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Abstract

Motivation: With the steadily increasing abundance of omics data produced all over the world under
vastly different experimental conditions residing in public databases, a crucial step in many data-driven
bioinformatics applications is that of data integration. The challenge of batch-effect removal for entire
databases lies in the large number of batches and biological variation which can result in design matrix
singularity. This problem can currently not be solved satisfactorily by any common batch-correction
algorithm.
Results: We present reComBat, a regularized version of the empirical Bayes method to overcome this
limitation and benchmark it against popular approaches for the harmonization of public gene expression
data (both microarray and bulkRNAsq) of the human opportunistic pathogen Pseudomonas aeruginosa.
Batch-effects are successfully mitigated while biologically meaningful gene expression variation is retained.
reComBat fills the gap in batch-correction approaches applicable to large-scale, public omics databases
and opens up new avenues for data-driven analysis of complex biological processes beyond the scope of
a single study.
Contact: michael.adamer@bsse.ethz.ch
Availability: The code is available at https://github.com/ BorgwardtLab/reComBat,
all data and evaluation code can be found at https://github.com/BorgwardtLab/batchCorrectionPublicData

1 Introduction1

Data-driven computational biology greatly depends on the availability of2

large, integrated data-sets to provide the necessary variety and statistical3

power for state-of-the-art (SOTA) machine and deep learning, as recently4

demonstrated by Alpha-Fold (Jumper et al., 2021). In particular, an in-5

depth understanding of general trends in expression and transcription6

profiles are key for important research questions such as overcoming7

microbial antibiotic resistance, (Gil-Gil et al., 2021; Andersson et al.,8

2020) or cancer therapy failure (Kourou et al., 2021; Malod-Dognin et al.,9

2019). By mining large databases across studies, it may be possible to10

identify novel biological mechanisms that cannot be found by studying11

individual, small-scale experiments alone. This poses a problem shift12

towards the need for integrating diverse data obtained from numerous13

independent experiments.14

Public databases such as the Gene Expression Omnibus (GEO) (Barrett15

et al., 2013; Edgar et al., 2002), include independent studies collected16

over a large time span, under different biological and technical conditions.17

Hence, strong batch-effects (i.e. unwanted and biologically irrelevant18

variation) preclude a comprehensive analysis of pooled data and first need19

to be mitigated while desired biological variation (referred to in this paper20

as “(experimental) design”) needs be retained.21

Although a range of batch-correction algorithms has previously been22

suggested (Tran et al., 2020; Lazar et al., 2012; Rong et al., 2020; Chazarra-23

Gil et al., 2021), only a small subset of these remains applicable for24

this large-scale setting. In particular, most previous algorithms cannot25

incorporate high-dimensional experimental design information. Our goal26

for this study is to provide the community with a simple, yet effective27
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extension of the popular and computationally efficient empirical Bayes28

method (Johnson et al., 2006) (ComBat) to account for a large amount29

of highly correlated biological covariates. ComBat is based on ordinary30

linear regression and, therefore, will fail if the system is underdetermined.31

We benchmark our method on simulated data and provide a real-world32

application in microarray and bulk RNAsq data, evaluating the impact33

of culture conditions on the gene expression profiles of Pseudomonas34

aeruginosa (PA). PA is a Gram-negative bacterium with a large genome35

(Stover et al., 2000) that thrives in a variety of environments and has36

been declared a critical priority pathogen for the development of new37

antimicrobial treatments (Tacconelli et al., 2018). A large range of studies38

have previously investigated the impact of culture conditions on the gene39

expression profiles of PA. A comprehensive review of the perturbations40

caused by the microenvironmental cues is missing as a consequence of the41

lack of harmonized data allowing for a direct comparison.42

The paper is organized as follows. After reviewing relevant literature43

in Section 1.1 we introduce our reComBat algorithm (contribution i) in44

Section 2 as an extension of the ComBat algorithm to handle highly45

correlated covariates. In the second part of Section 2 we address the46

issue of assessing the efficacy of the batch-correction by introducing47

a large variety of evaluation metrics (contribution ii). In Section 348

we benchmark reComBat against a selection of SOTA batch-correction49

methods on simulated and real-world data. Finally, we present a large,50

harmonized data-set of PA expression profiles in response to different51

microenvironmental cues (contribution iii). We conclude Section 3 by52

demonstrating, as a proof of concept, the biological validity of the53

harmonized data-set. Section 4 comprises of a discussion and outlook.54

1.1 Related Work55

A variety of batch-correction methods has previously been suggested for56

bulk and single cell sequencing data (see e.g. (Lazar et al., 2012; Tran57

et al., 2020; Yu et al., 2021)). Here, we focus on batch-correction of bulk58

data which can generally be divided into the following categories:59

Normalization to reference genes or samples: Algorithms, such as60

cross-platform normalization (Shabalin et al., 2008) or reference scaling61

(Kim et al., 2007), which employ references, are infeasible in the public62

data domain: “reference” or “house keeping” genes don’t exist for some63

organisms, particularly microbes, eliminating these as common ground for64

batch-effect correction. Given a large public data-set, overlapping samples65

or common reference experiments are unlikely.66

Discretization methods: Approaches that discretize expression data67

into categories (e.g., “expressed” vs. “not expressed”) can be hard68

to implement rigorously without a relevant control. Furthermore, the69

information loss due to discretization may affect the results of any advanced70

downstream analysis of the harmonized data.71

Location-scale adjustments: These methods adjust the mean and/or72

variance of the genes, e.g by standardization (Li and Wong, 2001)73

or batch mean-centering (Sims et al., 2008). This only works if the74

batch-effect is a simple mean/variance shift and does not account for75

additional confounders. One of the most popular location-scale method76

is the empirical Bayes algorithm, ComBat (Johnson et al., 2006). Despite77

reasonable success for the correction of local, i.e. within one experiment, or78

moderate (i.e. comprising few, biologically correlated) batch-effects most79

location-scale adjustment methods either provide insufficient correction in80

the presence of strong batch-effects (e.g. standardization) or are unable to81

account for highly correlated design features (e.g. ComBat).82

Matrix factorization:: This approach builds on decomposition such83

as principal component analysis (PCA) or singular value decomposition84

(SVD) (Alter et al., 2000) to identify and remove factors characterizing85

the batch. While this can work in small scale experiments, it is unclear86

how to apply these methods when there is strong confounding of batch87

and biological variation. A tangential approach to matrix factorization is88

to estimate unwanted variation via surrogate variables (SVA) (Lazar et al.,89

2012). Since in our setting we assume that we know all sources of variation,90

we do not consider SVA.91

Deep learning based: Recently, nonlinear models, often based92

on neural/variational autoencoders or generative adversarial networks93

(GAN), have gained popularity (e.g. normAE (Rong et al., 2020), AD-94

AE (Dincer et al., 2020), scGen (Lotfollahi et al., 2019), (Ghahramani95

et al., 2018)). This class of models aims to find a batch-effect-free latent96

space representation of the data e.g. via adversarial training. While an97

advantage of these methods is their flexibility to account for batches, but98

also desired biological variation, a major drawback may be that the batch-99

effect is only removed in a low-dimensional latent space. Downstream100

analysis is necessarily constrained (Dincer et al., 2020; Rong et al., 2020).101

scGen is a notable exception as it provides a direct normalization at gene102

expression level. However, large data-sets are required and, in the absence103

of ground truth, the risk of overcorrection should be considered in addition104

to increased computational complexity.105

2 Approach106

In this section we introduce the mathematical tools and start by defining107

our modification to the popular ComBat algorithm, reComBat, before108

introducing a range of possible evaluation metrics to gauge the efficacy of109

data harmonization.110

2.1 Classical: ComBat111

ComBat (Johnson et al., 2006) is a well-established batch-correction112

algorithm employing a three-step process.113

1. The gene expressions are estimated via an ordinary linear regression114

and the data is standardized.115

2. The adjustment parameters are found by empirical Bayes estimates116

of parametric or non-parametric priors.117

3. The standardized data is adjusted to remove the batch-effect.118

The ComBat algorithm has seen many refinements and applications (see
e.g. (Čuklina et al., 2021; Müller et al., 2016; Zhang et al., 2020)).
However, most data-sets have still been small and did not come with an
extensive design matrix. When the design matrix becomes large (many
covariates) and sparse, unexpected issues can arise in step 1 of the
algorithm. To illustrate the classic algorithm, we use the slightly modified
ansatz of (Wachinger et al., 2021),

Yijk = (Xβx)jk︸ ︷︷ ︸
desired variation

+ (Cβc)jk︸ ︷︷ ︸
undesired variation

+ αk︸︷︷︸
regression intercept

+ βg
ik︸︷︷︸

additive batch-effect

+ δikϵijk︸ ︷︷ ︸
multiplicative batch-effect

, (1)

whereYijk is the gene expression of thekth gene in the jth sample of the ith119

batch. The matricesX andC are design matrices of desired and undesired120

variation with their corresponding matrices of regression coefficients βx121

andβc. α is a matrix of intercepts, andβg and δ parameterize the additive122

and multiplicative batch-effects. The tensor ϵ is a three-dimensional tensor123

of standard Gaussian random variables. Note, that we implicitly encode124

batch- and sample-dependency by dropping the relevant indices, i.e. βg125

depends on the batch and gene, but is constant for each sample within the126

batch.127

In the first step of the algorithm the parameters βx, βc, and α are128

fitted via an ordinary linear regression on129

Y = Xβx +Cβc +α = X̃β, (2)130

where X̃ ∈ Rn×m, where m is the number of features and n is the131

number of samples. Note, that this formulation is equivalent to redefining132

Y ∈ Rn×g , where g is the number of genes, and subsuming the batch133

and C features into X̃ . The intercept α is inferred via the relation134
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1
N

∑
i niβ

g
ik = 0 (Johnson et al., 2006), where ni is the number of135

samples in batch i, βik is the regression coefficient of batch i for gene k136

andN is the total number of samples. For ease of notation, in the remainder137

of this paper we will use this equivalent formulation.138

Once, the model is fitted, the data is standardized, then the batch-effect139

parameters, γ̂ and δ̂ are estimated using a parametric or non-parametric140

empirical Bayes method. Finally, the data is adjusted. For details, please141

refer to the original publication (Johnson et al., 2006).142

2.2 Novel contribution: reComBat143

Problem statement: Using standard results for ordinary linear regression,144

we know that if the matrix A = X̃T X̃ is positive-definite, the145

optimization of (2) is strictly convex. However, if A is singular a unique-146

solution the the regression does not exist. Hence, if A is rank-deficient,147

i.e. the system is underdetermined, ComBat will not necessarily arrive at148

a unique solution. Our goal in this work is to provide a computationally149

efficient solution for this problem to make the empirical Bayes method150

applicable also to large-scale public data harmonization.151

Given the popularity of ComBat this issue does not seem to be152

encountered frequently. One possible explanation is that the sources of153

biological variation that are usually considered within the same experiment154

are limited and well-chosen. When integrating entire databases, however,155

the sources of biological variation are manifold and these can often only be156

encoded as categorical variables. One prominent example is considering157

all uploaded experimental data of a particular pathogen, which can result158

in hundreds of unique experimental conditions, some potentially highly159

correlated with other metadata. Encoding these as one-hot categorical160

variables creates a sparse, high-dimensional feature vector and, when161

many such categorical features are considered, then m ≈ n. If, either162

m > n, or strong batch-design correlations exist, then, even for large-scale163

integration, A may be rank deficient.164

To mitigate this issue, we propose a modification of the estimation of
gene expression profiles by a linear model (step 1 of the ComBat algorithm)
by fitting the elastic net model - a standard approach from linear regression
theory

Ŷ = Xβ̂x +Cβ̂c + α̂, (3)

β̂x, β̂c, α̂ = argmin
βx,βc,α

[
∥Y − Ŷ ∥22 + λ1(∥βx∥1 + ∥βc∥1) (4)

+ λ2(∥βx∥22 + ∥βc∥22)
]
, (5)

where ∥·∥p denotes the ℓp norm, and λ1 and λ2 are the LASSO and165

ridge regularization penalties. Due to this regularizing modification of the166

algorithm we call our approach regularized-ComBat, in short reComBat.167

Both, parameter fitting using the Empirical Bayes methods, and parameter168

adjustment on the standardized data follow the above outline for the169

ComBat algorithm. Note that reComBat essentially replaces a linear170

regression with a regularized regression and, hence, the increase of171

computational complexity of reComBat over ComBat is negligible.172

The reComBat algorithm can be summarized in the following pseudo-173

code.

Algorithm 1 reComBat

Require: The data and the design: Y, X̃
1: Fit a regularized linear model: Y = X̃β

2: Standardize Y

3: Obtain empirical Bayes estimates
4: Rescale Y : Y → Ỹ

Output: The corrected data: Ỹ

174

2.3 Evaluation metrics175

A detailed description and definition of all evaluation metrics employed176

to score batch correction efficacy is provided in supplement A. We177

included classifier-based (logistic regression-based balanced accuracy178

and F1-score, Linear Discriminant Analysis (LDA) score), cluster-based179

(minimum separation number, cluster purity, Gini impurity), and sample180

distance-based (Distance Ratio Score (DRS), Shannon entropy) metrics.181

3 Experiments182

In this section, we apply reComBat to simulated and real-world microarray183

and bulkRNAsq data. We show quantitatively and qualitatively that184

reComBat is successful in removing substantial batch-effects while185

retaining biologically meaningful signal.186

3.1 Experimental data187

A detailed description is given in supplement B. We first evaluate the188

approaches on synthetic data with singular design matrix and test a range189

of hyperparameter combinations for data generation (number of samples190

(100-2000), batches (3-100), design matrix features (3-20), relative191

disturbance size of metadata to batch (0.01-20), number of Zero-Hops (5-192

40)) and score run time, LDA score, Shannon entropy and cluster purity as193

a function thereof w.r.t. the ground truth. Additionally, data for 887 (114194

batches, 39 Zero-Hops, see Table S1) microarray and 340 bulkRNAsq195

samples (32 batches, 12 Zero-Hops, see Table S2) was collected from the196

GEO, SRA and ENA data bases (Barrett et al., 2013) with relevant metadata197

characterizing experimental design (culture conditions, PA strain). The198

obtained microarray design matrix is singular, whereas the RNA design199

matrix is not-singular, however, ill-conditioned.200

3.2 Batch-correction methods201

We tested our approach against a representative sample of baseline202

methods, in particular, standardization, marker gene elimination, principal203

component elimination, ComBat, Harmony (Korsunsky et al., 2019) and204

scGen. Details on these methods can be found in the supplement C.205

For reComBat, we used parametric priors for the empirical Bayes206

optimization and tested a variety of parameters including pure LASSO207

(λ2 = 0), pure ridge (λ1 = 0), and the full elastic net208

regression. The range of regularization strengths tested were all possible209

combinations (except for (0, 0)) of λ1 ∈ {0, 10−2, 10−1, 1} and210

λ2 ∈ {0, 10−10, . . . , 10−1, 1}. Note that smaller values of λ1 yielded211

numerical instabilities.212

3.3 Hyperparameter optimization results213

A hyperparameter screen to optimize regularization strength and type214

on the default simulated, microarray and bulkRNAsq data yielded best215

results when ridge regression was used (λ1 = 0) with λ2 ≤ 0.001 (see216

supplement D). The specific regularization parameter only had a minor217

influence and we continued with λ2 = 10−9. We observe that stronger,218

particularly LASSO, regularization achieves superior batch heterogeneity219

at the cost of decrease in Zero-Hop uniformity in real-world data. Notice220

that LASSO-reComBat performs implicit feature selection due the ℓ1221

regularization. This could hint to the fact that more balanced feature222

weighting (as provided by ridge-reComBat) is beneficial. In the following223

we present results only for ridge reComBat.224

3.4 Evaluation on synthetic data225

We benchmark reComBat on simulated data against popular batch-226

correction methods. Figure 1 A,B shows the simulated ground truth227

distribution together with the distribution after applying batch-effects, and228
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Fig. 1. t-SNE plots of the simulated (A, B) and microarray (C, D) data-sets. For simulated data we show ground truth (top), uncorrected (middle) and reComBat (λ1 = 0, λ2 = 10−9)
corrected (bottom) results. (Un)Corrected microarray data are colored by batches (top), Zero-Hops (middle), and microbial strain (bottom). Color scales do not reflect proximity of the
relevant batches or Zero-Hops.

following data harmonization with reComBat. The ground truth results229

in terms of Zero-Hop clusters were qualitatively well reproduced by230

reComBat. Quantitative results in terms of LDA score difference to ground231

truth (see supplement E for Shannon entropy, Gini impurity and cluster232

purity) are shown in Figure 2A as a function of different data generation233

hyperparameters for the investigated correction methods. We observe that234

reComBat and scGen outperform Harmony and simple correction (PC or235

marker gene elimination, standardization). Notably, if scGen is trained236

with Zero-Hop labels its performance is greatly improved, however, also237

prone to overfitting (positive LDA score differences). We only observe238

degradation of reComBat performance for smaller data-sets of 100 samples239

(given 10 Zero-Hops). Run time was generally very quick and favorable240

for reComBat compared to Harmony, or scGen (trained on GPU).241

3.5 Experimental benchmarking of reComBat242

We show quantitatively and qualitatively that reComBat is successful in243

removing substantial batch-effects while retaining biologically meaningful244

signal in real-world data, too. Figure 1 C,D gives an overview of the245

uncorrected and reComBat corrected microarray data colored by batch,246

Zero-Hops, and microbial strain. Uncorrected data clusters by batch,247

indicating the presence of batch-effects, whereas clustering by biologically248

meaningful variation (e.g. by strain or Zero-Hop) is observed after249

correction. Additional overviews of t-SNE embeddings of batch-corrected250

expression data for all baseline models and data, colored by all design251

matrix elements are provided in supplement F.252

We compared our baselines to the best performing reComBat model253

based on all evaluation metrics (supplement C) in Figure 2B. In terms254

of gauging the metrics themselves for the ability to detect batch-effects,255

we conclude that classifier-based metrics provide the clearest overview.256

Shannon entropy can detect a larger spread in batch vs. Zero-Hop entropy,257

however, the findings may strongly vary by the specific subset. It can258

also be argued that entropy strongly depends on the choice of the number259

of nearest neighbors. Likewise, the median pairwise distance and DRS260

metrics show some ability to detect batch-correction, but due to the261

strong dependency on the individual Zero-Hop the spread in values262

may be large. The minimum separation clustering clearly shows when263

a batch-correction can be considered effective. However, due to repeated264

clustering, calculation of minimum separation number is computationally265

far more expensive than distance-based metrics. A good mid-point between266

classifier- and cluster-based evaluation are cluster-purity measures, which267

show good resolution and manageable dependency on the Zero-Hop.268

Data standardization, and marker gene elimination only had a269

minor, insignificant (all Mann-Whitney U-Test p-values > 0.05)270

effect when compared to the raw data, independent of the underlying271

metric and data-set. Despite, markedly different results compared to272

the uncorrected baseline, Harmony could not achieve sufficient batch-273

correction characterized by poor performance in classifier and cluster-274

based metrics throughout. We suggest that the large number of design275

matrix elements and comparably strong batch-effect could lead to this276

result. Importantly, reComBat achieved good scores throughout all277

evaluation metrics for all data-sets (bulkRNAsq given in supplement),278

whereas performance of other correction methods such as PC elimination,279

scGen, and ComBat varied depending on data and metric. As expected,280

singularity of the design matrix led to poor performance of ComBat281

(microarray data), whereas bulkRNAsq data with a non-singular design282
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Fig. 2. A) Overview over results based on different simulated data-sets scored in terms of LDA score difference to ground truth for batch and Zero-Hops. Results represent mean values
and standard deviations over 10 independent repeats. B) Evaluation metrics scoring the impact of batch-effects by evaluating the variety of different batches and/or Zero-Hops of the
(un-) corrected microarray dataset. Box plots represent the lower and upper quartiles (box) together with the median (central dents) and full range (whiskers) over all samples, clusters, or
Zero-Hops depending on the relevant metric. LDA scores and LR classification performance are reported over ten cross validation folds.

matrix achieved the best results for this method. For scGen it was key to283

provide information on Zero-Hops as labels to the algorithm (scGen(Zero-284

Hop)), whereas simply relying on design matrix covariates led to poor285

correction.286

3.5.1 Characterization of the harmonized microarray data-set287

In order to preclude overcorrection (Zindler et al., 2020) in the absence288

of ground truth, we demonstrate that biologically meaningful expression289

profiles are retained after batch-correction. As representative examples290

we analyzed data subsets by oxygenation status, culture medium richness,291

growth phase, or clinical vs. laboratory PA strains in our microarray292

data-set (supplement G). We identify Zero-Hop marker genes driving293

the differences between selected pairwise comparisons and assess their294

relevance to underlying biological pathways. Pathways previously known295

to be important in the relevant culture conditions were identified. For296

instance, when comparing standard to hypoxic conditions, we find that297

genes involved in aerotaxis (Hong et al., 2004), Fe-S cluster biogenesis298

(Romsang et al., 2015) and iron acquisition ((Glanville et al., 2021;299

Hannauer et al., 2012) are major drivers of differences. When comparing300

cultures in exponential to stationary phase under hypoxia conditions,301

genes involved in pyoverdin (Drake et al., 2007; Vandenende et al., 2004)302

and pyochelin (Ankenbauer and Quan, 1994; Reimmann et al., 2001)303

biosynthesis and transport, iron starvation (Alontaga et al., 2009; Hassett304

et al., 1997; Zhao and Poole, 2000) and quorum sensing (Kim et al., 2012)305

were relevant. Finally, for a comparison between the laboratory strain306

PAO1 vs. clinical isolates we find cup genes (PA4081-PA4084, PA0994)307

that are involved in motility and attachment and with this in biofilm308

formation (Ruer et al., 2007). This indicates a difference in attachment309

between those strains that might be coming form the environment the310

strains have adapted to grow in (laboratory vs. patient). In all cases, a large311

amount of hypothetical genes of unknown function also flagged up - an312

expected observation as roughly two thirds of the genes encoded in the PA313

genome have an unknown function. The harmonized data-set hence serves314

for hypothesis generation motivating further (experimental) validation.315
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4 Discussion316

Public databases play an increasingly important role for data-driven meta-317

analysis in computational biology. Despite great efforts to harmonize data318

collection, considerable, yet unavoidable, biological/technical variation319

may mask true signal if data are pooled from several sources. To draw320

generalizable conclusions from agglomerated data, it is essential to correct321

such batch-effects in a setting where overlapping samples, or standardized322

controls, are unavailable. When large numbers of (> 20) batches coincide323

with desired biological variation, a range of standard batch-correction324

algorithms are inapplicable. We would like to stress that this evaluation325

scenario greatly differs from previously analyzed batch-correction settings326

where comparably few (2-5) batches with large number of overlapping327

samples were included, or comparably small batch-effects within a single328

study were corrected (Tran et al., 2020). A key assumption of meta-329

analysis of published data is the coincidence of "batch" with "study".330

Given the substantial manual data curation to extract relevant design matrix331

information for experimental data the variety of data types (microarray,332

bulkRNAsq) and organisms (PA) assessed in addition to simulated data333

was limited. reComBat is a simple yet effective, means of mitigating334

highly correlated experimental conditions through regularization and we335

compared various elastic net regularization strengths for the purpose of336

meta analysis based on large-scale public data. We note that given the337

large number of batch-correction methods available, we only included338

representative examples for key concepts, including deep, non-linear339

models (scGen), Harmony, marker gene and PC elimination to benchmark340

our linear empirical Bayes method.341

In case of a singular design matrix reComBat outperformed standard342

approaches, including data standardization, PC and marker gene343

elimination, Harmony, and scGen if no additional information regarding344

the evaluation endpoints (here Zero-Hops) was given to either of the345

methods. We demonstrate not only the superiority of reComBat compared346

to these baselines but, by providing a large variety of evaluation metrics,347

also give a notion of overall performance.348

Importantly, in any large-scale meta-analysis setting, a ground truth349

is unavailable. Here, biological validation is essential prior to hypothesis350

generation and we demonstrate this for reComBat. Due to this fact we351

excluded some popular deep models (e.g. normAE(Rong et al., 2020),352

AD-AE (Dincer et al., 2020)) from this study as they only provide a353

latent representation rather than direct correction at gene expression level.354

These methods would likely provide good batch-correction, however,355

downstream analysis via e.g. differential gene expression is impossible.356

There is also growing concern that batch-correction, particularly deep357

models, may overcorrect and remove biological signal. Although synthetic358

data addresses this challenge, algorithm performance varies between use-359

cases and the risk of overcorrection persists. We demonstrate this based360

on scGen(Zero-Hop) in our benchmark. Both scGen and Harmony (in361

the published python packages) do not allow for a separation of batch-362

correction training and validation to test for overfitting by cross-validation363

- reComBat indeed could be used in a cross-validation setting. Notably,364

in case of e.g.large-scale single cell RNA sequencing, the situation may365

in fact be favorable for nonlinear approaches - which is not the setting of366

interest here.367

It was possible to show that reComBat retained biologically meaningful368

target pathways identified in a literature-based validation. By mining369

the harmonized data-set, we can now perform comparisons that have,370

to the best of our knowledge, never been directly performed before for371

the purpose of hypothesis generation. For instance, when we compare372

growth in LB with growth in media that have fewer nutrients, we find373

that several nutrient (Bains et al., 2012; Ball et al., 2002; Faure et al.,374

2014; Jones et al., 2021; Lewenza et al., 2011; Quesada et al., 2016) and375

metal (Alontaga et al., 2009; Merriman et al., 1995) uptake pathways are376

deferentially regulated. Experimental validation of the proposed findings377

is key in confirming information on the underlying biological mechanisms.378

With >5000 citations ComBat is one of the most popular batch-379

correction methods today applied to a large variety of data types and380

organisms (Wachinger et al., 2021). In this study we showed how an381

adaptation of this popular algorithm can drastically increase its usability.382

ComBat benefits from low computational cost, rigorous underlying theory,383

interpretability, and is easy to apply in practice. We specifically want to384

recommend reComBat in a setting of comparably strong batch-effects and385

diverse experimental designs as are frequently observed within publicly386

sourced data from different laboratories. We acknowledge the small387

methodological differences between ComBat and reComBat but stress the388

importance of this adaptation to make a well-established method suitable389

for large-scale public data integration. By publishing reComBat as a python390

package1 our method is readily available to the community. We also make391

the harmonized data-sets with their metadata available to the wider research392

community.2393

5 Conclusion394

We have addressed the challenge of harmonizing large, and highly diverse395

public data for downstream meta-analysis. Aiming at high community396

acceptance and a computationally efficient solution, we extend the well-397

established ComBat algorithm through the addition of regularization. We398

evaluate our novel algorithm on simulated, and public microarray and399

bulkRNAsq data. A variety of evaluation metrics attest comparable, or400

superior correction of batch-effects as established baseline models. Our401

analysis constitutes a proof of principle to motivate and enable further402

large-scale meta-analyses.403
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