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ABSTRACT  
  Equilibrium fluctuations and triggered conformational changes often underlie the 
functional cycles of membrane proteins. For example, transporters mediate the passage of 
molecules across cell membranes by alternating between inward-facing (IF) and outward-facing 
(OF) states, while receptors undergo intracellular structural rearrangements that initiate signaling 
cascades. Although the conformational plasticity of these proteins has historically posed a 
challenge for traditional de novo protein structure prediction pipelines, the recent success of 
AlphaFold2 (AF2) in CASP14 culminated in the modeling of a transporter in multiple 
conformations to high accuracy. Given that AF2 was designed to predict static structures of 
proteins, it remains unclear if this result represents an underexplored capability to accurately 
predict multiple conformations and/or structural heterogeneity. Here, we present an approach to 
drive AF2 to sample alternative conformations of topologically diverse transporters and G-protein 
coupled receptors (GPCRs) that are absent from the AF2 training set. Whereas models generated 
using the default AF2 pipeline are conformationally homogeneous and nearly identical to one 
another, reducing the depth of the input multiple sequence alignments (MSAs) led to the generation 
of accurate models in multiple conformations. In our benchmark, these conformations were 
observed to span the range between two experimental structures of interest, suggesting that our 
protocol allows sampling of the conformational landscape at the energy minimum. Nevertheless, 
our results also highlight the need for the next generation of deep learning algorithms to be 
designed to predict ensembles of biophysically relevant states. 
 
INTRODUCTION 
 Dynamic interconversion between multiple conformations  drive the functions of integral 
membrane proteins in all domains of life1–4. For example, the vectorial translocation of substrates 
by transporters is mediated by movements that open and close extracellular and intracellular 
gates5,6. For GPCRs, ligand binding on the extracellular side triggers structural rearrangements on 
the intracellular side that initiate downstream signaling7,8. Traditional computational prediction 
pipelines reliant on inter-residue distance restraints calculated from deep MSAs have historically 
struggled to accurately predict the structures of these proteins and their movements. The resultant 
models are unnaturally compact and frequently distorted, preventing critical questions about ligand 
and/or drug binding modes from being addressed9,10. 
 A performance breakthrough was unveiled during CASP14 by AF211–15, which achieved 
remarkably accurate de novo structure prediction. Upon examining the list of CASP14 targets and 
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corresponding models, we found that AF2 modeled the multidrug transporter LmrP (target T1024) 
in multiple conformations, each of which was individually consistent with published experimental 
data16–20. This exciting observation stimulated the question of whether such performance can be 
duplicated for other membrane proteins. At its essence, this question centers on whether AF2 can 
sample the conformational landscape in the minimum energy basin. Here, we investigate this 
question using a benchmark set of topologically diverse transporters and GPCRs. Our results 
demonstrate that reducing the depth of the input MSAs is conducive to the generation of accurate 
models in multiple conformations by AF2, suggesting that the algorithm's outstanding predictive 
performance can be extended to sample alternative structures of the same target. For most proteins 
considered, we report a striking correlation between the breadth of structures predicted by AF2 
and the ground truth as observed by cryo-EM and/or X-ray crystallography. Finally, we propose a 
modeling pipeline for researchers interested in obtaining two distinct conformations of a 
membrane protein and apply it to the structurally unknown GPR114/AGRG5 adhesion GPCR as 
an example. 
 
RESULTS AND DISCUSSION  
 By necessity, this study is restricted to proteins whose structures 1) are determined at 
atomic resolution in two or more conformations and 2) are entirely absent from the AF2 training 
set. We selected five transporters that not only met these criteria but also reflect a range of transport 
mechanisms characterized in the literature5, including rocking-bundle (Lat121,22, ZnT823), rocker-
switch (MCT124, STP1025), and elevator (ASCT226,27) mechanisms of transport (Figure S1 and 
Table S1). We also included three GPCRs,  which were distributed across classes A (CGRPR28,29), 
B1 (PTH1R30,31), and F (FZD732; to serve as points of comparison, we used the active conformation 
of FZD7 and the inactive conformation of the nearly identical FZD433). 
 
AF2 generates multiple conformations of all eight target proteins 
 The sequences of all targets were truncated to remove large soluble and/or intrinsically 
disordered regions which represent a challenge for AF2. The structures were then predicted using 
the default AF2 structure prediction pipeline in the absence of templates12. However, the resulting 
models were largely identical to one another and failed to shed light on the target protein’s 
conformational space. We therefore diversified the models generated by AF2 by disabling 
recycling, which limited the algorithm to a single pass, and by providing MSAs of varying depths 
including as few as 32 sequences (see Methods). To sample the conformational landscape more 
exhaustively, we generated fifty models of each protein for each MSA size, while eliminating 
postprocessing with OpenMM34 to reduce the pipeline's total computational cost. For the targets, 
each model's similarity to the experimental OF and IF structures was quantified using TM-score35–
37, a metric which indicates how well the two structures superimpose over one another, with scores 
ranging from 0 (arbitrarily different) to 1 (perfect overlap; Figure 1A). 
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Figure 1. Alternative conformations of transporters and GPCRs can be predicted by AF2. 
(A) Representative models of the transporter ASCT2 in IF and OF conformations. Experimental 
structures shown in colors and models shown in gray. (B) Comparison of each model with both 
experimental structures as a function of MSA depth. Each colored point represents one of fifty 
models generated for a given MSA size, with points in gray shared across all MSA sizes for 
reference. Models of all proteins except MCT1 were generated without templates. For prediction 
of MCT1 with templates, only outward-facing structures of homologs were provided. Dashed lines 
indicate the TM-score between experimental structures and are shown for reference. 
 
 Accurate models of all eight protein targets were obtained for at least one conformation, 
consistent with published performance statistics12 (Figure 1B). Whereas larger MSAs were 
observed to engender tighter clustering in specific conformations, MSAs consisting of just 32 
sequences appeared to promote the generation of alternative conformations in seven benchmark 
proteins. This diversity coincided with generation of misfolded models in several cases, 
particularly of ASCT2 and Lat1, the two largest proteins in our dataset (example model shown in 
Figure S2). Unlike the models of interest that overlapped with ground truth experimental 
structures, however, misfolded models virtually never co-clustered and could thus be easily 
identified and excluded from further analysis38. While padding MSAs with additional sequences 
had the desirable effect of decreasing the proportion of these models, it also limited the extent to 
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which alternative conformations were sampled. Thus, our results revealed a delicate balance that 
must be achieved to generate models that are both diverse and natively folded. No general pattern 
was readily apparent regarding the ideal MSA depth required to achieve this balance. 
 One target, MCT1, was exclusively modeled by AF2 in either IF or fully occluded 
conformations regardless of MSA depth. Notably, these results closely parallel those reported by 
DeepMind during their attempt to model multiple conformations of LmrP in CASP1417. We 
therefore adapted their approach by providing templates of homologs in exclusively OF 
conformations alongside MSAs of various sizes and obtained several accurate OF models only 
when shallow MSAs were provided (32 sequences). Nevertheless, OF models constituted a minor 
population in an ensemble dominated by occluded or IF models. Thus, the generation of large 
numbers of models appeared to be necessary to yield intermediate conformations of interest. 
Similar results were observed when we modeled PTH1R using either exclusively inactive or active 
templates, as well as Lat1 using either exclusively OF or IF templates (Figure S3), further 
indicating that the information content provided by the templates diminishes as the depth of the 
MSA increases. 
 Overall, these results demonstrate that highly accurate models adopting both 
conformations of all eight protein targets could be predicted with AF2 by using MSAs that are far 
shallower than the default. However, because the optimal MSA depth and choice of templates 
varied for each protein, they also argue against a one-size-fits-all approach for conformational 
sampling.  
 
Predicted conformational fluctuations correlate with implied conformational dynamics 
 To further investigate the structural heterogeneity predicted by these models, we computed 
each residue's root mean squared deviation (RMSD) between the two experimental structures, as 
well as their root mean squared fluctuation (RMSF) values among all fifty models following 
structure-based alignment (Figure 2). Correlation between these two measures were observed in 
most cases and was notable for ASCT2, Lat1, CGRPR, and MCT1 with templates (R2≥0.75). The 
exception was MCT1 without templates, which was likely due to a lack of conformational diversity 
among the sampled models. The inclusion of templates restored this correlation in MCT1 but 
contributed negligibly to those of PTH1R and Lat1 (Figure S4). The correlation demonstrates that 
predicted flexibility by AF2 is related to the protein's dynamics implied from the experimental 
structures. In contrast with a recent preprint39, the predicted flexibility values failed to correlate 
with the predicted confidence metric pLDDT40.  
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Figure 2. Correlation between residue implied movement in the experimental structures and 
its variability in AF2 models. Residues with low confidence (pLDDT≤75) were omitted from 
this plot for all proteins except PTH1R. MSA sizes of 128 sequences were used for all predictions, 
except for MCT1 with templates, which instead used 32 sequences to capture the OF conformation. 
pLDDT refers to each residue's predicted accuracy, with a value of 100 indicating maximum 
confidence. 
 
Distributions of predicted models relative to the experimental structures 
 Visual examination suggested that many of the predicted models fall "in between" the two 
experimentally determined conformations (example shown in Figure 3A). Furthermore, certain 
structural features expected to be conformationally heterogeneous, such as long loops, appeared 
to be nearly identical across these models. Both observations raised questions about the 
relationship between the diversity of the predicted models and the breadth of the conformational 
ensembles bracketed by the experimental structures. To quantitatively place the predicted 
conformational variance in the context of the ground truth structures, we used principal component 
analysis (PCA), which reduces the multidimensional space to a smaller space representative of the 
main conformational motions. In our benchmark set, the first principal component (PC1) captured 
64.9±16.1% of the structural variations among the models (Figure 3). The experimental structures 
virtually always occupied well defined extreme positions. In every case, an unexpected correlation 
was evident between each model's PC1 values and their TM-scores (Figure 3B). Indeed, the 
models with the most extreme PC1 values were also among the most accurate, and the 
experimental structure virtually always flanked the AF2 models along PC1. The exception, 
PTH1R, was determined in a partially inactive and active conformation30, suggesting that models 
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extending beyond the former state along PC1 may represent the fully inactive conformation. This 
may suggest that distinct conformers can be modeled and identified simply by selecting the 
extreme positions along PC1. 
 

 

 
Figure 3. Distinct conformations can be delineated using PCA. (A) Conformational 
heterogeneity in AF2 models of Lat1. Experimental IF and OF conformations shown in teal and 
orange, respectively, while representative AF2 models shown in white. (B) Distribution of AF2 
models across the first principal component (PC1) following PCA (gray traces). Scatter plots 
comparing each model's position along PC1 and its structural similarity to ground truth structures. 
Teal: Similarity to IF (transporters) or inactive (GPCRs) conformation. Orange: Similarity to OF 
(transporters) or active (GPCRs) conformation. Each model is shown twice, once in teal and once 
in orange. Native structures are shown as black dots. 
  
Alternative conformations cannot be predicted for proteins with structures in the training set 
 A necessary follow-up question centers on whether this strategy can yield similar results 
for proteins with one conformation present in the AF2 training set. We investigated this question 
using four membrane proteins with two experimentally determined conformations, at least one of 
which was included in the AF2 training set: the class A GPCR CCR541,42, the serotonin transporter 
SERT43,44, the multidrug transporter PfMATE45,46, and the lipid flippase MurJ47,48 (Table S2). Using 
the template-free prediction pipeline outlined above, we then monitored the resultant models' 
similarity to the structures included in and absent from the training set. Unlike the results presented 
above, virtually every transporter model superimposed nearly perfectly with the training set 
conformation, and none resembled the alternative conformation (Figure S5). The conformational 
diversity of these models, including those generated using shallow MSAs, was far more limited 
than what was observed for the five proteins discussed above. Indeed, observed conformational 
diversity was limited to a handful of occluded models of MurJ and PfMATE but none of the models 
observed adopted the alternative conformer. By contrast, while models of CCR5 were less biased 
toward the training set conformation, deep MSAs reduced conformational diversity. This 
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divergence in performance may stem from the composition of the AF2 training set, which featured 
the structures of many active GPCRs but no structures, for example, of inward-facing MATEs49.  
 
Concluding remarks: proposed workflow and future directions  
 Our results indicate that the state-of-the-art de novo structural modeling algorithm AF2 can 
be manipulated to accurately model alternative conformations of transporters and GPCRs whose 
structures were not provided during training. The use of shallow MSAs was instrumental to 
obtaining structurally diverse models, and in one case (MCT1) accurate modeling of alternative 
conformations also required the manual curation of template models. Thus, there is no one-size-
fits-all approach for sampling conformational space with high accuracy. Indeed, whereas the 
DeepMind team reportedly required templates to obtain models of LmrP in an OF conformation17, 
we found that this procedure was usually unnecessary. Accurate representatives of distinct 
conformers were generally obtainable with exhaustive sampling and could be identified by 
performing PCA and selecting models at or near the extreme positions of PC1. Nevertheless, 
prediction pipelines will likely require fine-tuning specific to each target of interest followed by 
experimental verification of proposed conformers. Moreover, this approach does not appear to 
extend to proteins whose structures were provided during training, hinting at the possibility that 
traditional methods may still be required to capture alternative conformers50,51. 
 As a final verification of this proposed pipeline, we tested it on GPR114/AGRG5, a class 
B2 adhesion GPCR whose structure has not been experimentally determined. The structural model 
deposited in the AF2 database, which likely depicts an active conformation that diverges from the 
structure of the homolog GPR9752, could be recapitulated by using deep MSAs. The use of shallow 
MSAs (≤64 sequences), by contrast, yielded a range of intermediate conformations distributed 
across three well-separated clusters (Figure S6). One of these clusters, shown in pink in Figure 
S6B, contains models with an orientation of TM6 and TM7 that fully occludes the orthosteric site 
and partially blocks the cytosolic pocket where G-proteins putatively bind.  
 While these results reinforce the notion that AF2 can provide models to guide biophysical 
studies of conformationally heterogeneous membrane proteins, they represent a methodological 
"hack", rather than an explicit objective built into the algorithm's architecture. Several preprints 
have provided evidence that AF2, despite its accuracy, likely does not learn the energy landscapes 
underpinning protein folding and function39,53,54. We believe that our results bolster these findings 
and highlight the need for further development of artificial intelligence methods capable of 
learning the conformational flexibility intrinsic to protein structures. 
 
METHODS 
 
 Prediction runs were executed using AlphaFold v2.0.1 and a modified version of 
ColabFold55 that is available for download at www.github.com/delalamo/af2_conformations. 
MSAs were obtained using the MMSeqs2 server56,57, and specific MSA sizes were used by 
modifying the "max_msa_clusters" and "max_extra_msa" parameters prior to execution. 
Throughout this manuscript, the latter corresponds to the depth of the MSA, and 
"max_msa_clusters" was set to either 16 (when using MSAs with 32 sequences), 64 (128 
sequences), or 512 (5120 sequences). When templates were used to model MCT1, they were 
chosen by manual inspection, and the parameter "subsample_templates" was set to True. All 
structure-based alignments and TM-score calculations were carried out using TM-align37. Principal 
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component analysis was carried out using CPPTRAJ58. Figures were made with ChimeraX59 and 
ggplot260. 
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Figure S1. Structures of benchmark proteins used in this study. Top: Transporters. Bottom: 
GPCRs.  
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Figure S2. Example of a misfolded model of Lat1 generated using shallow MSAs. The 
experimental structure in an OF conformation is shown on the right. Regions that overlap are 
shown in white for clarity. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.22.469536doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure S3. Templates contribute to conformational sampling only when shallow MSAs are 
provided. (A) PTH1R. (B) Lat1.  
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Figure S4. Comparison between each residue’s RMSD in the two experimental structures 
of PTH1R and Lat1 and their RMSF values among AF2 models generated with templates. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.22.469536doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

 
Figure S5. Protein targets with one conformation in the training set cannot be predicted in 
the alternative conformation. 
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Figure S6. Example predictions of the adhesion GPCR GPR114/AGRG5. Top: Kernel 
density estimate of the first principal component (PC1) following PCA on all AF2 models. 
Bottom: Comparison of PC1 and TM-score values; alignments were measured from the AF2 
database model, which is indicated by the green dot. Right: Models extracted from the cluster 
centers appear to adopt three distinct conformations. 
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Table S1. Protein targets used in this study that were absent from the AF2 training set. 
Protein Organism Outward-facing/active Inward-facing/inactive 
CGRP Homo sapiens 6UVA28 7KNT29 
FZD7/FZD4 Homo sapiens 7EVW32 6BD433 
PTH1R Homo sapiens 6NBF31 6FJ330 
ASCT2 Homo sapiens 7BCQ26 6RVX27 
Lat1 Homo sapiens 7DSQ22 6IRS21 
MCT1 Homo sapiens 7CKR24 7DA524 
STP10 Arabidopsis 

thaliana 
7AAQ25 7AAR25 

ZnT8 Homo sapiens 6XPF (chain A)23 6XPF (chain B)23 
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Table S2. Protein targets used in this study with one conformation present in the AF2 
training set. 
Protein Organism Training set PDB Alternative PDB 
CCR5 Homo sapiens 5UIW41 7F1Q42 
MurJ Escherichia coli 5T7748 6NC947 
PfMATE Pyrococcus furiosus 3VVN45 6FHZ46 
SERT Homo sapiens 5I6X43 6DZZ44 
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