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ABSTRACT 23 

Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour 24 

vasculature and has the potential to assess prognosis and therapeutic response. Currently, 25 

evaluating vasculature using mesoscopic PAI involves visual or semi-quantitative 2D 26 

measurements, which fail to capture 3D vessel network complexity, and lack robust ground 27 

truths for assessment of segmentation accuracy. Here, we developed an in silico, phantom, 28 

in vivo, and ex vivo-validated end-to-end framework to quantify 3D vascular networks captured 29 

using mesoscopic PAI. We applied our framework to evaluate the capacity of rule-based and 30 

machine learning-based segmentation methods, with or without vesselness image filtering, to 31 

preserve blood volume and network structure by employing topological data analysis. We first 32 

assessed segmentation performance against ground truth data of in silico synthetic 33 

vasculatures and a photoacoustic string phantom. Our results indicate that learning-based 34 

segmentation best preserves vessel diameter and blood volume at depth, while rule-based 35 

segmentation with vesselness image filtering accurately preserved network structure in 36 

superficial vessels. Next, we applied our framework to breast cancer patient-derived 37 

xenografts (PDXs), with corresponding ex vivo immunohistochemistry. We demonstrated that 38 

the above segmentation methods can reliably delineate the vasculature of 2 breast PDX 39 

models from mesoscopic PA images. Our results underscore the importance of evaluating the 40 

choice of segmentation method when applying mesoscopic PAI as a tool to evaluate vascular 41 

networks in vivo. 42 
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INTRODUCTION 44 

Tumour blood vessel networks are often chaotic and immature (Brown et al., 2019; 45 

Corliss et al., 2019; Hanahan & Weinberg, 2011; Krishna Priya et al., 2016; Nagy & Dvorak, 46 

2012), with inadequate oxygen perfusion and therapeutic delivery (Michiels et al., 2016; 47 

Trédan et al., 2007). The association of tumour vascular phenotypes with poor prognosis 48 

across many solid cancers (Brown et al., 2019) has generated substantial interest in non-49 

invasive imaging of the structure and function of tumour vasculature, particularly longitudinally 50 

during tumour development. Imaging methods that have been tested to visualise the 51 

vasculature include whole-body macroscopic methods, such as computed tomography and 52 

magnetic resonance imaging, as well as localised methods, such as ultrasound and 53 

photoacoustic imaging (PAI) (Brown et al., 2019). Microscopy methods can achieve much 54 

higher spatial resolution but are typically depth limited, at up to ~1mm depth, and frequently 55 

applied ex vivo (Brown et al., 2019; Jährling et al., 2009; Kelch et al., 2015; Keller & Dodt, 56 

2012; Ntziachristos, 2010).  57 

Of the available tumour vascular imaging methods, PAI is highly scalable and, as such, 58 

applicable for studies from microscopic to macroscopic regimes. By measuring ultrasound 59 

waves emitted from endogenous molecules, including haemoglobin, following the absorption 60 

of light, PAI can reconstruct images of vasculature at depths beyond the optical diffraction limit 61 

of ~1 mm (Beard, 2011; Ntziachristos, 2010; Ntziachristos et al., 2005; Wang & Yao, 2016). 62 

State-of-the-art mesoscopic systems now bridge the gap between macroscopy and 63 

microscopy, achieving ~20 μm resolution at up to 3 mm in depth (Omar et al., 2014, 2019). 64 

Preclinically, mesoscopic PAI has been used to monitor the development of vasculature in 65 

several tumour xenograft models (Haedicke et al., 2020; Omar et al., 2015; Orlova et al., 2019) 66 

and can differentiate aggressive from slow-growing vascular phenotypes (Orlova et al., 2019). 67 

Studies to-date, however, have been largely restricted to qualitative analyses due to the 68 

challenges of accurate 3D vessel segmentation, quantification and robust statistical analyses 69 

(Haedicke et al., 2020; Imai et al., 2017; Omar et al., 2015, 2019; Orlova et al., 2019; Rebling 70 
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et al., 2021). Instead, PAI quantification is typically manual and ad-hoc, with 2D measurements 71 

often extracted from 3D PAI data (Haedicke et al., 2020; Imai et al., 2017; Lao et al., 2008; 72 

Orlova et al., 2019; Soetikno et al., 2012), reducing repeatability and comparability across 73 

datasets.  74 

To assess the performance and accuracy of such vessel analyses, ground truth 75 

datasets are needed with a priori known features (Krig & Krig, 2014). Creating full-network 76 

ground truth reference annotations could be achieved through comprehensive manual 77 

labelling of PAI data, but this is difficult due to: the lack of available experts to perform 78 

annotation with a new imaging modality; the time taken to label images; and the inherent noise 79 

and artefacts present in PAI data. Despite the numerous software packages available to 80 

analyse vascular networks (Corliss et al., 2019), their performance in mesoscopic PAI has yet 81 

to be evaluated, hence there is an unmet need to improve the quantification of vessel networks 82 

in PAI, particularly given the increasing application of PAI in the study of tumour biology 83 

(Haedicke et al., 2020; Omar et al., 2019; Orlova et al., 2019). 84 

To quantify PAI vascular images and generate further insights into the role of vessel 85 

networks in tumour development and therapy response, accurate segmentation of the vessels 86 

must be performed (Corliss et al., 2019) (see step 1 in Figure 1). A plethora of segmentation 87 

methods exist and can be broadly split into two categories: rule-based and machine learning-88 

based methods. Rule-based segmentation methods encompass techniques that automatically 89 

delineate the vessels from the background based on a custom set of rules (F. Zhao et al., 90 

2019). These methods provide less flexibility and tend to consider only a few features of the 91 

image, such as voxel intensity (Haedicke et al., 2020; Orlova et al., 2019; Raumonen & 92 

Tarvainen, 2018; Soetikno et al., 2012) but they are easy-to-use, with no training dataset 93 

requirements. On the other hand, machine learning-based methods, such as random forest 94 

classifiers, delineate vessels based on self-learned features (Moccia et al., 2018; F. Zhao et 95 

al., 2019). Nonetheless, learning-based methods are data-driven, requiring large and high-96 

quality annotated datasets for training and can have limited applicability to new datasets. To 97 
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tackle some of these issues, several software packages have been developed in recent years, 98 

and have become increasingly popular in life science research (Berg et al., 2019; Corliss et 99 

al., 2019; Sommer et al., 2011). Prior to segmentation, denoising and feature enhancement 100 

methods, such as Hessian-matrix based filtering, can also be applied to overcome the 101 

negative impact of noise and/or to enhance certain vessel structures within an image (Oruganti 102 

et al., 2013; Ul Haq et al., 2016; H. Zhao et al., 2019).  103 

 Here, we establish ground truth PAI data based on simulations conducted using 104 

synthetic vascular architectures generated in silico and, also using a photoacoustic string 105 

phantom, composed of a series of synthetic blood vessels (strings) of known structure, which 106 

can be imaged in real-time. Against these ground truths, we compare and validate the 107 

performance of two common vessel segmentation methods, with or without the application of 108 

3D Hessian matrix-based vesselness image filtering feature enhancement of blood vessels 109 

(steps 2 & 3 in Figure 1). Following skeletonisation of the segmentation masks, we perform 110 

statistical and topological analyses to establish how segmentation influences the architectural 111 

characteristics of a vascular network acquired using PAI (steps 4 & 5 in Figure 1). Finally, we 112 

apply our segmentation and analysis pipeline to two in vivo breast cancer models and 113 

undertake a biological validation of the segmentation and subsequent statistical and 114 

topological descriptors using ex vivo immunohistochemistry (IHC). Compared to a rule-based 115 

auto-thresholding method, our findings indicate that a learning-based segmentation, via a 116 

random forest classifier, is better able to account for the artefacts observed in our 3D 117 

mesoscopic PAI datasets, providing a more accurate segmentation of vascular networks. 118 

Statistical and topological descriptors of vascular structure are influenced by the chosen 119 

segmentation method, highlighting a need to validate and standardise segmentation methods 120 

in PAI for increased reproducibility and repeatability of mesoscopic PAI in biomedical 121 

applications.  122 
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 124 

Figure 1. The mesoscopic photoacoustic image analysis pipeline. 1) Images are acquired 125 

and reconstructed at a resolution of 20 x 20 x 4 μm3 (PDX tumour example shown with axial 126 

and lateral maximum intensity projections – MIPs). 2) Image volumes are pre-processed to 127 

remove noise and homogenise the background signal (high-pass and Wiener filtering followed 128 

by slice-wise background correction). Vesselness image filtering (VF) is an optional and 129 

additional feature enhancement method. 3) Regions of interest (ROIs) are extracted and 130 

segmentation is performed on standard and VF images using auto-thresholding (AT or AT + 131 

VF, respectively) or random forest-based segmentation with ilastik (RF or RF + VF, 132 

respectively). 4) Each segmented image volume is skeletonised (skeletons with diameter and 133 

length distributions shown for RF and RF + VF, respectively). 5) Statistical and topological 134 

analyses are performed on each skeleton to quantity vascular structures for a set of vascular 135 

descriptors. All images in steps 2-4 are shown as x-y MIPs. 136 
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RESULTS 138 

In silico simulations of synthetic vasculature enable segmentation precision to be 139 

evaluated against a known ground truth 140 

 Our ground truth consisted of a reference dataset of synthetic vascular network binary 141 

masks (n=30) generated from a Lindenmayer System, referred to as L-nets (Figure 2; 142 

Supplementary Movie 1 for 3D visualisation). We simulated PAI mesoscopy data from these 143 

L-nets (Figure 2A) and subsequently used vesselness filtering (VF) as an optional and 144 

additional feature enhancement method (Figure 2B). The four segmentation pipelines 145 

selected for testing (Figure 1) were applied to the simulated PAI data (Figure 2C), that is, all 146 

images were segmented with: 147 

1.  Auto-thresholding using a moment preserving method (AT); 148 

2.  Auto-thresholding using a moment preserving method with vesselness filtering pre-149 

segmentation (AT+VF); 150 

3.  Random forest classifier (RF); 151 

4.  Random forest classifier with vesselness filtering pre-segmentation (RF+VF). 152 

Visually, RF methods appear to segment a larger portion of synthetic blood vessels (Figure 153 

2C) and they are particularly good at segmenting vessels at depths furthest from the simulated 154 

light source (Figure 2D). A key image quality metric in the context of segmentation is the 155 

signal-to-noise (SNR), which is degraded at greater depth (Figure 3A). To evaluate the 156 

relative performance of the methods, we compared the segmented and skeletonised blood 157 

volumes (BV) from the simulated PAI data to the known ground truth from the L-net. Here, we 158 

found that the learning-based RF segmentation outperformed the others in making the 159 

segmentation masks, with significantly higher R2 (segmented BV: AT: 0.68, AT+VF: 0.58, RF: 160 

0.84, RF+VF: 0.89, Figure 3B skeleton BV: AT: 0.59, AT+VF: 0.73, RF: 0.90, RF+VF: 0.93, 161 

Figure 3C) and lower mean-squared error (MSE) (Figure 3D), with respect to the ground truth 162 

L-net volumes, compared to both AT methods (p<0.0001 for all comparisons). Bland-Altman 163 
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plots, which we used to illustrate the level of agreement between segmented and ground truth 164 

vascular volumes, showed a mean difference compared to the reference volume of 0.61 mm3 165 

(limits of agreement, LOA -0.48 to 1.7 mm3, Figure 3E) and F1 score of 0.73 ± 0.11 (0.49-166 

0.88) for RF segmentation, albeit with a wide variation indicated by the LOA. RT+VF 167 

segmentation resulted in a similar mean difference 0.74 mm3 (LOA -0.50 to 2.0 mm3, Figure 168 

3F) and F1 score of 0.66 ± 0.11 (0.44-0.84). In comparison, the rule-based AT segmentation 169 

showed poor performance in segmenting vessels at depth (Figure 2C, Supplementary Movie 170 

1), yielding a mean difference of 1.1 mm3 (LOA -0.60 to 2.8 mm3) and as with RT+VF, AT+VF 171 

did not improve the result, yielding the same mean difference of 1.1 mm3 (LOA -0.52 to 2.8 172 

mm3) (Figure 3G,H). F1 scores were poor for both AT methods, with 0.39 ± 0.10 (0.21-0.59) 173 

for AT and 0.37 ± 0.09 (0.16-0.52) for AT+VF.  174 

In all cases, the mean difference shown in Bland-Altman plots increased with ground 175 

truth vascular volume, especially in the rule-based AT segmentation, which would be expected 176 

due to the restricted illumination geometry of photoacoustic mesoscopy. Since more vessel 177 

structures lie at a greater distance from the simulated light source in larger L-nets, they suffer 178 

from the depth-dependent decrease in SNR (Figure 3A). RF segmentation was better able to 179 

cope with the SNR degradation, particularly at distances beyond ~1.5 mm, compared to the 180 

AT segmentation, which consistently underestimated the vascular volume.  181 

Next, we skeletonised each segmentation mask to enable us to perform statistical and 182 

topological data analysis (TDA) to test how each segmentation method quantitatively 183 

influences a core set of vessel network descriptors (Stolz et al., 2020). These descriptors 184 

allowed us to evaluate the performance of the different segmentation methods in respect of 185 

the biological characterisation of the tumour networks. We used the following statistical 186 

descriptors: vessel diameters and lengths, vessel tortuosity (sum-of-angles measure, SOAM) 187 

and vessel curvature (chord-to-length ratio, CLR). Our topological network descriptors are 188 

connected components (Betti number β0) and looping structures (1D holes, Betti number β1) 189 

(see Supplementary Table 1 for descriptor descriptions).  190 
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Here, the accuracy and strength of relationship between the segmented and ground 191 

truth vascular descriptors, calculated by MSE (see Figure 3D) and R2 values (Supplementary 192 

Figure 1A-I) respectively, gave the same conclusions. Across all skeletons, we measured an 193 

increased number of connected components (β0) and changes to the number of looping 194 

structures (β1) from the simulated compared to the ground truth L-nets, resulting in low R2 and 195 

high MSE for all methods (Figure 3D). The observed changes in these topological descriptors 196 

arise due to depth-dependent SNR and PAI echo artefacts. For all other descriptors, AT+VF 197 

outperformed the other segmentation methods in its ability to accurately preserve the 198 

architecture of the L-nets, with higher R2 and lowest MSE values for vessel lengths, CLR, 199 

SOAM, number of edges and number of nodes (Figure 3D).  200 

Vessel diameters are accurately preserved by both RF segmentation methods, 201 

supporting our observation that these methods perform accurate vascular volume 202 

segmentation. We note that the number of edges and nodes are also well preserved by RF 203 

and RF+VF. This further supports the high accuracy of both RF methods to segment vascular 204 

structures.  205 

 206 

 207 

 208 

 209 

 210 

 211 
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 213 

Figure 2. Exemplar vascular architectures generated in silico and processed through 214 

our photoacoustic image analysis pipeline. (A-C) XY maximum intensity projections of L-215 

net vasculature. (A) Ground truth L-Net binary mask used to simulate raster-scanning 216 

optoacoustic mesoscopy (RSOM) image shown in (B, top) and subsequent optional 217 

vesselness filterining (VF) (B, bottom). (C) Segmented binary masks generated using either 218 

auto-thresholding (AT), auto-thresholding after vesselness filtering (AT + VF), random forest 219 

classification (RF); or random forest classification after vesselness filtering (RF+VF). (D) 220 

Segmented blood volume (BV) average across L-net image volumes, plotted against image 221 

volume depth (mm). For (D) n=30 L-nets. See Supplementary Movie 1 for 3D visualisation. 222 

 223 
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 224 

Figure 3. Learning-based random forest classifier outperforms rule-based auto-225 

thresholding in segmenting simulated PAI vascular networks. (A) Depth-wise comparison 226 

of signal-to-noise ratio (SNR) measured in PAI-simulated L-nets across depth. (B,C) A 227 

comparison between ground truth blood volume (BV) and (B) segmented or (C) skeletonised 228 

blood volumes (BV). The dashed line indicates a 1:1 relationship. (D) Heat map displaying 229 

normalised (with respect to the maximum of each individual descriptor) mean-squared error 230 

comparing our vascular descriptors, calculated from segmented and skeletonised L-nets 231 

compared to ground truth L-nets, to each segmentation method. Abbreviations defined: 232 

connected components, β0 (CC), chord-to-length ratio (CLR), sum-of-angle measure (SOAM). 233 

(E-H) Bland-Altman plots comparing blood volume measurements from ground truth L-nets 234 

with that of each segmentation method: (E) RF, (F) RF+VF, (G) AT, (H) AT+VF. Pink lines 235 

indicate mean difference to ground truth, whilst dotted black lines indicate limits of agreement 236 

(LOA). For all subfigures n=30 L-nets.  237 
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Random forest classifier accurately segments a string phantom 239 

We next designed a phantom test object (Supplementary Figure 2) to further 240 

compare the performance of our segmentation pipelines in a ground truth scenario. Agar 241 

phantom images (n=7) were acquired using a photoacoustic mesoscopy system and 242 

contained three strings of the same known diameter (126 μm), length (~8.4 mm) and 243 

consequently volume (104.74 μm3), positioned at 3 different depths, 0.5 mm, 1 mm, and 2 244 

mm, respectively (Figure 4A,B; Supplementary Movie 2). Consistent with our in silico 245 

experiments, the accuracy of skeletonised string volumes decreased as a function of depth 246 

across all methods (Figure 4C), due to the decreased SNR with depth (Figure 4D). 247 

Interestingly, the significance of this decrease was very high for all comparisons (top vs. 248 

middle, top vs. bottom and middle vs. bottom) in both AT methods (all p<0.001), but we 249 

observed an improvement in string volume predictions across depth for both RF methods, 250 

such that middle vs. bottom string volumes were not significantly different in RF+VF (p=0.42).  251 

The illumination geometry of the photoacoustic mesoscopy system means that vessels 252 

or strings are underrepresented when detected as the illumination source is located at the top 253 

surface of the tissue or phantom (Figure 4E). As a result, all string volumes computed from 254 

the segmented images are inaccurate relative to ground truth suggesting that blood volume 255 

cannot be accurately predicted from segmented PA images (Figure 4F). Skeletonisation 256 

provides a more accurate prediction of vessel and string volume as it approximates the 257 

undetected section by representing these objects as axisymmetric tubes (Figure 4C,F).  258 

 259 
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 260 

Figure 4. Random forest classifier outperforms auto-thresholding in segmenting a 261 

string phantom. XY maximum intensity projections of string phantom imaged with RSOM 262 

show that random forest-based segmentation outmatches auto-thresholding when correcting 263 

for depth-dependent SNR. (A) Photoacoustic mesoscopy (RSOM) image shows measured 264 

string PA signal intensity with top (0.5 mm), middle (1 mm) and bottom (2 mm) strings labelled. 265 

(B) Binary masks are shown following segmentation using: (AT) auto-thresholding; (RF) 266 

Random forest classifier; (AT+VF) vesselness filtered strings with auto-thresholding; and 267 

(RF+VF) vesselness filtered strings with random-forest classifier. (C) Skeletonised string 268 

volume calculated from segmented images of 3 strings placed at increasing depths in an agar 269 

phantom. Results from all 4 segmentation pipelines are shown. All volume comparisons (top 270 

vs. middle, top vs. bottom, middle vs. bottom) where significant (p<0.05) except middle vs. 271 

bottom for RF+VF (p=0.42). (D) SNR decreases with increasing depth. (E) Illumination 272 

geometry: known cross-section of string outlined (left); during measurement, signal is detected 273 

from the partially illuminated section (outlined) resulting in an underestimation in string volume 274 

(right). (F) String volume calculated pixel-wise from the segmented binary mask. (C,D,F) Data 275 

represented by truncated violin plots with interquartile range (bold) and median (dotted), 276 

****=p<0.0001 (n=7 scans). (C,F) Dotted line indicates ground truth volume 0.105 mm3. See 277 

Supplementary Movie 2 for 3D visualisation. 278 
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 279 

Vesselness filtering of in vivo tumour images impacts computed blood volume  280 

Having established the performance of our AT- and RF-based segmentation methods 281 

in silico and in a string phantom, next we sought to determine the influence of the chosen 282 

method in quantifying tumour vascular networks from size-matched breast cancer patient-283 

derived xenograft (PDX) tumours of two subtypes (ER- n=6; ER+ n=8, total n=14).  284 

Visual inspection of the tumour networks subjected to our processing pipelines 285 

suggests that VF increases vessel diameters in vivo (Figure 5A-C; see Supplementary 286 

Movie 3 for 3D visualisation). This could be due to acoustic reverberations observed 287 

surrounding vessels in vivo, which VF scores with high vesselness, spreading the apparent 288 

extent of a given vessel and ultimately increased volume. Our quantitative analysis confirmed 289 

this hypothesis, where significantly higher skeletonised blood volumes were calculated in the 290 

AT+VF and RF+VF masks compared to AT and RF alone (Figure 5D).  291 
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 293 

Figure 5. Vesselness filtering increases blood volume calculations from in vivo tumour 294 

images. XY Maximum intensity projections of breast PDX tumours imaged with RSOM: (A) 295 

original image before segmentation; (B) original image with vesselness filtering (VF) applied; 296 

(C) a panel showing segmentation with each method (AT: auto-thresholding, AT+VF: auto-297 

thresholding with VF, RF: random forest classifier, and RF + VF: random forest with VF). (D) 298 

Skeletonised tumour blood volume (BV) from all 4 segmentation methods normalised to ROI 299 

volume. Statistical and topological data analyses were performed on skeletonised tumour 300 

vessel vascular networks for the following descriptors: (E) Total number of edges; (F) 301 
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Connected components normalised by network volume, β0; (G) loops normalised by network 302 

volume, β1; (H) sum-of-angle measure (SOAM); (I) vessel lengths; (J) vessel diameters; (K) 303 

chord-to-length ratio (CLR). In (D-K), data are represented by truncated violin plots with 304 

interquartile range (dotted) and median (bold). Pairwise comparisons of AT vs. AT+VF, AT vs. 305 

RF, RF vs. RF+VF and AT+VF vs. RF+VF calculated using a linear mixed effects model (*= 306 

p<0.05, **=p<0.01, ***=p<0.001,). L) Matrix of correlation coefficients for comparisons 307 

between IHC, BV and vascular descriptors for (top) AT+VF and (bottom) RF segmented 308 

networks. Pearson or spearman coefficients are used as appropriate, depending on data 309 

distribution. For (D) n=14, (E-K) n=13 due to imaging artefact in one image which will impact 310 

our vascular descriptors. For (L) comparisons involving BV n=14, all other vascular descriptors 311 

n=13. See Supplementary Movie 3 for 3D visualisation. 312 

  313 
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Network structure analyses and comparisons to ex vivo immunohistochemistry of 314 

tumour vasculature are impacted by the choice of segmentation method  315 

Next, we computed vascular descriptors for our dataset of segmented in vivo images. 316 

As expected from our initial in silico and phantom evaluations, VF led to increased vessel 317 

diameters and lengths (Figure 5E,F), as well as blood volume. Our in silico analysis indicated 318 

that AT performs poorly in differentiating vessels from noise and introduces many vessel 319 

discontinuities (Supplementary Table 1). This was exacerbated in vivo where more complex 320 

vascular networks and real noise lead to an increase in segmented blood volume (p<0.01), 321 

looping structures (Figure 5G), a greater number of edges (Figure 5H), and reduced number 322 

of connected components (Figure 5I).  323 

Our prior in silico and phantom experiments indicate that RF-based methods have a 324 

greater capacity to segment vessels at depth. Similarly, we observe more connected 325 

components for RF-based methods in vivo (Figure 5I) along with lower SOAM (Figure 5J) 326 

and higher CLR (Figure 5K), suggesting that RF-segmented vessels have reduced tortuosity 327 

and curvature compared to AT+VF segmented vessels. These in vivo findings support our 328 

observations from in silico and phantom studies where RF-based methods provide the most 329 

reliable prediction of vascular volume, whereas AT+VF best preserves architecture towards 330 

the tissue surface.  331 

Next, we sought to assess how our vascular metrics correlated with the following ex 332 

vivo IHC descriptors: CD31 staining area (to mark vessels), ASMA vessel coverage (as a 333 

marker of pericyte/smooth muscle coverage and vessel maturity) and CAIX (as a marker of 334 

hypoxia) to provide ex vivo biological validation of our in vivo descriptors. Our in silico, 335 

phantom and in vivo analyses indicate that AT+VF and RF are the top performing 336 

segmentation methods and so we focussed on these (results for AT and RF+VF can be found 337 

in Supplementary Figure 3). We note that none of the vascular metrics derived from AT 338 

segmented networks correlated with IHC descriptors. 339 
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Both AT+VF and RF skeletonised blood volume correlate with CD31 staining area 340 

(r=0.54, p=0.05; and r=0.61, p=0.02 respectively; Figure 5L). This is as expected as elevated 341 

CD31 indicates a higher number of blood vessels and, consequently, higher vascular volume. 342 

The following correlations are observed for ASMA vessel coverage: vessel diameters (r=-0.41, 343 

p=0.17; and r=-0.43, p=0.14, respectively); looping structures (r=-0.68, p=0.01; and r=-0.58, 344 

p=0.04, respectively); number of edges (r=-0.69, p=0.01; and r=-0.65, p=0.02, respectively); 345 

number of nodes (r=-0.70, p=0.01; and r=-0.65, p=0.02, respectively); vessel lengths (r=0.76, 346 

p=0.03; and r=0.5, p=0.08, respectively); connected components (r=0.38, p=0.22; and r=0.59, 347 

p=0.03, respectively). Considering the strengths of AT+VF and RF, these results are 348 

biologically intuitive as tumour vessel maturation may lead to higher pericyte coverage, lower 349 

vessel density and the pruning of redundant vessels. Elevated pericyte coverage is known to 350 

decrease vessel diameters (Barlow et al., 2013), whereas high vessel density resulting from 351 

high angiogenesis rates can result in immature vessel networks (Brown et al., 2019). Pruning 352 

may lead to a reduction in looping structures and, consequently, an increase in vessel lengths 353 

or vascular subnetworks. 354 

 Finally, levels of hypoxia in the tumours, measured by CAIX IHC, positively correlated 355 

in both AT+VF and RF methods with skeletonised blood volume (r=0.72, p=0.007; and r=0.72, 356 

p=0.004, respectively), number of edges (r=0.59, p=0.04; and r=0.84, p<0.001, respectively), 357 

nodes (r=0.72, p=0.007; and r=0.84, p<0.001, respectively) and looping structures (r=0.61, 358 

p=0.03; and r=0.85, p<0.001, respectively). In the case of blood volume, edges and nodes, 359 

these results are expected as it has been shown that breast cancer tumours with dense but 360 

immature and dysfunctional vasculatures exhibit elevated hypoxia(Brown et al., 2019; Quiros-361 

Gonzalez et al., 2018), likely due to poor perfusion. CAIX negatively correlated with connected 362 

components for RF networks (r=-0.87, p<0.001) (Figure 5L), reflecting results for ASMA 363 

vessel coverage. Our cross-validation between ex vivo IHC and vascular descriptors indicate 364 

that RF and AT+VF segmentation methods can reliably capture biological characteristics in 365 

tumours.  366 
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Ex vivo immunohistochemistry and network structural analyses highlight distinct 367 

vascular networks between ER- and ER+ breast patient-derived xenograft tumours 368 

Finally, we quantified and compared IHC and our vascular descriptors between the 369 

two breast cancer subtypes represented (RF in Figure 6; AT+VF in Supplementary Figure 370 

4; similar trends and significances are observed unless stated otherwise). From analysis of 371 

IHC images (Figure 6A), ER- tumours had higher CD31 staining area (Figure 6B), poorer 372 

ASMA+ pericyte vessel coverage (Figure 6C) and higher CAIX levels (Figure 6D) compared 373 

to ER+ tumours. Our IHC data supports our RF-derived vascular descriptors, where we found 374 

that ER- tumours had denser networks, with higher blood volume, diameter and looping 375 

structures (Figure 6E,F,G). ER+ tumours have a sparse network but showed more 376 

subnetworks (Figure 6H) with significantly longer vessels in AT+VF segmented networks 377 

(p<0.05, Supplementary Figure 4C), which could indicate a more mature vessel network 378 

based on our prior correlative analyses. No significant differences between the two models 379 

were observed for blood vessel tortuosity and curvature (Figure 6J,K).  380 

 381 

 382 
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383 

Figure 6. ER- PDX tumours have dense and immature vascular networks which result 384 

in hypoxic tumour tissue. (A) Exemplar IHC images of CD31, ASMA and CAIX stained ER- 385 

and ER+ tumours. Scale bar=100µm. Brown staining indicates positive expression of marker. 386 

ASMA sections display CD31 overlay, where red indicates areas where CD31 and ASMA are 387 

colocalised (ASMA vessel coverage) and yellow indicates areas where CD31 is alone. (B) 388 

CD31 staining area quantified from CD31 IHC sections and normalised to tumour area. (C) 389 

ASMA vessel coverage of CD31+ vessels (number of red pixels/number of red+yellow pixels, 390 

expressed as a percentage) on ASMA IHC sections. (D) CAIX total positive pixels as a 391 

percentage of the total tumour area pixels on CAIX IHC sections. (E-K) Statistical and 392 

topological data analyses comparing ER- and ER+ tumours. Data are represented by 393 

truncated violin plots with interquartile range (dotted black) and median (solid black). 394 

Comparisons between ER- and ER+ tumours made with unpaired t-test. *= p<0.05, **=p<0.01, 395 

***=p<0.001. For (B-E) ER- n=6, ER+ n=8. For (F-K) ER- n=5, ER+ n=8, one ER- image 396 

excluded with artefact that would impact the measured vascular descriptors.  397 

  398 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.22.469541doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469541
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

DISCUSSION  399 

 400 

Mesoscopic PAI enables longitudinal visualisation of blood vessel networks at high 401 

resolution, non-invasively and at depths beyond the optical diffraction limit of 1 mm 402 

(Ntziachristos, 2010; Ntziachristos et al., 2005; Omar et al., 2019; Wang & Yao, 2016). To 403 

quantify the vasculature, PA images need to be accurately segmented. Manual annotation of 404 

vasculature in 3D PAI is difficult due to depth-dependent signal-to-noise and imaging artefacts. 405 

Whilst a plethora of vascular segmentation techniques are available (Corliss et al., 2019; 406 

Moccia et al., 2018), their application in PAI has been limited due to a lack of an available 407 

ground truth for comparison and validation.  408 

 In this study, we first sought to address the need for ground truth data in PAI 409 

segmentation. We generated two ground truth datasets to assess the performance of rule-410 

based and machine learning-based segmentation approaches with or without feature 411 

enhancement via vesselness filtering. The first is an in silico dataset where PAI was simulated 412 

on 3D synthetic vascular architectures; the second is an experimental dataset acquired from 413 

a vessel-like string phantom. These allowed us to evaluate the ability of different segmentation 414 

methods to preserve blood volume and vascular network structure.  415 

 Our first key finding is that machine learning-based segmentation using RF 416 

classification provided the most accurate segmentation of vessel volumes across our in silico, 417 

phantom and in vivo datasets, particularly at depths beyond ~1.5mm, where SNR diminishes 418 

due to optical attenuation. Compared to the AT approaches, RF-based segmentation partially 419 

overcomes the depth dependence of PAI SNR since it identifies and learns edge and texture 420 

features of vessels at different scales and contrasts. Such intrinsic depth-dependent 421 

limitations are often ignored in the literature, where analyses are typically performed on 2D 422 

maximum intensity projections for simplicity (Haedicke et al., 2020; Imai et al., 2017; Lao et 423 

al., 2008; Omar et al., 2015; Orlova et al., 2019; Soetikno et al., 2012), suggesting that a fully 424 
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3D machine learning-based segmentation is needed to accurately recapitulate the complexity 425 

of in vivo vasculatures measured using PAI. 426 

 As blood vessel networks can be represented as complex, interconnected graphs, we 427 

performed statistical and topological data analyses (Chung et al., 2019; Stolz et al., 2020) to 428 

further assess the strengths and weaknesses of our chosen segmentation methods.  429 

 Our second key finding is that AT methods struggle to segment vessels with low SNR, 430 

but adding VF outperforms all other methods in preserving vessel lengths, loops, curvature 431 

and tortuosity. Additionally, where intensity varies across a vessel structure, this results in 432 

many disconnected vessels when segmenting with AT alone, as only the highest intensity 433 

voxels will pass the threshold. Only when vesselness filtering is applied does AT do well at 434 

preserving topology. VF alters the intensity values from a measure of PA signal to a prediction 435 

of ‘vesselness’, generating a more homogeneous intensity across the vessel structures and 436 

ultimately a more continuous vessel structure to segment. This likely explains why AT+VF best 437 

preserves vessel length and, subsequently, network structure, while AT alone performs poorly. 438 

For AT, VF improved BV predictions in silico via better preservation of lengths but not 439 

diameters, as our phantom experiments indicate that AT+VF overestimates diameter.  440 

Owing to the homogenous intensity of vessels introduced by VF, one could therefore 441 

assume that RF+VF would be the most accurate method at preserving network structure (by 442 

combining the machine-learning accuracy of segmentation with the shape enhancement of 443 

VF). However, this is not the case: RF alone can account for discontinuities in vessel intensity, 444 

unlike AT, meaning it does not rely on VF to enhance structural preservation, which is our third 445 

key finding. In fact, the slight inaccuracy in diameter preservation introduced by VF in silico 446 

appears to decrease topology preservation in RF+VF compared to RF alone. As expected, all 447 

methods led to an increase in the number of subnetworks (connected components) in silico, 448 

as these segmentation methods cannot reconnect vessel subnetworks that were disconnected 449 

due to poor SNR or imaging artefacts. Given the better segmentation at depth by RF-methods, 450 
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we hypothesise that these increasingly small subnetworks might have biased the 451 

segmentations to underperform in our vascular descriptors. This could be explored in future 452 

work, for example, by developing string phantoms with more complex topologies.  453 

Taken together, our results suggest that RF performs feature detection across scales 454 

in the manually labelled voxels to learn discriminating characteristics for vessel classification 455 

and segmentation. Adding VF before RF segmentation may confound this segmentation 456 

framework, because VF systematically smooths images and removes non-cylindrical raw 457 

image information, which may have been vital in the RF learning of vascular structures on the 458 

training dataset.  459 

Applying statistical and topological analyses to our in vivo tumour PDX dataset we 460 

observed trends consistent with our in silico and phantom experiments. Cross-validating our 461 

vascular descriptors with ex vivo IHC confirmed that we can extract biologically relevant 462 

information from mesoscopic PA images. For example, predictions of BV correlated with 463 

endothelial cell and hypoxia markers via CD31 and CAIX staining, respectively; and 464 

descriptors relating to the maturation of vascular structures correlated with ASMA vessel 465 

coverage. Applying our segmentation pipeline to compare ER- and ER+ breast cancer PDX 466 

models showed that descriptors of network structure can capture the higher density and 467 

immaturity of ER- vessel networks which result in decreased oxygen delivery and high hypoxia 468 

levels in comparison to ER+ tumours.  469 

While our pipeline yields encouraging correlations to the underlying tumour 470 

vasculature, avenues of further development exist to: improve the realism of our ground truth 471 

data, including advances in simulation complexity, and tissue-specific synthetic and phantom 472 

vasculatures. While our in silico PAI dataset incorporated the effects of depth-dependent SNR 473 

and gaussian noise found in in vivo PAI mesoscopic data, further development of the optical 474 

simulations could, for example, recapitulate the raster-scanning motion of illumination optical 475 

fibres, instead of approximating a simultaneous illumination plane of single-point sources. The 476 
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limited aperture of the raster-scanning ultrasound transducer could not be simulated in k-Wave 477 

as it is not yet implemented for 3D structures. In terms of vascular complexity, our string 478 

phantom represents a highly idealised vessel networks but future work could introduce more 479 

complex and interconnected vessel-like networks in order to replicate more realistic vascular 480 

topologies (Dantuma et al., 2019). Our ex vivo IHC descriptors were used to confirm our in 481 

vivo tumour analyses but did not exhibit correlations across all vascular descriptors. This may 482 

be expected as the 2D IHC analysis does not fully encompass the 3D topological 483 

characteristics of the vascular network. 3D IHC, microCT or light sheet fluorescence 484 

microscopy may provide improved ex vivo validation using exogenous labelling to identify 3D 485 

vascular structures, such as tortuosity, at endpoint (Epah et al., 2018; Hlushchuk et al., 2019). 486 

It should also be noted that we cannot discount the effect of unconscious biases on 487 

segmentation performance when manually labelling images with and without VF to train the 488 

classifier. The segmentation accuracy of classifiers trained by multiple users could be explored 489 

in future work to formally investigate these effects. 490 

Furthermore, the past decade has seen the rise of a multitude of blood vessel 491 

segmentation methods using convolutional neural networks and deep learning (Jia & Zhuang, 492 

2021). Applying deep learning to mesoscopic PAI could provide a means to overcome several 493 

equipment-related limitations such as: vessel discontinuities induced by breathing motion in 494 

vivo; vessel orientation relative to the ultrasound transducer; shadow and reflection artefacts; 495 

or underestimation of vessel diameter in the z-direction due to surface illumination. Whilst we 496 

found that skeletonisation addressed diameter underestimation and observed the influence of 497 

discontinuities on the extracted statistical and topological descriptors, they were not deeply 498 

characterised or corrected. Nonetheless, whilst deep learning may provide superior 499 

performance when fine-tuned to specific tasks, the resulting methods may lack generalisability 500 

across tissues with differing SNR and blood structures, requiring large datasets for training. In 501 

this study we chose to use software that is open-source and widely accessible to biologists in 502 
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the life sciences. We believe that such a platform shows more potential to be employed widely 503 

with limited computational expertise.  504 

 In summary, we developed an in silico, phantom, in vivo, and ex vivo-validated end-to-505 

end framework for the segmentation and quantification of vascular networks captured using 506 

mesoscopic PAI. We created in silico and string phantom ground truth PAI datasets to validate 507 

segmentation of 3D mesoscopic PA images. We then applied a range of segmentation 508 

methods to these and images of breast PDX tumours obtained in vivo, including cross-509 

validation of in vivo images with ex vivo IHC. We have shown that learning-based 510 

segmentation, via a random forest classifier, best accounted for the artefacts present in 511 

mesoscopic PAI, providing a robust segmentation of blood volume at depth in 3D and a good 512 

approximation of vessel network structure. Despite the promise of the learning-based 513 

approach to account for depth-dependent variation in SNR, auto-thresholding with vesselness 514 

filtering more accurately represents statistical and topological characteristics in the superficial 515 

blood vessels as it better preserves vessel lengths. Therefore, when quantifying PA images, 516 

users need to consider the relative importance of each descriptor as the choice of 517 

segmentation method can directly impact the resulting analyses. We have highlighted the 518 

potential of statistical and topological analyses to provide a detailed parameterisation of 519 

tumour vascular networks, from classic statistical descriptors such as vessel diameters and 520 

lengths to more complex descriptors of network topology characterising vessel connectivity 521 

and loops. Our results further underscore the potential of photoacoustic mesoscopy as a tool 522 

to provide biological insight into studying vascular network in vivo by providing life scientists 523 

with a readily deployable and cross-validated pipeline for data analysis.  524 

  525 
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MATERIALS AND METHODS 526 

Generating ground truth vascular architectures in silico 527 

To generate an in silico ground truth vascular network, we utilised Lindenmayer 528 

systems (L-Systems, see Supplementary Figure 5) (Lindenmayer, 1968). L-Systems are 529 

language-theoretic models that were originally developed to model cellular interactions but 530 

have been extended to model numerous developmental processes in biology (Rozenberg & 531 

Arto Salomaa, 1992). Here, we apply L-Systems to generate realistic, 3D vascular 532 

architectures (Galarreta-Valverde, 2012; Galarreta-Valverde et al., 2013) (referred to as L-533 

nets) and corresponding binary image volumes. A stochastic grammar was used (Galarreta-534 

Valverde, 2012) to create a string that was evaluated using a lexical and syntactic analyser to 535 

build a graphical representation of each L-net. To transfer the L-net to a discretised binary 536 

image volume, we used a modified Bresenham’s algorithm (Bresenham, 1965) for 3D to create 537 

a vessel skeleton. Voxels within a vessel volume were then identified using the associated 538 

vessel diameter for each centreline (Supplementary Figure 5). 539 

Photoacoustic image simulation of synthetic ground truths 540 

To test the accuracy of the segmentation pipelines, the L-nets were then used to 541 

simulate in vivo photoacoustic vascular networks embedded in muscle tissue using the 542 

Simulation and Image Processing for Photoacoustic Imaging (SIMPA) python package 543 

(SIMPA v0.1.1, https://github.com/CAMI-DKFZ/simpa) (Janek Gröhl, Kris K. Dreher, Melanie 544 

Schellenberg, Alexander Seitel, 2021) and the k-Wave MATLAB toolbox (k-Wave v1.3, 545 

MATLAB v2020b, MathWorks, Natick, MA, USA) (Treeby & Cox, 2010). Planar illumination of 546 

the L-nets on the XY plane was achieved using Monte-Carlo eXtreme (MCX v2020, 1.8) 547 

simulation on the L-net computational grid of size 10.24 x 10.24 x 2.80 mm3 with 20 μm 548 

isotropic resolution. The optical forward modelling was conducted at 532 nm using the optical 549 

absorption spectrum of 50% oxygenated haemoglobin for vessels (an approximation of tumour 550 

vessel oxygenation based on previously collected photoacoustic data (Quiros-Gonzalez et al., 551 
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2018) and of water for muscle. Next, 3D acoustic forward modelling was performed on the 552 

illuminated L-nets assuming a speed of sound of 1500 ms-1 in k-Wave. The photoacoustic 553 

response of the illuminated L-nets was measured with a planar array of sensors positioned on 554 

the surface of the XY plane with transducer elements of bandwidth central frequency of 50 555 

MHz (100% bandwidth) and using a 1,504 time steps, where a time step is 5x10-8 Hz-1). Finally, 556 

the 3D initial PA wave-field was reconstructed using fast Fourier transform-based 557 

reconstruction (Treeby & Cox, 2010), after adding uniform gaussian noise on the collected 558 

wave-field.   559 

String phantom  560 

We used a string phantom as a ground truth structure (see Supplementary 561 

Materials). The agar phantom was prepared as described previously (Joseph et al., 2017) 562 

including intralipid (I141-100ML, Merck, Gillingham, UK) to mimic tissue-like scattering 563 

conditions. Red-coloured synthetic fibres (Smilco, USA) were embedded at three different 564 

depths defined by the frame of the phantom to provide imaging targets with a known diameter 565 

of 126 μm. The top string was positioned at 0.5 mm from the agar surface, the middle one at 566 

1 mm, and the bottom one at 2 mm, as shown in Supplementary Figure 2. 567 

Animals 568 

All animal procedures were conducted in accordance with project and personal 569 

licences, issued under the United Kingdom Animals (Scientific Procedures) Act, 1986 and 570 

approved locally under compliance forms CFSB1567 and CFSB1745. For in vivo vascular 571 

tumour models, cryopreserved breast PDX tumour fragments in freezing media composed of 572 

heat-inactivated foetal bovine serum (10500064, GibcoTM, Fisher Scientific, Göteborg 573 

Sweden) and 10% dimethyl sulfoxide (D2650, Merck) were defrosted at 37°C, washed with 574 

Dulbecco’s Modified Eagle Medium (41965039, Gibco) and mixed with matrigel (354262, 575 

Corning®, NY, USA) before surgical implantation. One estrogen receptor negative (ER-, n=6) 576 

PDX model and one estrogen receptor positive (ER+, n=8) PDX model were implanted 577 
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subcutaneously into the flank of 6-9 week-old NOD scid gamma (NSG) mice (#005557, Jax 578 

Stock, Charles River, UK) as per standard protocols (Bruna et al., 2016). Once tumours had 579 

reached ~1cm mean diameter, tumours were imaged and mice sacrificed afterwards, with 580 

tumours collected in formalin for IHC. 581 

Photoacoustic imaging   582 

Mesoscopic PAI was performed using the raster-scan optoacoustic mesoscopy 583 

(RSOM) Explorer P50 (iThera Medical GmbH, Munich, Germany). The system uses a 532 nm 584 

laser for excitation. Two optical fibre bundles are arranged either side of a transducer, which 585 

provide an elliptical illumination beam of approximately 4 mm x 2 mm in size. The transducer 586 

and lasers collectively raster-scan across the field-of-view. A high-frequency single-element 587 

transducer with a centre frequency of 50 MHz (>90% bandwidth) detects ultrasound. The 588 

system achieves a lateral resolution of 40 μm, an axial resolution of 10 μm and a penetration 589 

depth of up to ~3 mm (Omar et al., 2013).  590 

For image acquisition of both phantom and mice, degassed commercial ultrasound gel 591 

(AquaSonics Parker Lab, Fairfield, NJ, USA) was applied to the surface of the imaging target 592 

for coupling to the scan interface. Images were acquired over a field of view of 12 × 12 mm2 593 

(step size: 20 μm) at either 100% (phantom) or 85% (mice) laser energy and a laser pulse 594 

repetition rate of 2 kHz (phantom) or 1 kHz (mice). Image acquisition took approximately 7 595 

min. Animals were anaesthetised using 3-5% isoflurane in 50% oxygen and 50% medical air. 596 

Mice were shaved and depilatory cream applied to remove fur that could generate image 597 

artefacts; single mice were placed into the PAI system, on a heat-pad maintained at 37°C. 598 

Respiratory rate was maintained between 70-80 bpm using isoflurane (~1-2% concentration) 599 

throughout image acquisition.  600 

 601 

 602 

 603 
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Segmentation and extraction of structural and topological vascular descriptors 604 

All acquired data were subjected to pre-processing prior to segmentation, 605 

skeletonisation and structural analyses of the vascular network, with an optional step of 606 

vesselness filtering also tested (Figure 1). Prior to segmentation, data were filtered in the 607 

Fourier domain in XY plane to remove reflection lines, before being reconstructed using a 608 

backprojection algorithm in viewRSOM software (v2.3.5.2 iThera Medical GmbH) with motion 609 

correction for in vivo images with a voxel size of 20 x 20 x 4 μm3 (X,Y,Z). To reduce background 610 

noise and artefacts from the data acquisition process, reconstructed images were subjected 611 

to a high-pass filter, to remove echo noise,  followed by a Wiener filter in MATLAB (v2020b, 612 

MathWorks, Natick, MA, USA) to remove stochastic noise. Then, a built-in slice-wise 613 

background correction (Sternberg, 1983) was performed in Fiji(Schindelin et al., 2012)  to 614 

achieve a homogenous background intensity (see exemplars of each pre-processing step in 615 

Supplementary Figure 6). 616 

Image segmentation using auto-thresholding or a random forest classifier  617 

 Using two common tools adopted in the life sciences, we tested both a rule-based 618 

moment preserving thresholding method (included in Fiji v2.1.0) and a learning-based 619 

segmentation method based on random forest classifiers (with ilastik v1.3.3 (Berg et al., 620 

2019)). These popular packages were chosen to enable widespread application of our 621 

findings. Moment preserving thresholding, referred to as auto-thresholding (AT) for the 622 

remainder of this work, computes the intensity moments of an image and segments the image 623 

while preserving these moments (Tsai, 1985). Training of the random forest (RF) backend was 624 

performed on 3D voxel features in labelled regions, including intensity features, as with the 625 

AT method, combined with edge filters, to account for the intensity gradient between vessels 626 

and background, and texture descriptors, to discern artefacts in the background from the 627 

brighter and more uniform vessel features, each evaluated at different scales (up to a sigma 628 

of 5.0).  629 
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A key consideration in the machine learning-based segmentation is the preparation of 630 

training and testing data (Supplementary Table 2). For the in silico ground truth L-net data, 631 

all voxel labels are known. All vessel labels were used for training, however, only partial 632 

background labels were supplied to minimise computational expense by labelling the 10 voxel 633 

radius surrounding all vessels as well as 3 planes parallel to the Z-axis (edges and middle) as 634 

background (Supplementary Figure 7A,B). For the phantom data, manual segmentation of 635 

the strings from background was performed to provide ground truth. Strings were segmented 636 

in all slices on which they appeared and background was segmented tightly around the string 637 

(Supplementary Figure 7C). For the in vivo tumour data, manual segmentation of vessels 638 

was made by a junior user (TLL) supervised by an experienced user (ELB), including images 639 

of varying signal-to-noise ratio (SNR) to increase the robustness of the algorithm for 640 

application in a range of unseen data. Up to 10 XY slices per image stack in the training 641 

dataset were segmented with pencil size 1 at different depths to account for depth-dependent 642 

SNR differences (Supplementary Figure 7D).  643 

 Between pre-processing and segmentation, feature enhancement was tested as a 644 

variable in our segmentation pipeline. In Fiji, we adapted a modified version of Sato filtering 645 

(α=0.25) (Sato et al., 1998) to calculate vesselness from Hessian matrix eigenvalues (Frangi 646 

et al., 1998) across multiple scales. Five scales in a linear Gaussian normalized scale space 647 

were used, from which the maximal response was measured to produce the final vesselness 648 

filtered images (20, 40, 60, 80, and 100 μm) (Sato et al., 1998).  649 

 Finally, all segmented images (either from Fiji or ilastik) were passed through a built-650 

in 3D median filter in Fiji, to remove impulse noises (Supplementary Figure 8). To summarise 651 

the pipeline (Figure 1), the methods under test for all datasets were: 652 

1.  Auto-thresholding using a moment preserving method (AT); 653 

2.  Auto-thresholding using a moment preserving method with vesselness filtering pre-654 

segmentation (AT+VF); 655 
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3.  Random forest classifier (RF); 656 

4.  Random forest classifier with vesselness filtering pre-segmentation (RF+VF). 657 

Computation times are summarised in Supplementary Table 3. 658 

Extracting tumour ROIs using a 3D CNN 659 

To analyse the tumour data in isolation from the surrounding tissue required 660 

delineation of tumour regions of interest (ROIs). To achieve this, we trained a 3D convolutional 661 

neural network (CNN) to fully automate extraction of tumour ROIs from PAI volumes. The 3D 662 

CNN is based on the U-Net architecture (Ronneberger et al., 2015) extended for volumetric 663 

delineation (Çiçek et al., 2016). Details on the CNN architecture and training are provided in 664 

the Supplementary Materials and Supplementary Figures 9-10. 665 

Network Structure and Topological Data Analysis 666 

Topological data analysis (TDA) of the vascular networks was performed using 667 

previously reported software that performs TDA and structural analyses on vasculature 668 

(Chung et al., 2019; Stolz et al., 2020). Prior to these analyses, segmented image volumes 669 

were skeletonised using the open-source package Russ-learn (Bates, 2017, 2018). Our 670 

vascular descriptors comprised a set of statistical descriptors: vessel diameters and lengths, 671 

vessel tortuosity (sum-of-angles measure, SOAM) and curvature (chord-to-length ratio, CLR), 672 

In addition, the following descriptors were used to define network topology: the number of 673 

connected components (Betti number β0) and looping structures (1D holes, Betti number β1). 674 

Full descriptions of the vascular descriptors are provided in Supplementary Table 1 while 675 

outputs are shown in Supplementary Tables 4-7. 676 

Immunohistochemistry  677 

For ex vivo validation, formalin-fixed paraffin-embedded (FFPE) tumour tissues were 678 

sectioned. Following deparaffinising and rehydration, IHC was performed for the following 679 

antibodies: CD31 (anti-mouse 77699, Cell signalling, London, UK), α-smooth muscle actin 680 
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(ASMA) (anti-mouse ab5694, abcam, Cambridge, UK), carbonic anhydrase-IX (CAIX) (anti-681 

human AB1001, Bioscience Slovakia, Bratislava, Slovakia) at 1:100, 1:500 and 1:1000, 682 

respectively, using a BOND automated stainer with a bond polymer refine detection kit (Leica 683 

Biosystems) and 3,3’-diaminobenzadine as a substrate. Stained FFPE sections were scanned 684 

at 20x magnification using an Aperio ScanScope (Leica Biosystems, Milton Keynes, UK) and 685 

analysed using ImageScope software (Leica Biosystems) or HALO Software (v2.2.1870, 686 

Indica Labs, Albuquerque, NM, USA). ROIs were drawn over the whole viable tumour area 687 

and built-in algorithms customised to analyse the following: CD31 positive area (µm2) 688 

normalised to the ROI area (µm2) (referred to as CD31 vessel area), area of CD31 positive 689 

pixels (µm2) colocalised on adjacent serial section with ASMA positive pixels/CD31 positive 690 

area (µm2) (reported as ASMA vessel coverage (%)) and CAIX positive pixel count per total 691 

ROI pixel count (reported as CAIX (%)). 692 

Statistical analysis  693 

Statistical analyses were conducted using Prism (v9, GraphPad Software, San Diego, 694 

CA, USA) and R (v4.0.1(R Core, 2021), R Foundation, Vienna, Austria). We used the mean 695 

square error and R-squared statistics to quantify the accuracy and strength of the relationship 696 

between the segmented networks to the ground truth L-nets. For each outcome of interest, 697 

we predicted the ground truth (on a scale compatible with the normality assumption according 698 

to model checks) by means of each method estimates through a linear model. As model 699 

performance statistics are typically overestimated when assessing the model fit on the same 700 

data used to estimate the model parameters, we used bootstrapping (R = 500) to correct for 701 

the optimism bias and obtain unbiased estimates (Harrell, 2016). Bland-Altman plots were 702 

produced for each paired comparison of segmented volume to the ground truth volume in L-703 

nets and associated bias and limits of agreement (LOA) are reported. For L-nets, F1 scores 704 

were calculated (Dice, 1945). PAI quality pre-segmentation was quantified by measuring SNR, 705 

defined as the mean of signal over the standard deviation of the background signal. 706 
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Comparisons of string volume, as well as SNR, were completed using one-way ANOVA with 707 

Tukey multiplicity correction.  708 

For each outcome of interest, in vivo data was analysed as follows: A linear mixed 709 

effect model was fitted on a response scale (log, square root or cube root) compatible with the 710 

normality assumption according to model checks with the segmentation methods as a 4-level 711 

fixed predictor and animal as random effect, to take the within mouse dependence into 712 

account. Noting that the residual variance was sometimes different for each segmentation 713 

group, we also fitted a heteroscedastic linear mixed effect allowing the variance to be a 714 

function of the segmentation group. The results of the heteroscedastic model were preferred 715 

to results of the homoscedastic model when the likelihood ratio test comparing both models 716 

led to a p-value <0.05. Two multiplicity corrections were performed to achieve a 5% family-717 

wise error rate for each dataset: For each outcome, a parametric multiplicity correction on the 718 

segmentation method parameters was first used (Bretz et al., 2010). A conservative Bonferroni 719 

p-value adjustment was then added to it to account for the number of outcomes in the entire 720 

in vivo dataset. The following pairwise comparisons were considered: AT vs. AT+VF, AT vs. 721 

RF, RF vs. RF+VF and AT+VF vs. RF+VF. Comparisons of our vascular descriptors between 722 

ER- and ER+ tumours were completed with an unpaired student’s t-test. All p-values <0.05 723 

after multiplicity correction were considered statistically significant. 724 

Code Availability 725 

Code to generate synthetic vascular trees (LNets) is available on GitHub 726 

(https://github.com/psweens/V-System). In silico photoacoustic simulations were performed 727 

using the SIMPA toolkit (https://github.com/CAMI-DKFZ/simpa). Both the trained 3D CNN to 728 

extract tumour ROIs from RSOM images (https://github.com/psweens/Predict-RSOM-ROI) 729 

and vascular TDA package are available on GitHub (https://github.com/psweens/Vascular-730 

TDA). 731 

Data Availability 732 
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Exemplar datasets for the in silico, phantom, and in vivo data can be found at 733 

https://doi.org/10.17863/CAM.78208. The authors declare that all data supporting the findings 734 

of this study is available upon request. 735 
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Supplementary Materials and Methods 1015 

1. String phantom preparation 1016 

The string phantom used in this study was prepared by mixing 1.5 g agarose (Fluka Analytical, 1017 

05039-500G) in 97.3 mL deionised water in a glass media bottle and heated in a microwave 1018 

until the solution turned clear. After cooling down the solution to 60°C, 2.08 mL of pre-warmed 1019 

intralipid was added to generate a reduced scattering coefficient of 5.0 cm-1 according to a 1020 

previously characterised recipe(Joseph et al., 2017). The mixture was poured into a 3D-printed 1021 

phantom mould, which was designed in Autodesk Fusion 360 (San Rafael, CA, USA) and 1022 

printed using an Anet A6 Printer with polylactic acid (PLA PRO 1.75mm Fluorescent Yellow 1023 

PLA 3D Printer Filament, 832-0254, RS Components, UK) as a base material. 1024 

Supplementary Figure 2 shows the phantom mould with and without agar. 1025 

2. 3D CNN for ROI delineation 1026 

2.1. Preparation of training data  1027 

Image volumes consist of a series of 8-bit grayscale Tiffs (no compression) of 600 x 1028 

600 pixels in the XY-plane and a stack of 700 images in Z, with anisotropic voxels of size 20 1029 

x 20 x 4 μm3. Our dataset has a total of 166 PAI volumes, each paired with a corresponding 1030 

binary semi-manually-annotated volume, where a voxel value of 0 and 255 indicates the 1031 

background or tumour ROIs, respectively. The annotated volumes were generated by an 1032 

experienced user, who first identified the top and bottom image containing the tumour in Z. 1033 

Within these upper and lower bounds, ROIs were manually drawn in the XY plane on 1034 

approximately 4 image slices. Bound by these data, a convex hull was extrapolated to 1035 

approximate the ROI in the remaining image slices. 1036 

Prior to training, image volumes and binary masks were downsampled to an isotropic 1037 

volume of 256 x 256 x 256 voxels to fit into computer memory. Data was locally standardised 1038 

and normalised to a pixel range between 0 and 1 and the volumes randomly partitioned into 1039 

training, validation, and testing subsets. Here, ~5% of images were allocated for testing, with 1040 
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the remaining portion split 80:20 for training and validation respectively (8 / 126 / 32 image 1041 

volumes, respectively). 1042 

 2.2 Neural Network Architecture for ROI delineation 1043 

The 3D CNN is based on the U-Net architecture(Ronneberger et al., 2015) extended 1044 

for volumetric delineation(Çiçek et al., 2016). The structure consists of an encoder, which 1045 

extracts spatial features from a 3D image volume, and a decoder, which constructs a 1046 

segmentation map from these features (Supplementary Figure 10). The network architecture 1047 

consists of five convolutional layers. The encoder path contains two 3 x 3 x 3 convolutions 1048 

followed by a rectified linear unit (ReLU) activation for faster convergence and accuracy(Çiçek 1049 

et al., 2016). Each ReLU activation is followed by 2 x 2 x 2 max pooling with strides of two in 1050 

each dimension. For the 3rd, 4th and 5th layers, dropout is applied to reduce segmentation bias 1051 

and ensure segmentation is performed utilising high-level features that may not have been 1052 

considered in our semi-manual ROI annotations. 1053 

The decoder path consists of two 3 x 3 x 3 deconvolutions of strides of 2 in each 1054 

dimension, followed by 3 x 3 x 3 convolutions, batch normalisation and ReLU activation. High-1055 

resolution features were provided via shortcut connections from the same layer in the encoder 1056 

path. The final layer applied an additional 1 x 1 x 1 convolution followed by sigmoid activation 1057 

to ensure the correct number of output channels and range of pixel values [0, 1]. The input 1058 

layer is designed to take n grayscale (one channel) tumour volumes as input with a pre-defined 1059 

volume (128 x 128 x 128 voxels in X, Y, Z-direction used here). The U-Net binary mask 1060 

prediction contains an equal number of voxels as the input. The CNN was implemented in 1061 

Keras(Chollet & Others, 2015) with the Tensorflow framework(Abadi et al., 2015). The model 1062 

was trained and tested on a Dell Precision 7920 with a Dual Intel Xeon Gold 5120 CPU with 1063 

128 GB RAM and a NVIDIA Quadro GV100 32 GB GPU. 1064 

2.3. Hyperparameter Optimisation 1065 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.22.469541doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469541
http://creativecommons.org/licenses/by-nc-nd/4.0/


 47 

Hyperparameters were optimised and evaluated using Talos(Autonomio Talos, 2019), 1066 

a fully-automated hyperparameter tuner for Keras. A random search optimisation strategy was 1067 

deployed using the quantum random method. Here, a probabilistic reduction scheme was 1068 

used to reduce the number of parameter permutations by removing poorly performing 1069 

hyperparameter configurations from the remaining search space after a predefined interval. 1070 

The number of filters used ranged from 16 in the 1st layer to 512 in the 5th. Dropout at a rate 1071 

of 0.2 was applied in the 3rd, 4th and 5th layers. A Glorot uniform initialiser was used for all 1072 

convolution and deconvolution layers. The model was trained using an Adam optimiser with 1073 

learning and decay rates of 10-5 and 10-8, respectively, and the dice coefficient (F1)(Crum et 1074 

al., 2006) used as the loss function. 1075 

2.4. U-Net Training & Predictions 1076 

Training was performed with a batch size of 3 image volumes for a total of 120 epochs 1077 

(Supplementary Figure 11A). The fully-trained network achieved an accuracy of 88.3% and 1078 

87.3% on the training and validation sets respectively (Supplementary Figure 11B). 1079 

Following training and test, we applied the CNN to the entire set of volumes to compare 1080 

predictions of ROI volume to the ground truth (Supplementary Figure 11C). Blood volumes 1081 

were then calculated within the predicted ROIs using the AT method and compared against 1082 

the user annotations (Supplementary Figure 11D). We found a significant correlation 1083 

between user annotated and predicted data for both ROI volume (Spearman’s rank 1084 

correlation: r = 0.821, p < 0.0001) and blood volume (r = 0.958, p < 0.0001), indicating our 1085 

CNN achieves sufficient performance against the experienced user to be applied for extracting 1086 

tumours prior to testing the segmentation pipeline. 1087 

3. Signal-to-noise ratio characterisation 1088 

PAI quality pre-segmentation was quantified by measuring signal-to-noise ratio (SNR), defined 1089 

as the mean of signal over the standard deviation of the background signal. For in silico and 1090 
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in phantom ground truth datasets, the mean of the signal was taken within the binary ground 1091 

truth masks of the images and reported for different depths. 1092 

 1093 

 1094 

  1095 
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Supplementary Tables 1096 

Supplementary Table 1: Descriptions of our statistical and topological descriptors. 1097 

Descriptor Description 

Connected Components, β0 Number of 0-dimensional topological features, i.e. the 
number of subgraphs or clusters (vascular subnetworks). 
Values are normalised with respect to the total number of 
edges per segmented image volume. 

Loops, β1 Number of 1-dimensional topological features, i.e. the 
numbers of looping structures in vascular graph. Values are 
normalised with respect to the total number of edges per 
segmented image volume. 

Sum-of-angles measure 
(SOAM) 

The sum of angles between tangents to the curve taken at 
regular intervals normalised against vessel length, i.e. the 
average change in angle per unit length. 

Chord-to-length ratio (CLR) The ratio between the Euclidean distance connecting the two 
ends of a blood vessel and the length of the blood vessel, 
e.g. a straight vessel has a CLR equal to 1. 

 1098 

Supplementary Table 2: Training and testing dataset split for random forest-based 1099 

segmentation in ilastik.  1100 

Data Ground truth labels Training  Testing 

In silico Original binary labels of L-net 
branches and surrounding 
background 

30 L-nets 30 L-nets (data in 
Figures 2 and 3) 

In vitro Manual labelling of all XY 
slices containing strings and 
of surrounding background 

2 string phantom 
scans 

5 string phantom 
scans (data in 
Figures 4 and 5) 

In vivo Manual labelling of 10 XY 
slices per image at distributed 
depths and of surrounding 
background 

20 PDX tumour 
scans 

14 PDX tumour 
scans (data in 
Figures 6-9) 

 1101 
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Supplementary Table 3. Mean computation time in seconds for each segmentation method 1102 

on in silico, in vitro, and in vivo data. Note: Segmentations were performed on a dual Intel 1103 

Xeon E5-2623 v4 2.60 GHz quad-core processor and 64.0 GB of RAM. 1104 

Data AT AT+VF RF RF+VF 
In silico 7.4 198.1 191.1 381.8 
In vitro 12.9 219.6 1280.0 1486.7 
In vivo 38.4 1215.5 1500.7 2677.8 
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Supplementary Table 4. Absolute number of connected components for each L-Net skeleton 1107 

generated from the ground truth and each segmentation method. Network names are 1108 

organised based on number of recursive L-Net iterations and index, for example, ‘LNet_i4_0’ 1109 

is the zeroth network of those with 4 iterations. Note, the number of known branching points 1110 

is equal to number of iterations minus 3. 1111 

Name 
Ground 
Truth AT AT+VF RF RF+VF 

LNet_i4_0 1 17 4 5 3 

LNet_i4_1 1 12 1 5 4 

LNet_i4_2 1 8 3 3 2 

LNet_i4_3 1 23 3 24 111 

LNet_i4_4 1 15 1 2 1 

LNet_i6_0 1 12 3 10 16 

LNet_i6_1 1 21 2 4 6 

LNet_i6_2 1 13 3 4 8 

LNet_i6_3 1 1 2 3 2 

LNet_i6_4 1 21 9 8 4 

LNet_i8_0 1 20 9 16 16 

LNet_i8_1 1 26 5 16 9 

LNet_i8_2 1 12 9 12 5 

LNet_i8_3 1 12 7 13 6 

LNet_i8_4 1 7 2 14 11 

LNet_i10_0 1 30 14 29 21 

LNet_i10_1 1 30 12 24 19 

LNet_i10_2 1 18 9 24 14 

LNet_i10_3 1 40 20 33 34 

LNet_i10_4 1 21 21 28 27 

LNet_i12_0 1 76 16 49 43 

LNet_i12_1 1 68 23 52 52 

LNet_i12_2 1 58 24 40 37 
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LNet_i12_3 1 49 19 83 72 

LNet_i12_4 1 58 26 68 53 

LNet_i14_0 1 88 39 155 103 

LNet_i14_1 1 81 45 112 100 

LNet_i14_2 1 69 36 93 79 

LNet_i14_3 1 91 46 87 89 

LNet_i14_4 1 104 34 116 74 
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Supplementary Table 5. Absolute number of loops for each L-Net skeleton generated from 1128 

the ground truth and each segmentation method. Network names are organised based on 1129 

number of recursive L-Net iterations and index, for example, ‘LNet_i4_0’ is the zeroth network 1130 

of those with 4 iterations. Note, the number of known branching points is equal to number of 1131 

iterations minus 3. 1132 

Name 
Ground 
Truth AT AT+VF RF RF+VF 

LNet_i4_0 0 46 0 2 2 

LNet_i4_1 0 27 0 4 16 

LNet_i4_2 0 42 0 0 8 

LNet_i4_3 1 45 13 67 86 

LNet_i4_4 0 41 0 1 11 

LNet_i6_0 0 54 1 12 27 

LNet_i6_1 1 28 0 13 11 

LNet_i6_2 1 63 7 22 72 

LNet_i6_3 0 6 0 0 0 

LNet_i6_4 2 47 0 9 8 

LNet_i8_0 4 68 1 33 22 

LNet_i8_1 2 21 0 4 1 

LNet_i8_2 2 53 0 2 11 

LNet_i8_3 1 86 0 8 13 

LNet_i8_4 1 40 0 1 0 

LNet_i10_0 4 0 0 0 0 

LNet_i10_1 20 14 0 0 1 

LNet_i10_2 9 20 0 0 0 

LNet_i10_3 9 33 0 14 12 

LNet_i10_4 11 7 0 1 1 

LNet_i12_0 73 9 4 24 12 

LNet_i12_1 123 37 5 25 25 

LNet_i12_2 106 32 7 35 36 
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LNet_i12_3 30 4 1 1 1 

LNet_i12_4 62 2 1 8 13 

LNet_i14_0 353 16 9 18 13 

LNet_i14_1 426 43 15 58 43 

LNet_i14_2 395 19 9 19 20 

LNet_i14_3 376 74 15 58 51 

LNet_i14_4 304 29 12 20 29 
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Supplementary Table 6. The number of edges for each L-Net skeleton generated from the 1135 

ground truth and each segmentation method. Network names are organised based on number 1136 

of recursive L-Net iterations and index, for example, ‘LNet_i4_0’ is the zeroth network of those 1137 

with 4 iterations. Note, the number of known branching points is equal to number of iterations 1138 

minus 3. 1139 

 1140 

Name 
Ground 
Truth AT AT+VF RF RF+VF 

LNet_i4_0 3 160 4 19 10 

LNet_i4_1 3 122 3 24 59 

LNet_i4_2 3 144 3 5 32 

LNet_i4_3 7 177 49 247 420 

LNet_i4_4 3 136 3 9 38 

LNet_i6_0 15 217 18 63 122 

LNet_i6_1 18 134 12 55 60 

LNet_i6_2 19 222 34 94 236 

LNet_i6_3 15 37 14 15 14 

LNet_i6_4 21 167 11 50 43 

LNet_i8_0 65 267 34 172 130 

LNet_i8_1 65 139 19 77 57 

LNet_i8_2 69 227 35 68 85 

LNet_i8_3 62 315 33 85 92 

LNet_i8_4 62 148 18 44 37 

LNet_i10_0 238 114 46 113 101 

LNet_i10_1 251 161 54 116 111 

LNet_i10_2 196 164 43 100 86 

LNet_i10_3 179 241 64 197 183 

LNet_i10_4 253 138 69 151 138 

LNet_i12_0 687 211 97 332 282 

LNet_i12_1 669 283 103 296 296 
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LNet_i12_2 698 310 130 388 349 

LNet_i12_3 794 188 84 182 197 

LNet_i12_4 662 150 79 249 246 

LNet_i14_0 2359 317 175 524 396 

LNet_i14_1 2226 463 262 642 591 

LNet_i14_2 2037 261 158 461 427 

LNet_i14_3 1707 459 174 506 461 

LNet_i14_4 1936 345 153 462 460 
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Supplementary Table 7. The number of nodes for each L-Net skeleton generated from the 1143 

ground truth and each segmentation method. Network names are organised based on number 1144 

of recursive L-Net iterations and index, for example, ‘LNet_i4_0’ is the zeroth network of those 1145 

with 4 iterations. Note, the number of known branching points is equal to number of iterations 1146 

minus 3. 1147 

Name 
Ground 
Truth AT AT+VF RF RF+VF 

LNet_i4_0 4 131 8 22 11 

LNet_i4_1 4 107 4 25 47 

LNet_i4_2 4 110 6 8 26 

LNet_i4_3 7 155 39 204 445 

LNet_i4_4 4 110 4 10 28 

LNet_i6_0 16 175 20 61 111 

LNet_i6_1 18 127 14 46 55 

LNet_i6_2 19 172 30 76 172 

LNet_i6_3 16 32 16 18 16 

LNet_i6_4 20 141 20 49 39 

LNet_i8_0 62 219 42 155 124 

LNet_i8_1 64 144 24 89 65 

LNet_i8_2 68 186 44 78 79 

LNet_i8_3 62 241 40 90 85 

LNet_i8_4 62 115 20 57 48 

LNet_i10_0 235 144 60 142 122 

LNet_i10_1 232 177 66 140 129 

LNet_i10_2 188 162 52 124 100 

LNet_i10_3 171 248 84 216 205 

LNet_i10_4 243 152 90 178 164 

LNet_i12_0 615 278 109 357 313 

LNet_i12_1 547 314 121 323 323 

LNet_i12_2 593 336 147 393 350 
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LNet_i12_3 765 233 102 264 268 

LNet_i12_4 601 206 104 309 286 

LNet_i14_0 2007 389 205 661 486 

LNet_i14_1 1801 501 292 696 648 

LNet_i14_2 1643 311 185 535 486 

LNet_i14_3 1332 476 205 535 499 

LNet_i14_4 1633 420 175 558 505 
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Supplementary Figures 1150 

 1151 

 1152 

Supplementary Figure 1.  Random forest classifier segments PAI networks with high 1153 

accuracy while autothresholding with vesselness filtering preserves network structure. 1154 

Bar plot for R2 values calculated to compare the strength of relationship between the 1155 

segmented networks (AT, AT+VF, RF or RF+VF) and ground-truth L-nets for the following 1156 

metrics:  (A) Normalised skeleton blood volume (BV), (B) Vessel diameters, µm, (C) Vessel 1157 

lengths, µm, (D) Connected components, (E) Loops, (F) chord-to-length ratio (CLR), (G)  sum-1158 

of-angle measure (SOAM), (H) Number of Edges and (I) Number of Nodes.  1159 

 1160 
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 1161 

Supplementary Figure 2. Photographs of the string phantom. (A) 3D-printed mould (7.4 x 1162 

7.4 cm, wall thickness: 4 mm) with the embedded strings and (B) with the agar gel. The top 1163 

string was positioned at 0.5 mm from the agar surface, the middle one at 1 mm, and the bottom 1164 

one at 2 mm depth. 1165 
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 1167 

Supplementary Figure 3. Correlation between blood volume and statistical and 1168 

topological in vivo metrics with ex vivo IHC in AT and RF+VF segmented networks. 1169 

Matrix of correlation coefficients for AT (top) and RF+VF (bottom) segmented networks. 1170 

Pearson or spearman coefficients are used as appropriate, depending on data distribution. 1171 

Note that none of the coefficients are significant for AT networks (p>0.05). For RF+VF, CD31 1172 

staining area and CAIX significantly correlated with segmented (p=0.04 and p=0.03 1173 

respectively) and skeletonised blood volume (p=0.03 for both).  1174 
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 1175 

Supplementary Figure 4. Statistical and topological analyses of AT+VF segmentation 1176 

masks comparing ER- and ER+ tumours. (A-G) Abbreviations defined: blood volume (BV), 1177 

chord-to-length ratio (CLR), sum-of-angle measure (SOAM). Data are represented by 1178 

truncated violin plots with interquartile range (dotted black) and median (solid black). 1179 

Comparisons between ER- and ER+ tumours made with unpaired t-test. *= p<0.05, **=p<0.01, 1180 

***=p<0.001, ****=p<0.0001. 1181 
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 1183 

 1184 

Supplementary Figure 5. Generation of Lindenmayer System (L-System) vascular 1185 

networks. (A) Segmented views of L-System vasculatures for an increasing number of 1186 

branching generations (left to right; number of generations indicated). (B) Projected view in 1187 

the (X,Y) plane of the architectures shown in (A).  1188 
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 1190 

Supplementary Figure 6. RSOM data pre-processing in MATLAB. Mean Intensity 1191 

Projection 2D view of an example RSOM tumour dataset along Z axis (A-C) and Y axis (D-F) 1192 

axis. From left to right: raw data (A,D), high-pass filtered data (B,E), Wiener filtered data (C,F). 1193 

The images are processed sequentially through this pipeline, using high-pass filtering to 1194 

remove echo noises and low-pass adaptive Wiener filtering to further remove stochastic noise 1195 

in the datasets. (G) Image after MATLAB pre-processing. (H) Image after background 1196 

correction with rolling ball subtraction in Fiji. The periodical horizontal line artefacts are mostly 1197 

removed after background correction. All images are 6 x 6 mm.  1198 
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 1200 

Supplementary Figure 7. Labelling of photoacoustic data for random forest classifier 1201 

training with ilastik. (A,B) Labels for the full vascular architecture of a given L-net were used 1202 

for training of ilastik. The region of the L-net within 10 voxels of the vessels was labelled as 1203 

background (dark orange) in addition to a three voxel thick planes (shown in black). The first 1204 

was located parallel to the z-axis, with the remaining two perpendicular at the top and bottom 1205 

of the image volume. (C) Labelling of string volumes and (D) of PDX tumour vessels for ilastik 1206 

training. For (C) and (D) background was labelled as blue and vessels labelled as yellow on 1207 

2D slices throughout the 3D volume stack. All images are 6 x 6 mm. 1208 

1209 
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 1210 

Supplementary Figure 8. Median filtering of segmented RSOM images. A 3D rendering 1211 

of the exemplar RSOM dataset (6 x 6 x 2.5 mm in X, Y and Z dimensions) used in 1212 

Supplementary Figure 6 is  shown. (A) Autothresholded dataset. (B) Autothresholded dataset 1213 

after 3D Median filtering, to remove impulse noise.  1214 

  1215 

A B

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2021. ; https://doi.org/10.1101/2021.11.22.469541doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.22.469541
http://creativecommons.org/licenses/by-nc-nd/4.0/


 67 

 1216 

 1217 

 1218 

Supplementary Figure 9. 3D U-Net architecture. The blue boxes indicate feature maps with 1219 

the number of channels denoted above. The input and output image volumes consist of 128 1220 

x 128 x 128 voxels. Concat = concatenation, Conv = convolution, ReLu = rectified linear unit, 1221 

Deconv = deconvolution.  1222 
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 1224 

 1225 

Supplementary Figure 10. U-Net training metrics and predictions from the fully-trained 1226 

architecture. Training metrics: (A) F1 loss and (B) F1 score for the training (blue) and 1227 

validation (orange) datasets. (C) Region-of-interest volumes calculated from the ground truth 1228 

(GT) versus the U-Net mask. (D) Computed blood volumes using the ground truth and U-Net 1229 

ROI estimations from (C). Note, the lines in (C) and (D) indicate a 1-to-1 relationship, and 1230 

blood volumes in (B) were calculated using our auto-thresholding segmentation method. 1231 
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