− e−λρ) max
j

(qj) ≤
3

16

(1− e−λρ)qj ≤
3

16

y ≤ 3

16

Next, by lemma 8, we know that if there is a p > 0 such that (y+ p)2 ≤ p, then such a p would be an upper
bound on all Pi,j(v). We can find such a p by setting the inequality to an equality and finding the smallest
root of the resulting polynomial.

y2 + 2yp+ p2 = p

y2 + (2y − 1)p+ p2 = 0

Our initial assumption of ρ guarantees that 4y < 1, which means the smallest root of the polynomial above
can be given as

p =
1

2
(1− 2y −

√
((2y − 1)2 − 4y2))

=
1

2
(1− 2y −

√
(4y2 − 4y + 1− 4y2))

=
1

2
(
√

1− 4y + 4y2 −
√

(1− 4y)

=
1

2

4y2√
1− 4y + 4y2 +

√
(1− 4y)

Where the last line follows by multiplying the numerator and denominator by
√

1− 4y + 4y2 +
√

(1− 4y.
To upper bound p, we have

p ≤ 1

2

4y2

2
√

1− 4y

=
y2

√
1− 4y

≤ 2y2

Where the last inequality follows from the fact y ≤ 3/16, which means the denominator is at least 1/2.
Finally, we have 2y2 = 2(1− e−λρ)2q2

j ≤ 2λ2ρ2q2
j .

Now simply take ρ =
√
c`∗ and apply lemma 9 to show lemma 5.
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Alternative Analysis of the Bottom-up Algorithm

Theorem 4 The constraint on λ and q in Theorem 3 can be replaced with

λ < min(
1− λ`/2

2qγ2
,− ln(1 + 2γ1 +

γ2
1

1− e−λ
− 1

2q
))

Where γ1 = e−λ
√
c`+ 2λ2c`qmax and γ2 = (

√
`+
√
c+ 2λc

√
`qmax)2. In that case, the Bottom-Up Algorithm

returns the correct tree with probability at least 1− ζ if

k ≥ eλ(20 logn+ 10 log (1/ζ))

min(λ`(1− λ`/2− 2λqγ2), (1− e−λ)(1− 2(1− e−λ + 2γ1 +
γ2
1

1−e−λ )q))

Note this means that as `→ 0, our constraint on λ and q becomes λq < 1
2c and our bound on k approaches

eλ(20 log n+ 10 log(1/ζ))

λ`(1− 2cλq)
= O(

log n

`
)

Proof of Theorem 4:. To upper bound the probabilities of the bad events, it suffices to ensure that

E(Z) > E(X) and bound the quantity (E(Z)−E(X))2

E(Z) = ∆2

E(Z) . Since this quantity depends on α, we will first

derive a lower bound on this quantity and determine where the minimum occurs for α ∈ [`, 1] as follows:

∆2

E[Z]
≥ E[Z]− 2E[X]

≥ ke−λd(1− e−λα − 2(1− e−λ(α+
√
c`) + 2λ2c`qmax)2q)

Now let f(α) = 1− e−λα − 2(1− e−λ(α+
√
c`) + 2λ2c`qmax)2q). Next we will show that for any interval [a, b],

the minimum of f on [a, b] occurs at either a or b. Let y(α) = e−λα, and let g(y) = 1− y−2(1− ye−λ
√

(c`) +
2λ2c`qmax)2q. Then f = g ◦ y. Note that g′ is linear with negative slope, as

g′(y) = −1 + 4(1− ye−λ
√
c` + 2λ2c`qmax)qe−λ

√
c`

Since f ′(x) = −g′(e−λx)e−λx, f ′(x) = 0 only when g′(e−λx) = 0. Since e−λx is an increasing function, there
can be at most one point where f ′ is 0. On the other hand, one can verify that limx→−∞ f ′(x) =∞, which
means that if there is any x where f ′(x) = 0, then f ′ is positive on (∞, x) and negative on (x,∞), which
means x must be a local maximum. Thus, any minimum of f on an interval [a, b] can only occur on the
boundaries.

α = 1 case:

In the case where α = 1, our lower bound can be written as

f(α) = (1− e−λ − 2(1− e−λe−λ
√
c` + 2λ2c`qmax)2q)

≥ (1− e−λ − 2(1− e−λ(1−
√
c`) + 2λ2c`qmax)2q)

= (1− e−λ − 2(1− e−λ + e−λ
√
c`+ 2λ2c`qmax)2q)

To make the notation easier to follow, let γ1 = e−λ
√
c`+ 2λ2c`qmax. Then we have

∆2

E[Z]
≥ (1− e−λ − 2(1− e−λ + γ1)2q)

= (1− e−λ − 2((1− e−λ)2 + 2(1− e−λ)γ1 + γ2
1)q)

= (1− e−λ)(1− 2(1− e−λ + 2γ1 +
γ2

1

1− e−λ
)q)
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Thus, in order for the bound to be non-trivial, we need 2(1− e−λ + 2γ1 +
γ2
1

1−e−λ )q < 1, which means

e−λ > 1 + 2γ1 +
γ2

1

1− e−λ
− 1

2q

λ < − ln(1 + 2γ1 +
γ2

1

1− e−λ
− 1

2q
)

Note that as `→ 0, the RHS approaches λ < ln(1− 1
2q ) which is at least 1

2q , and in general, when λ satisfies

the constraint above, f(1) is lower bounded by a constant independent of `. Also, note that the bound is
bound is trival if the term inside the ln is negative.

α = ` case:

In this case, our lower bound becomes as follows:

f(α) = (1− e−λ` − 2(1− e−λ(`+
√
c`) + 2λ2c`qmax)2q)

≥ (λ`− λ2`2

2
− 2λ2(`+

√
c`+ 2λc`qmax)2q)

= λ`(1− λ`

2
− 2λq(

√
`+
√
c+ 2λc

√
`qmax)2)

Now let γ2 = (
√
`+
√
c+2λc

√
`qmax)2. Then in order for the bound to be non-trivial, we need λ`

2 +2λqγ2 < 1,
which means

λ <
1− λ`/2

2q(
√
`+
√
c+ 2λc

√
`qmax)2

=
1− λ`/2

2qγ2

Note that as `→ 0, the RHS becomes 1
2qc . Since ∆2

E[Z] ≥ ke
−λdf(α), when the constraints:

λ < min(
1− λ`/2

2qγ2
,− ln(1 + 2γ1 +

γ2
1

1− e−λ
− 1

2q
))

are satisfied, and if we take

k ≥ eλ(20 logn+ 10 log (1/ζ))

min(λ`(1− λ`/2− 2λqγ2), (1− e−λ)(1− 2(1− e−λ + 2γ1 +
γ2
1

1−e−λ )q))

the probability that either of the above events occur is at most n−2ζ. In other words, for any pair of ver-
tices u,w that are not children of the same node, there will be a vertex u′ that such that LCA(u, u′) is a
descendent of LCA(u,w) and P [s(u, u′) ≤ s(u,w)] ≤ 2n−2ζ. If s(u, u′) > s(u,w), then (u,w) cannot be the
first pair of incorrectly joined vertices. Taking a union bound over at most n2/2 pairs of vertices, we see
that with with probability at least 1− ζ, there is no first pair of incorrectly joined vertices, which means the
algorithm is correct.

Since the bound on f(`) depends on `, it is general much smaller than the bound on f(1), which is lower
bounded by a constant. Thus, asymptotically, the bound on k is

eλ(20 logn+ 10 log (1/ζ))

λ`(1− 2cλq)
= O(

log n

`
)
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Description of Simulations and Scoring Criteria:

Simulations and algorithms are implemented in Python in Cassiopeia software suite [10]
(https://github.com/YosefLab/Cassiopeia), utilizing the NetworkX package [45].

Implementation of Algorithms:

Threshold Algorithm: Due to ties in the number of shared characters, sometimes the edge-removal pro-
cedure produces more than two connected components on the sample graph G. If this occurs, we enforce a
bifurcation in the tree by merging the components C1, C2, ..., Cn into two groups. We expand the previous
pseudocode as follows:

1: procedure SplitSamples(V )
2: G← Complete graph over V
3: while G is connected do
4: (u∗, v∗) = argmin(u,v)∈Es(u, v)
5: Delete (u∗, v∗) from G
6: end while
7: C1, C2, ..., Cn ← connected components of G
8: if length(C1, C2, ..., Cn) > 2 then
9: C1, C2 ←MergeComponents(C1, C2, ..., Cn)

10: end if
11: T1, T2 ← SplitSamples(C1), SplitSamples(C2)
12: Return binary tree with T1 and T2 as children of the root.
13: end procedure
14:

15: procedure MergeComponents(C1, C2, ..., Cn)
16: LCA1, LCA2, ..., LCAn ← InferParsimoniousStates(C1, C2, ..., Cn)
17: m← FindMostFrequentMutation(LCA1, LCA2, ..., LCAn)
18: for i in n do
19: if m in LCAi then
20: Add Ci to GroupA
21: else
22: Add Ci to GroupB
23: end if
24: end for
25: Return GroupA, GroupB
26: end procedure

Here, we use a naive parsimony approach. We infer the character states of the LCA of each component as
the most parsimonious states given the states of the leaves in that component (a mutation appears in the
LCA of a component only if it shared by all samples in that component, discounting samples with missing
data at that character). Then, the mutation shared by the most LCAs is found. Heuristically, this mutation
occurred early in the phylogeny and thus components sharing this mutation are more closely related. Thus,
we separate components into two groups based on whether or not the LCA has this mutation.

This algorithm is implemented as the “PercolationSolver” class in the “solver” module of the Cassiopeia
codebase. Here, the default arguments are used, with “joining solver” specified as an instance of the “Vanil-
laGreedySolver” class.

Bottom-Up Algorithm: The implementation of the Bottom-Up Algorithm follows the description in
the main text. If a tie occurs in the number of shared mutations between nodes, then an arbitrary pair is
chosen to be merged first.

This algorithm is implemented as the “SharedMutationSolver” class in the “solver” module of the Cas-
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siopeia codebase. Here, the default arguments are used.

Simulating Lineage Tracing Experiments:

In our simulations, we simulated forward-time lineage tracing experiments using our generative model. We
split the simulation into two steps.

Simulating Cell Division Topologies: First, we simulate a continuous-time, binary, symmetric cell
division topology. Then, we simulate CRISPR-Cas9 lineage tracing data over the given topology. The end
result is a phylogenetic tree representing the single-cell lineage tracing experiment. The tree topology also
records the ground truth phylogenetic relationships between the observed cells.

We begin by describing the two simulation schemes used for the tree topology. The first scheme simu-
lates a cell division regime with regular cell division (uniform edge lengths). We start with a complete
binary tree and add an implicit root, attaching this root to the root of the complete binary tree by an edge.
The edge represents the lifetime of the root along which mutations can be acquired. For all figures besides
Figure 6, we generated trees with 256 leaves representing cells observed at the end of the experiment. For
Figure 6, we generated trees of various sizes, exponentially increasing n. Given that the number of edges
in the path from the implicit root to each leaf has log(n) + 1 edges, each edge has uniform length, and the
length of the experiment is normalized to one, each edge has length 1

log(n)+1 .

The second simulation scheme represents an asynchronous cell division regime, with stochastic waiting times
between cell divisions and cell death. We model a forward-time Bellman-Harris model with extinction [46].
This generalizes the birth-death process [47], a commonly used phylogenetic model, such that the distribution
of waiting times between division and death events are arbitrary. In our case, waiting times between division
events are distributed according to an exponential distribution that is shifted by a constant a = 0.05, repre-
senting minimum time between cell division events. The distribution of death waiting times is distributed
exponentially, as we assume that cell death does not have a minimum time. The stopping condition is when
all lineages reach time = 1, meaning that each lineage will have total path length from the root of 1. We
present the pseudocode used for this simulation here:

1: procedure Forward Simulation(λbirth, λdeath)
2: Lineages← Queue();
3: T ← new empty tree;
4: Leaves← {}
5: Lineages.push((root,None, 0))
6: SampleLineageEvent(node, parent, time, T, Leaves, Lineages, λbirth, λdeath)
7: while Lineages is not empty do
8: node, parent, time← Lineages.pop()
9: SampleLineageEvent(node, parent, time, T, Leaves, Lineages, λbirth, λdeath)

10: end while
11: Remove all nodes in T that do not have a descendant in Leaves
12: Return T
13: end procedure
14:

15: procedure SampleLineageEvent(node, parent, time, T, Leaves, Lineages, λbirth, λdeath))
16: tbirth, tdeath ← Exp(λbirth) + a,Exp(λdeath);
17: if time+min(tbirth, tdeath) > 1 then
18: T ← T ∪ {(parent, node), weight = 1− time};
19: Leaves← Leaves ∪ {node};
20: else if tbirth < tdeath then
21: T ← T ∪ {(parent, node), weight = tbirth};
22: Lineages.push(Node(), node, time+ tbirth);
23: end if
24: end procedure
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To control for the number of leaves in the simulated trees, we take only trees that have between 205 and
307 leaves (if the procedure terminates with no living lineages, then we consider that tree to have 0 leaves).
Note that in the trees generated by this process sister nodes need not have the same edge length and the
root will have a singleton edge as in the binary case along which mutations can occur. We chose rates for
the division and death waiting distributions (23.70 and 2.12, respectively) that gave an average of around
256 leaves over 1000 simulations. These rates were chosen assuming that the rate of division was 10 times
that of the rate of death, and then correcting the death rate to increase the mean waiting time by a = 0.05
to match the shift in mean in the distribution of division times.

Due to the stochastic nature of this division process, we cannot exactly control for ` if we stop the ex-
periment at a specified time. This is due to the fact that edges at the leaves of the tree may be very small
if the stopping criterion is reached before the length can reach a, thus making the minimum edge length in
the tree technically potentially smaller than a. We contend that these edges should not impact the analy-
sis though. Small edges make it difficult to discern which neighboring clades are actually closer in relation.
These small edges only occur at the bottom of the tree though and would only affect the edge lengths leading
to single leaves, which are trivially discerned as a cherries with their neighbors, meaning that ` would still
effectively be 0.05 in this case.

This topology simulation framework is implemented in the Cassiopeia codebase as the “BirthDeathFitness-
Simulator” class in the “simulator” module. Here, “birth waiting distribution” is set to a lambda function
that takes a rate and returns a random waiting time from an exponential distribution with that rate, shifted
by 0.05. “initial birth scale” is set to ≈ 23.70. “death waiting distribution” is set to a lambda function
that takes no arguments and returns a random waiting time from an exponential distribution with that rate
1/ ≈ 23.70 + 0.05. “experiment time” is set to 1. The other arguments are set to their defaults.

Simulating CRISPR-Cas9 Lineage Tracing Data: Given a tree topology, we simulate a CRISPR-
Cas9 mutagenesis process over it. Along each edge with length t, independently for each character, we
simulate the probability that a mutation will occur as 1 − eλt. If a character has been chosen to mutate,
we then draw from the state distribution to determine the state the character acquires. In this case, this is

a uniform distribution with m = 1/q states (note that in the uniform case, q =
∑m
j=1

1
m

2
= 1/m). Once a

mutation is acquired on an edge, that mutation persists in all downstream nodes. Then the mutations ac-
quired along the path from the implicit root is maintained for each leaf node, which then forms the observed
character information for all observed cells. If the simulation involves missing data, then ps proportion of
characters are uniformly at randomly changed to a state representing missing data (-1). This character
information is the input to the reconstruction algorithm.

This lineage tracing simulation framework is implemented in the Cassiopeia codebase as the
“Cas9LineageTracingDataSimulator” class in the “simulator” module. Here, “number of cassettes” is set
to the respective k, “size of cassette” is set to 1, “mutation rate” is set to the respective λ, “state priors”
is set to a dictionary representing the q distribution, “heritable silencing rate” is set to 0, and “stochas-
tic silencing rate” is set to 0 and 0.1, depending on whether the particular simulation has missing data. All
other arguments are set to default.

Finding the Minimum Necessary k:

Exploring the Space of k: Here we describe the process by which we determined the minimum k necessary
for 90% probability of a given criterion in our simulations, either full reconstruction, partial reconstruction,
or triplets correct. For a given value of k and a given a set of parameters, we verify if it is sufficient for 90%
probability of full reconstruction as follows: we simulate 10 ground truth trees, reconstruct each tree from
its observed cells (leaves) using the relevant algorithm, and comparing the corresponding reconstructed tree
to each ground truth tree. If ≥ 9 out of those 10 trees meet a scoring criterion, then we say that this k
is sufficient. To alleviate the effect of noise, if 7-8 out of 10 trees meet the criterion, then we construct 20
additional trees and say k is sufficient if ≥ 18 of those trees meet the criterion.
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To efficiently explore the space of k, we first exponentially (base 2) increase the value of k until a max
value is reached (4098 in the case of no missing data and 16384 in the case of missing data). Once we find
a sufficient k, we perform a binary search in the bin between that value and the value before it. Finally,
we record the number of trees correctly reconstructed out of 10 for each value of k in the binary search
and perform a logistic regression on these data points. We report the value of k that first reaches 90%
reconstruction probability predicted by the logistic regression. If no k is sufficient up to the max value, then
we deem that the necessary value of k is too large for our simulations to discern and we report a missing
value. To calculate the point-wise confidence intervals used in Figures 2, 4, 6 for each regression on a set
of parameters, we calculate the upper and lower bounds of the 95% confidence interval from the regression
coefficients using the delta method. Then, we take the upper bound on the necessary k as the first k where
the lower bound exceeds 90%, and we take the lower bound as the first k where the upper bound exceeds 90%.

Full reconstruction: We say the reconstructed tree achieves perfect reconstruction if it has a Robinson-
Foulds Distance of 0, meaning the trees are isomorphic with regard to their labels.

Robinson-Foulds Distance is implemented in the codebase as the “robinson foulds” method in the “cri-
tique” module. This method makes use of the the Ete3 package [48].

Partial Reconstruction: To determine the sufficient k needed for exact partial reconstruction for triplets
whose LCA is up to depth d, we use the same framework as in the case of full reconstruction but we change
the scoring criterion. We can no longer compare ground truth and reconstructed trees by Robinson-Foulds
Distance, which compares the entire tree. We instead present and show the correctness of an algorithm to
determine if all triplets in a tree up to depth d are resolved correctly in the reconstructed tree. The algorithm
is as follows. Let T be the ground truth tree, T ′ be the reconstructed tree, and d be the depth:

1: procedure CheckPartialReconstruction(T , T ′, d)
2: CheckSplit(root(T ), root(T ′))
3: Return TRUE
4: end procedure
5:

6: procedure CheckSplit(n, n′, d)
7: if depth(n) < d then
8: return
9: end if

10: l, r = children(n)
11: l′, r′ = children(n′)
12: if leaves beneath(l) == leaves beneath(l′) and leaves beneath(r) == leaves beneath(r′) then
13: CheckSplit(l, l′, d), CheckSplit(r, r′, d)
14: else
15: Return FALSE
16: end if
17: end procedure

Next we prove its correctness:

Claim: All triplets whose LCA is at depth < d in T are resolved correctly in T ′ iff for every node n < d
in T there exists a node n′ in T ′ whose daughter clades partition the set of leaf descendants of that node in
the same way.

Proof: if: For a triplet (a, b|c) whose LCA is node n, a, b must be in the clade of one daughter of n
and c on the other. If there exists a node n′ in T ′ that partitions the leaf nodes into the same two clades,
then for each triplet whose LCA is at n, a, b will be grouped together in the same clade with c on other
side, hence every triplet will be resolved correctly. If there exists n′ for each n < d, then all triplets with
LCA < d will be resolved correctly. only if: If there is a node n < d in T with no node n′ in T ′ with an
analogous partition, this implies that there is some partition of the leaves in T ′ starting from the root at or
above n that does not match the partition in T , as if all partitions were correct then n′ must exist. If there

40

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.21.469464doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.21.469464
http://creativecommons.org/licenses/by/4.0/


is a non-matching partition, there is some partition {a1, ..., am}|{b1, ..., bn} in T where in T ′ there is at least
one incorrect member in one of the partitioned sets: {a1, ..., a

′
m, b1, ..., b

′
n}|{a′m+1, ..., am, bn′+1, ..., bn}. Then

in T ′, WLOG b1 is closer to some ai than some bi, and all triplets involving b1 and ai are incorrect in T ′.
As the partition with the non-analogous partition is at depth < d in T , then some triplets whose LCA is at
depth < d in are incorrectly resolved in T ′.

The algorithm will find n′ for every n < d by matching it to a node in T ′ that has the same partition.
If the algorithm does not find n′ for a certain n < d, then it does not exist as if all partitions checked by the
algorithm match up to and including n in T ′ then it must exist, and the given partition cannot be formed
later as leaf descendant sets cannot add members down the tree.

Triplets Correct: Additionally, we report the necessary k needed for 95% triplets correct in simulation.
The triplets correct score is determined by sampling 500 triplets uniformly from the ground truth tree and
counting the proportion of triplets resolved accurately in the reconstructed tree.
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Additional Simulations:

Visualization of the (`∗, d∗)−Oracle:

The (`∗, d∗)−Oracle presented above attempts to determine the outgroup of a triplet using the difference
in the number of shared mutations between its members. In Figure 5 we visualize how well the deci-
sion rule holds for correctly and incorrectly resolved triplets. We plot s(a, b) −max(s(a, c), s(b, c)) against
dist(LCA(a, b), LCA(a, b, c)) for triplets (a, b, c) on simulated trees. The blue points show the difference
between the mutations shared by the ingroup versus the mutations shared by the outgroup, and the orange
points show the difference between the mutations shared by the outgroup and the ingroup. We see that 10%
of triplets are such that s(a, b)−max(s(a, c), s(b, c)) ≤ t with (a, b) as the ingroup and thus violate condition
i), and that 2.3% are such that s(a, b) −max(s(a, c), s(b, c)) ≤ t with (a, b) as the outgroup. Note that as
s(a, b) − max(s(a, c), s(b, c)) ≤ s(a, b) − s(a, c), requiring that s(a, b) − max(s(a, c), s(b, c)) < t is a slightly
weaker condition than condition ii) and thus at most 2.3% of triplets violate it. For the set of parameters
used here, t is chosen such that the probability that a triplet is indeterminable is low and the probability
that the outgroup is given incorrectly is low, showing that the oracle is relatively accurate on this regime
for the low number of characters (k = 10). For for exact reconstruction of a tree though, we require that all
triplets on that tree be separated by the threshold t.

As dist(LCA(a, b), LCA(a, b, c)) increases, this difference in the number of shared mutations between the
ingroup and the non-ingroup pairs grows, making the triplets more separable. This gives us the V-shape in
the figure. As the distance increases, the number of triplets that cross the threshold and thus violate either
condition decreases, and after a certain point no triplets cross the threshold. This illustrates that in the
result in Theorem 2 that, as we are only interested in triplets where dist(LCA(a, b), LCA(a, b, c)) > `∗ for
larger values of `∗, them the bound on the number of characters k needed to separate these triplets decreases.

Figure 5: Visualizing the (`∗, d∗)−Oracle decision rule in simulation. We sample 100 triplets uniformly for
each of 100 trees simulated under the Asynchronous simulation framework described in the appendix with
k = 10, λ = 0.5, q = 0.05 and n ≈ 256. For each triplet, we plot s(a, b) − max(s(a, c), s(b, c)) for two
cases: when (a, b) notates the true ingroup of the triplet (blue) and 2) when (a, b) notates one member of
the ingroup and the outgroup (orange). The histograms show the density of each case for each triplet along
the axes.
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Dependence on n:

To compare the asymptotic dependence of k on n in the theoretical bounds with the dependence of the
necessary k in the empirical case, we simulate varying trees of size. In Figure 6 we plot the values of k in
simulation against the bounds for both algorithms, in a regime where ` = 0.5, q = 0.05. From this figure
it can be seen that the bounds are tight (within a constant factor) against the empirical values and share
the same shape in the dependence of k on n. These results offer empirical validation of the asymptotic
dependence of k in the bounds for both algorithms.

Figure 6: Comparing the dependence of minimum necessary k on n of the Threshold Algorithm (left) and
the Bottom-Up Algorithm (right) with the theoretical bounds for each case (90% of full reconstruction).
Simulations performed with the uniform edge length regime for trees of size 22, 23, ..., 211 leaves. For each
value of n, edge lengths were re-scaled to be 1

log2(n)+1 to maintain uniform edge lengths. The bounds are

rescaled by a constant factor, 100 for the Threshold Algorithm and 25 for the Bottom-Up Algorithm. Point-
wise 95% confidence intervals are generated from the regression coefficients using the delta method, see
appendix.

Missing Data:

Here we present simulations for the minimum k to give 0.9 probability of exact reconstruction for the case
of stochastic missing data only (lemma 4). The simulations are performed with uniform edge lengths and
use ps = 0.1 proportion of stochastic missing data. Visualizing the bounds for lemma 4 show that indeed
higher values of k are necessary to overcome the lost information (Figure 7A), consistent with the additional
(1 − pd)2 term in the denominator and gap term of eλd

∗
d∗ when compared to the bounds of Theorem 1.

Notably, the reconstruction now becomes increasingly intractable for high values of λ, due to the gap term
being exponential in λ. In simulation (Figure 7B) we see that the necessary k is higher across the board,
especially for values with high λ, validating the theoretical trends.

Surprisingly, unlike in lemma 2, the bound on k in lemma 4 has no asymptotic dependence on q. Tak-
ing q to be arbitrarily small (or even q < `/λ) causes the bound in lemma 2 to become O( logn

` ), yet an

arbitrarily small q causes the bound in lemma 4 to remain in O( logn
`2 ). Examining the difference in the

bounds between lemma 4 and lemma 2 (Figure 7C (Top)), we see that the difference grows larger in regions
where q < `/λ, indicating that the bound changes asymptotically in these regions. This same pattern is
reflected in the empirical results, validating this change in dependence on q (Figure 7C (Bottom)).
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Figure 7: Comparison of the Threshold Algorithm in simulation and theory in the case of missing data,
using the missing data strategy outlined in lemma 4. Simulated trees with 256 leaves, n = 256. Entries are
log10 scaled. (A) Theoretical lower bound on k required for 0.9 probability of perfect tree reconstruction for
varying values of q and λ in the case of missing data, with ` = 1/9, d∗ = 1, and ps = 0.1. (B) Minimum k
required for 0.9 probability of perfect reconstruction in simulation with a cell division topology with uniform
branch lengths, ` = 1/9, d∗ = 1, and ps = 0.1. (C) Scalar difference in the values of k in the case with and
without missing data. Top: Difference in theoretical bounds for k for 0.9 probability of perfect reconstruction,
` = 1/9, d∗ = 1, and ps = 0.1. Bottom: Difference in minimum k required for 0.9 probability of perfect
reconstruction in simulation with a cell division topology with uniform branch lengths, ` = 1/9, d∗ = 1, and
ps = 0.1.

Triplets Correct:

Previous benchmarking works do not use exact reconstruction as a metric for the accuracy of phylogenetic
reconstructions. A common, more relaxed metric is the triplets correct metric (or the closely related triples
distance), which measures the proportion of sampled leaf triplets that are correctly (incorrectly in the case
of triplets distance) inferred by the reconstructed tree [10, 49, 35]. We present the minimum k necessary
in simulation for high probability of a high (≥ 95%) triplets correct score on uniformly sampled triplets,
showing the necessary k when exact reconstruction is not required (Figure 8). We see that the empirical
necessary k decreases substantially overall compared to the case of exact reconstruction for both algorithms,
showing that these algorithms can perform well in practice with a low number of characters according to
traditional standards of accuracy.

Regarding the Threshold Algorithm, the reduction in the necessary k is potentially due to the fact that
if triplets are sampled uniformly, most of them will have an LCA close to the root. We saw from the partial
reconstruction results that the necessary k decreases across the board as d∗ (the depth up to which triplets
must be correct) decreases. We see also that large values of λ coincide with lower relative k in the triplets
case than in the case of full reconstruction, just as in the case of d∗ << 1. Thus, we can treat the case of
uniformly sampling triplets as similar to setting a low d∗. We see that both of these effects, the lower overall
necessary k and the lower k for high values of λ, also hold true of the Bottom-Up Algorithm in the case of
uniformly sampling triplets. This indicates that perhaps reconstruction of triplets that diverge at the top of
the tree is easier and less affected by mutation saturation in the case of the Bottom-Up Algorithm as well.
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Figure 8: Triplets correct scores for both algorithms. Simulated trees with 256 leaves, n = 256. Entries are
log10 scaled. Minimum k required for 0.9 probability of ≤ 0.95 proportion of 500 uniformly sampled triplets
correctly reconstructed in simulation. Top row: Results for the Threshold Algorithm in the case of (From
left to right) uniform edge length topology without missing data (` = 1/9, ps = 0.1), uniform edge length
topology with missing data (` = 1/9, ps = 0.1), asynchronous topology (` = 0.05). Bottom row: Results for
the Bottom-Up Algorithm in the case of (From left to right) uniform edge length topology (` = 1/9) and
asynchronous topology (` = 0.05).
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