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Abstract  14 
Variant allele frequencies (VAF) encode ongoing evolution and subclonal selection in growing tumours. 15 
However, existing methods that utilize VAF information for cancer evolutionary inference are compressive, 16 
slow, or incorrectly specify the underlying cancer evolutionary dynamics. Here, we provide a proof-of-17 
principle synthetic supervised learning method, TumE, that integrates simulated models of cancer evolution 18 
with Bayesian neural networks, to infer ongoing selection in bulk-sequenced single tumour biopsies. 19 
Analyses in synthetic and patient tumours shows that TumE significantly improves both accuracy and 20 
inference time per sample when detecting positive selection, deconvoluting selected subclonal populations, 21 
and estimating subclone frequency. Importantly, we show how transfer learning can leverage stored 22 
knowledge within TumE models for related evolutionary inference tasks 𑁋 substantially reducing data and 23 
computational time for further model development and providing a library of recyclable deep learning 24 
models for the cancer evolution community. This extensible framework provides a foundation and future 25 
directions for harnessing progressive computational methods for the benefit of cancer genomics and, in 26 
turn, the cancer patient. TumE is publicly available for use at https://github.com/tomouellette/TumE.  27 
 28 
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Introduction 32 
Cancer is a disease characterized by unrelenting tissue growth and clonal evolution. During evolution, 33 
genetic and epigenetic aberrations provide the reservoir for dysfunctional cellular phenotypes that maintain 34 
a tumour’s replicative advantage, while, over time, fluctuating physiological and ecological properties within 35 
the tumour microenvironment drive the need for updated adaptations that sustain immortality1. Overall, the 36 
complex interplay between mutation accumulation and microenvironmental changes leads to a high degree 37 
of both cellular and genetic heterogeneity and, by proxy, composite subclonal structure in tumours2–4. 38 
Naturally, the desire to better understand the evolutionary and subclonal dynamics in growing tumour 39 
populations has become a major task for cancer genomics - with goals of forecasting tumour progression, 40 
developing adaptive evolutionary therapies, and deconvoluting the genetic architecture that drives 41 
adaptation3,5–8. 42 
 43 
However, a significant hurdle in understanding cancer evolution in vivo are the clinical constraints 44 
surrounding serial sequencing, through space or time. For this reason, tumour biopsies are primarily 45 
sequenced in bulk from a single site and at a single time point. Although multi-region and single-cell data 46 
are becoming increasingly utilized, single time point, bulk sequenced biopsies still represent the major 47 
accessible data source for precision genomics guided treatment9 and for studying cancer genomics and 48 
evolution in patients10,11. Given this limitation, a reasonable strategy for inferring evolution in single tumor 49 
biopsies has been to utilize theoretical population genetics to capture signatures of selection from the 50 
variant allele frequency (VAF) distribution7,12–17. The premise being that fitness-altering mutations will 51 
deterministically change in frequency over time, leading to characteristic and quantifiable deviations in the 52 
VAF distribution relative to some neutral evolutionary scenario18. 53 
 54 
VAF-based methods have been employed to differentiate between positive selection and neutral 55 
evolution12,13, to examine growth patterns19, to quantify subclonal fitness and time subclonal emergence7,15, 56 
and to build population genetics informed mixture models16 that account for neutral dynamics, that shape, 57 
to some extent, all tumour populations. With that said, existing VAF-based methods used to infer cancer 58 
evolution, although mechanistic and useful, have apparent limitations. For example, single statistics12,20,21 59 
are maximally compressive and cannot infer complex information, approximate Bayesian computation 60 
methods suffer from the curse of dimensionality and can be prohibitively slow due to a rate-limiting 61 
simulation step required for each sample7,22,23, and mixture models, used to identify subclonal 62 
populations16,24,25, are only implicitly connected to an underlying model of evolution and, until recently16, 63 
have been built under incorrect assumptions that have led to systematic overestimation in the number of 64 
subclonal populations in sequenced tumours. 65 
 66 
To address these limitations, we contribute a proof-of-principle synthetic supervised deep learning 67 
approach, TumE, for quantifying and classifying the evolutionary and subclonal dynamics in bulk sequenced 68 
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tumours biopsies using purity-corrected variant allele frequency (VAF) information from diploid genomic 69 
regions. By generating synthetic VAF distributions, as a proxy for evolutionary ground truth, from plausible 70 
simulations of tumour evolution, we were able to build inference models that accurately classify and quantify 71 
evolutionary (e.g. positive selection versus neutral evolution) and subclonal dynamics (e.g. subclone 72 
frequency) in real patient tumours while capturing uncertainty in our estimates, via a form of approximate 73 
Bayesian inference called Monte Carlo dropout26,27. Importantly, our method further highlights the power of 74 
utilizing deep learning for inference - namely exploiting stored knowledge via transfer learning. By recycling 75 
our models for new evolutionary prediction tasks, we reduce the computational burden associated with the 76 
generation of synthetic or simulated data. We validated our synthetic supervised learning approach in 77 
millions of synthetic tumours and applied TumE to 95 copy-number and purity corrected whole-genome 78 
(WGS) and whole-exome (WES) sequenced tumour biopsies.  79 
 80 

Results 81 

Inferring cancer evolution using synthetic supervised deep learning 82 
Synthetic supervised, or simulation-based, deep learning has been shown to be equivalent to amortized 83 
approximate inference under a generative model28. Therefore, by optimizing a neural network using realistic 84 
synthetic data x generated from a stochastic generative process p(x,z|𝚹), where 𝚹 indicates the prior or 85 
parameters that define the simulation and z indicates the latent variables generated during simulation, we 86 
can build inference models that approximate our true posterior of interest p(𝚹,z|x). In our case, by optimizing 87 
a neural network using synthetic VAF distributions sampled from p(x,z|𝚹), we can build inference models 88 
for evolutionary inference in sequenced tumour biopsies (Figure 1A-C; Methods).  89 
 

 
Figure 1. (a) TumE integrates a generative sampling process and stochastic simulation of cancer evolution to build well-specified 
synthetic variant allele frequency (VAF) distributions with respect to data observed in bulk sequenced tumour biopsies. Assuming 
copy-neutral diploid regions of tumour genomes, the generative sampling process uses the observation that neutral VAF distributions 
can be described by a power-law or Pareto neutral ‘tail’16,29 in addition to a dispersed clonal peak. By sampling empirically valid Pareto 
distributions, rapid realizations of the null hypothesis of neutral evolution encoded in the VAF distribution can be created (Methods). 
The stochastic branching process model of tumour evolution is then used to link parameters and latent states, relevant to positive 
subclonal selection, back to VAF distributions (Methods). (b) Synthetic supervised learning utilizes neural networks capable of 
handling the complete dimensionality of the simulated VAF distributions, x, to solve the inverse problem of identifying the evolutionary 
parameters and latent states, y, assigned to each synthetic VAF distribution. (c) We can then quantify model uncertainty using a 
computationally efficient form of Bayesian deep learning called Monte Carlo dropout26,27. Approximate posteriors are generated by 
performing T stochastic passes through the trained neural network. 
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To generate synthetic data that properly captured evolutionary dynamics in patient tumours, we 90 
implemented a simulation framework, i.e. a stochastic generative process p(x,z|𝚹), combining two 91 
complementary approaches to improve the speed and efficiency of synthetic data generation — one for 92 
tumours subject to positive selection and one for tumours evolving neutrally (Figure 1A). For growing 93 
tumours simulated with positive selection, we utilized a well-established framework of cancer evolution that 94 
models exponential tumour growth under a stochastic branching process7,12,13,15,19,30 and coupled this with 95 
a virtual biopsy procedure to account for sequencing noise observed in real patient tumours (adapted from 96 
ref7). In our model, we allowed for a completely stochastic arrival of driver mutations that multiplicatively 97 
increased the fitness of mutated subclones and tracked the frequency of each subclone until the time of 98 
virtual biopsy (Methods). In this study, we define a subclone as a subpopulation of cells with a fitness or 99 
growth rate advantage relative to the background population (Methods) and consider subclones detectable 100 
if they are between ~10 - 40% VAF (20 - 80% cellular fraction). For tumours that lacked selected subclones 101 
(neutrally evolving), we implemented a generative sampling process based on the observation that VAF 102 
distributions from tumours without positively selected subclones can be described by a power-law or Pareto 103 
distribution16,29 in conjunction with a dispersed clonal peak (Supplementary Figure 1). Concisely, this 104 
process involved i) sampling allele frequencies from empirically realistic Pareto distributions to generate 105 
the neutral power-law ‘tail’ in the VAF distribution, ii) adding additional diploid clonal heterozygous mutations 106 
at 50% VAF, and then iii) injecting additional sequencing noise under a beta-binomial model (Methods). In 107 
general, a complete VAF distribution indicative of positive selection, and computed from heterozygous 108 
diploid mutations, includes a neutral power-law tail12,16, a heterozygous clonal peak centered at ~50% VAF, 109 
and additional subclonal peak(s) in the intermediate frequency ranges (~10 - 40% VAF); whereas a neutrally 110 
evolving tumour, or one with undetectable selected subpopulations, lacks the characteristic subclonal 111 
peak(s) (Figure 1A). To ensure positively selected and neutrally evolving synthetic tumours were not out of 112 
distribution with each other given the alternate data generation approaches, we simulated synthetic tumours 113 
in pairs, assigning the neutral VAF distributions with equivalent parameters and mutations with respect to 114 
the paired positive selection simulation (Methods; pseudo algorithms and examples provided alongside 115 
Supplementary Figure 2 & 3).  116 
 117 
Using this framework, we generated approximately 40 million synthetic tumours across varying mutation 118 
rates, selection coefficients, and sequencing noise parameters. We selected broad simulation parameter 119 
ranges that were consistent with previous computational studies and empirically estimated values 120 
(Methods; Supplementary Table S1). By generating synthetic tumours using well-specified simulations 121 
(comparison of real and synthetic data outlined in Methods and Supplementary Figures 3 - 5), we were able 122 
to explicitly link each VAF distribution to the parameters and latent states that defined the underlying 123 
subclonal and evolutionary dynamics. We then used the millions of annotated synthetic VAF distributions 124 
to train hundreds of neural networks using a random hyperparameter search to make inferences on the 125 
evolutionary mode (positive selection or neutral evolution), the number of subclones (0, 1, or 2), and the 126 
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subclone frequency at borderline to optimal sequencing depths (50 - 250X) for evolutionary analysis in 127 
cancer genomics (Figure 1B; Methods). To capture model-based uncertainty in our estimates, we 128 
implemented a form of Bayesian approximation for deep learning called Monte Carlo (MC) dropout26,27 129 
(Figure 1C; Methods). We used MC dropout to mitigate overconfident estimates in cases of high uncertainty 130 
or broad approximate posteriors. In general, we structured both neural network training and prediction to 131 
favour the more parsimonious explanation of the data (fewer subclones and neutral evolution; Methods). 132 
We show how using a classification threshold based on a lower bound of the MC dropout approximate 133 
posterior helps mitigate model overconfidence across changing subclone mutation and frequencies in 134 
Supplementary Figure 6. Following training, we selected the top scoring models, for predicting the 135 
evolutionary mode, number  of subclones, and subclone frequency, for further validation (Methods).  136 
 137 
We outline the full synthetic supervised learning pipeline in Methods. In addition, we highlight that even 138 
though we model VAF distributions in patient tumours using point mutations from diploid regions, mutations 139 
in our framework, as with previous approaches7,13,16, are agnostic to the underlying functional alteration, 140 
e.g. missense, silent, driver or copy number driving selection in patient tumours. This is because genome-141 
wide linkage, a by-product of zero recombination, results in hitchhiking of any additional point mutations on 142 
the genetic background of any selected clone3,18.  143 
 144 

Comparison of synthetic supervised learning to existing methods 145 
To evaluate TumE performance on inferred estimates of selection, number of subclones, and subclone 146 
frequency, we simulated an additional ~2.8 million synthetic tumours under neutral evolution (0 subclones) 147 
and positive selection (1 or 2  detectable selected subclones) assessing the impact of variable sequencing 148 
depths (50 - 250x coverage) and read count overdispersion (0 - 0.3 rho) (Methods). We first compared 149 
TumE against frequency-based summary statistic approaches for differentiating between neutral evolution 150 
and positive selection and found that TumE significantly outperforms recently developed VAF summary 151 
statistics12 (two-sided Wilcoxon test, p = 2.7 x 10-12) as well as common population genetic summary 152 
statistics20,21 (two-sided Wilcoxon test, p = 1.9 x 10-8), based on AUROC (Figure 2A). Further, TumE 153 
outperforms each statistic individually when compared across all sequencing depth and overdispersion 154 
combinations analyzed here (ROC analysis; Supplementary Figure 7). 155 
 156 
We next compared TumE against the only mixture model approach, MOBSTER16, that explicitly and 157 
correctly takes into account the neutral dynamics within sequenced tumour VAF distributions to detect 158 
subclones. We found that TumE provides comparable or improved performance for predicting the number 159 
of subclones (precision-recall, Supplementary Figure 8) and for predicting subclone frequency (Figure 2B; 160 
correlation and mean absolute percentage error, Supplementary Figure 9) across all empirically relevant 161 
depth (50 - 250x coverage) and read count overdispersions (0 - 0.003 rho) combinations. However, as 162 
expected, we found that the performance of TumE and MOBSTER both degrade as sequencing depth 163 
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decreases (≤ 75x coverage) and overdispersion increases (≥ 0.01) under a beta-binomial sequencing noise 164 
model (Supplementary Figure 8 & 9). Furthermore, additional analysis of subclone frequency estimates in 165 
the 2 subclone setting revealed that as inter-subclone distance increases, i.e. overlap of subclonal peaks 166 
decrease, the mean percentage error for predicting the frequency of both the lowest and highest frequency 167 
subclone decreases towards zero (Supplementary Figures 10 - 12). 168 
 

 
Figure 2 (a) In a cohort of 2.8 million synthetic tumours, TumE outperformed all existing common population genetic20,21 and cancer 
evolution7,12 specific summary statistics when differentiating between positive selection and neutral evolution, based on AUROC 
(two-sided Wilcoxon test). (b) Further, for predicting the true frequency of selected subclones, TumE provides comparable or better 
performance relative to the current state-of-the-art mixture model MOBSTER16 that properly accounts for neutral dynamics in tumour 
populations. The panel shows correlation coefficient (r) between the true and predicted subclone frequency in 80,000 synthetic 
tumours sequenced at 150x mean sequencing depth. (c) In an orthogonal dataset of 150 synthetic tumours16 with either 0 or 1 
detectable subclones, TumE was significantly faster at estimating the number of subclones (two-sided Wilcoxon test) than existing 
mixture model based methods sciClone24 and MOBSTER16 (measured in inference time per sample). In addition, only TumE and 
MOBSTER consistently identified the correct number of subclones, as both methods directly account for the neutral dynamics 
observed in tumour populations. (d) TumE estimates in a synthetic tumour sequenced at 120x mean sequencing depth and a 
subclone at 54% cellular fraction. 
 
Given our simulation framework was based on certain approximating assumptions to improve 169 
computational speed and efficiency (namely small population size and no cell death; outlined in Methods), 170 
we sought to perform additional validation of evolutionary estimates in an alternative dataset of synthetic 171 
tumours16. The orthogonal dataset, described in Caravagna et al. 202016, consisted of 150 synthetic 172 
tumours, 40 effectively neutral and 110 with one detectable subclone (between 10 - 45% VAF), sequenced 173 
to 120x depth and grown to a population size of >108 cells at birth rate of 1 and death rate of 0.2. To frame 174 
our predictions relative to existing methods, we applied TumE, MOBSTER, and a variational Bayesian 175 
mixture model sciClone24 to the synthetic dataset. To make comparisons fair, we limited the maximum 176 
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number of subclonal cluster assignments to 2 for both MOBSTER and sciClone, as this was the upper 177 
bound on TumE estimates (Methods). For sciClone, this meant setting the maximum number of mixture 178 
components to 4 (neutral tail, 2 subclones, and a clonal peak) as sciClone doesn’t properly account for 179 
neutral dynamics (Pareto tail) observed in sequenced tumour populations. Both TumE and MOBSTER 180 
consistently identified the correct number of detectable subclones in the majority of cases while sciClone 181 
systematically overestimated the number of subclones, even after correcting estimates for the clonal peak 182 
and neutral tail (Figure 2C). However, relative to both sciClone and MOBSTER, TumE provided orders-of-183 
magnitude faster estimates (two-sided Wilcoxon test, p < 2.2 x 10-16, Figure 2C), reducing run times per 184 
sample from minutes to ~1 second. We provide individual estimates with TumE for each of the 150 synthetic 185 
tumours, and an additional 750 synthetic tumours of variable sequencing depth from ref16, in Supplementary 186 
Figures 13 & 14. We provide an example TumE output for  a synthetic tumour with a single detectable 187 
subclone in Figure 2D. 188 
 189 
In this study, we note that the birth and death rate were set to fixed values (birth rate = log(2), death rate 190 
=0, in line with ref7) to additionally improve the computational efficiency of the stochastic simulations of 191 
positively selected tumour populations. Therefore, one additional factor that may impact the accurate 192 
detection of selection and subclones with TumE is variable birth and death rates in growing tumours. For 193 
example, an elevated cell death can lead to an increase in the number of passenger mutations that are 194 
swept to higher frequencies during subclonal selection. In regards to the VAF distribution, this elevated 195 
number of mutations ‘trailing’ the subclonal peak may obscure lower frequency subclones or, alternatively, 196 
lead to spurious identification of additional subclones due to an elevated number of neutral mutations 197 
entering the subclonal frequency range. To assess the impact of variable growth rates, we generated an 198 
additional 6 million synthetic tumours across 26 different birth and death rate combinations (simulation 199 
parameters outlined in Supplementary Table S1). Overall, we find that our estimates are robust to changes 200 
in tumour growth rates. Any errors that do occur only appear to increase the number of parsimonious 201 
explanations of the data (e.g. classifying 2 subclones as 1; Supplementary Figure 15). In addition, the 202 
prediction of subclone frequency also remained consistent across all the birth and death rate combinations 203 
evaluated here (Supplementary Figure 16).  204 
 205 

Analysis of whole-genome and exome sequenced tumour biopsies  206 
To make the utility of synthetic supervised learning concrete, we first evaluated TumE in ‘gold-standard’ 207 
tumour biopsies commonly used to evaluate mixture model based approaches, namely a deep sequenced 208 
(~320x coverage, 90.7% purity) acute myeloid leukemia (AML) sample from Griffith et al.31 and a deep 209 
sequenced (~226x coverage, 71.2% purity) breast adenocarcinoma sample retrieved from the pan-cancer 210 
analysis of whole genomes (PCAWG)11 but originally from ref32. In both cases, we recovered the correct 211 
evolutionary mode, number of subclones, and subclone frequencies (Figure 3A & 3B). In addition, because 212 
we provide accurate subclone frequency estimates, we performed heuristic clustering of the clonal, 213 
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subclonal, and neutral tail mutations by using the expected variance under a binomial sequencing noise 214 
model (Methods). This heuristic approach facilitates subclonal clustering at almost zero additional 215 
computational cost (as observed in the total runtime per sample of ~1s).  216 
 

 
Figure 3. TumE estimates in deep whole-genome or whole exome sequenced tumour biopsies. (a) A deep-sequenced primary 
acute myeloid leukemia (AML) sample from Griffith et al.31. TumE estimated two subclones, a neutral tail, and a clonal peak. 
P(Selection) indicates the probability of selection. P(0, 1, 2 subclone) indicates the probability estimate for the number of subclones. 
Each probability estimate is provided with the 89% equal-tailed interval generated from 50 Monte Carlo dropout samples. A sample 
is labeled positive selection if the lower bound of the 89% interval is above P = 0.5, and the number of subclones is assigned to a 
sample if the lower bound of the 89% interval is greater than 0.5 (Methods). Subclone frequency estimates are shown with the 
complete approximate posterior. (b) A deep-sequenced breast adenocarcinoma from the pan-cancer analysis of whole genomes11 
(PCAWG). TumE estimated two subclones, a neutral tail, and a clonal peak. (c) We applied TumE to a single mismatch repair 
deficient (MMR) gastro-esophageal tumour sequenced across 5 spatially distinct regions. We first identified an intermediate 
frequency subclone in region P with TumE. (d) Under the hypothesis that TumE could reveal the fixation process of region P 
subclones in other regions, we annotated each of the remaining regions with the clonal, subclonal, and neutral tail mutations 
identified in region P. We identified ongoing subclonal selection in 2 out of the 4 remaining regions (N and T) consistent with an 
increase in frequency of subclonal and neutral tail mutations from region P. In cases where neutral evolution was the most 
parsimonious explanation, we observed complete fixation of the subclonal region P mutations (region AE and H). 
 
We next evaluated TumE in whole-exome sequenced (WES) mismatch repair deficient (MMR) gastro-217 
esophageal tumours biopsied across multiple spatially distinct regions (collected from von Loga et al.33). As 218 
evolutionary inference requires high-quality genomes, we only included samples that had a mean effective 219 
coverage (mean sequencing depth * purity) greater than 50x and a minimum purity of 50%. We note that 220 
~70x mean sequencing depth has been suggested as the minimal threshold for accurate estimates7,16, as 221 
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we also observed (Supplementary Figures 8 & 9). Following removal of low quality biopsies, we retained 222 
biopsies from two tumours with one tumour retaining 5 spatially distinct (WES) biopsies. TumE estimates 223 
in the 5 spatially distinct biopsies from a single tumour revealed the fixation process of a positively selected 224 
subclone, from intermediate frequency to metastasis fixation (Figure 3C & 3D). In addition, the application 225 
of TumE to multi-region samples highlighted the ability of TumE to pick up signatures of selection not directly 226 
encoded in distinct subclonal peaks but in the asymmetry of the diploid heterozygous cluster (region N & 227 
region T, Figure 3D). 228 
 229 
Finally, we evaluated TumE in 85 whole-genome sequenced (WGS) tumour biopsies, spanning 8 different 230 
cancer types, retrieved from the pan-cancer analysis of whole genomes (PCAWG). In total, 38.8% of 231 
samples showed evidence for positive, or subclonal, selection whereas the majority, 61.2%, were 232 
adequately described by neutral evolutionary dynamics (Supplementary Table S2). Alternative methods 233 
applied to large cancer cohorts, including PCAWG, have estimated that as few as 3%16 to upwards of 96%34 234 
of samples show evidence for ongoing subclonal selection. The discrepancy is likely explained in modeling 235 
approaches. For example, low estimates are a by-product of utilizing mixture models that rely on distinct 236 
and ‘clean’ subclonal peaks whereas high estimates likely occur from not taking into account the neutral 237 
dynamics in tumour evolution. In contrast, TumE generates a non-linear encoding of the VAF distribution, 238 
extracting novel representations that increase accuracy while simultaneously accounting for the correct 239 
neutrality evolutionary dynamics observed in tumour populations. All samples analyzed in this study, 240 
including MMR gastro-esophageal and deep-sequenced AML, are outlined in Methods and Supplementary 241 
Figure 16 - 18.  242 
 243 

A transfer learning framework to infer additional evolutionary 244 
parameters 245 
One drawback of simulation-based deep learning approaches is the requirement for the repeated 246 
generation of synthetic data for training. Although this allows for fast inference at test time through 247 
amortization, altering the models assumptions or changing the parameters being inferred generally requires 248 
simulating a completely new set of data and training an entirely new set of models - a computationally 249 
expensive process. Practically, overcoming this limitation would provide substantial reductions in the 250 
amount of time and data needed to build accurate models and would make simulation-based approaches 251 
more accessible to the general user. Therefore, we hypothesized that our trained deep learning models 252 
could be used as a source of ‘stored’ knowledge for related evolutionary inference tasks that also used the 253 
VAF distribution as input.  254 
 255 
To explore this possibility, we implemented a transfer learning pipeline, based on domain adaptation35,36, 256 
to make inferences on additional parameters using a previously developed cancer evolution simulator, 257 
TEMULATOR37, that was built under a modified set of assumptions relative to our multiplicative fitness 258 
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framework (Methods, viable parameter combinations for detectable subclones outlined in Supplementary 259 
Figure 20). In this study, we employ open set domain adaptation36 where the structure of the input space, 260 
i.e. the VAF distribution, is retained whereas the outputs, the evolutionary tasks, are modified. Briefly, this 261 
pipeline involved generating new synthetic tumour sequencing data using TEMULATOR, performing 262 
  

 
Figure 4. (a) Transfer learning approach utilizing ‘renovated’ pre-trained neural networks for alternative evolutionary inference tasks 
in tumour cellular populations. TEMULATOR is an alternative cancer evolution simulator that generates synthetic tumour 
sequencing data by deterministically initiating subclones at user specified fitnesses and time points37. (b) Pre-trained models provide 
significant reductions in testing loss, over non-pretrained models, when updating neural network weights on reduced dataset size of 
500,000 synthetic VAF distributions (~1.25% of the total dataset size used to originally train TumE). (c) TumE transfer (TumE-T) 
effectively recovers evolutionary parameters from TEMULATOR simulations (75 - 200x mean sequencing depth, 100% tumor purity) 
with mean and median percentage errors less than 10% in all cases. A full description of performance across variable sequencing 
depths, mutation rates, and subclone frequencies is provided in Supplementary Figure 23. (d) We find consistency between the 
subclone cellular fraction estimated by TumE-T and the subclone frequency (cellular fraction / 2) estimates generated from TumE, 
indicating nearly identical tasks are easily transferred through pre-training. (e) Per genome per division mutation rate estimates in 95 
WES and WGS samples from von Loga et al.33 (MMR-GE = mismatch deficient repair gastro-esophageal cancer), Griffith et al.31 
(AML = acute myeloid leukemia), and PCAWG11. (f) Subclone fitness (1+s) estimates (relative growth rate advantage of subclone 
over background population) and (g) subclone emergence time estimates in 30 tumour biopsies identified with 1 subclone in the 
PCAWG data. Subclone fitness and emergence time estimates were scaled to a final tumour population size of 1010 cells, similar to 
ref7. PCAWG sample identifiers are provided on the x-axis. Boxplots for subclone fitness and emergence time indicate median 
estimate and 1.5x interquartile range (whiskers) over 500 Monte Carlo dropout samples from TumE-T.  
 
architecture ‘renovation’ on pre-trained TumE neural networks to replace existing task-specific branches 263 
with new ones, and re-tuning the neural network weights and hyperparameters for optimization on the new 264 
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evolutionary inference tasks (Figure 4A). The evolutionary inference tasks included predicting subclone 265 
fitness, subclone emergence time, mutation rate, and subclone cellular fraction (subclone frequency * 2). 266 
To highlight the benefit of using pre-trained models on related evolutionary inference tasks, we opted to 267 
update network weights with only 500,000 synthetic VAF distributions, representing only a fraction (~1.25%) 268 
of the data used in the original training of TumE. Each VAF distribution was generated by simulating 269 
synthetic tumours with TEMULATOR at a birth rate of 1, death rate of 0.2, final population size of  ~104, 270 
and with either 0 or 1 detectable subclone. The remaining parameters, such as mutation rate, were 271 
uniformly sampled from empirically plausible ranges (Supplementary Table S3). 272 
 273 
Initially, we used the 500,000 synthetic VAF distributions to compare pre-trained vs non-pretrained models 274 
for predicting the evolutionary and subclonal parameters in the presence of 1 subclone. To ensure valid 275 
comparisons, we performed a random hyperparameter search, tuning the learning rate and number of fully 276 
connected layers in the new task specific branches, across both the pre-trained and non-pretrained model 277 
groups. Both groups shared identical neural network architectures. When initially evaluating ~300 pre-278 
trained and non-pretrained models on an external test set of 3000 synthetic tumours, we found that 279 
pretrained models obtained a significantly lower testing loss (mean absolute error across all tasks, two-280 
sided Wilcoxon test, p < 2.22 x 10-16, Figure 4B). Further, when evaluating the top performing pre-trained 281 
and non-pretrained models on an additional 400,000 synthetic tumours, pre-trained models obtained 282 
significantly lower mean percentage errors, relative to non-pretrained models, for predicting the mutation 283 
rate, subclone emergence time, subclone fitness, and subclone frequency (two-sided Wilcoxon test, p < 284 
1.7 x 10-8 on all tasks, Supplementary Figure 21).  285 
 286 
Next, we selected the top performing pretrained model, TumE transfer (TumE-T), for further validation. We 287 
initially found a modest yet systematic underestimation of the mutation rate (~50% mean percentage error). 288 
However, this was easily corrected with a post-hoc adjustment by re-fitting the predicted mutation rate to a 289 
set of 1000 synthetic tumours using polynomial regression (degree = 2). Evaluating the updated mutation 290 
rate estimates on a holdout set of 100,000 synthetic tumours validated the post-hoc adjustment 291 
(Supplementary Figure 22). Overall, we were able to effectively recover all evolutionary parameters in the 292 
100,000 synthetic tumours with mean and median percentage errors lower than 10% in all cases (Figure 293 
4C). The performance was also consistent across sequencing depths and mutation rates, however, as 294 
expected, we could only effectively assign subclonal parameters, such as fitness, at detectable subclone 295 
frequencies (~10 - 40% VAF; Supplementary Figure 23).  296 
 297 
Applying TumE-T to the 95 WGS and WES samples described above, we found strong correlation between 298 
predicted subclone cellular fraction and subclone frequency estimated by the original TumE models, 299 
suggesting nearly identical tasks are easily transferred to new source-target distributions when using pre-300 
trained models (Figure 4D). With respect to mutation rates, estimates were consistent with the general 301 
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trends observed empirically11,33 - with mismatch repair deficient tumours showing extremely high mutation 302 
rates (>100 per genome per division) and acute myeloid leukemia showing very few (Figure 3E). For 303 
subclone fitness and subclone emergence time estimation, we had to take into account the difference 304 
between simulated and true population sizes7,19. In this regard, we rescaled our estimates to account for a 305 
true tumour population size of 1010, similar to ref7. With rescaling, TumE-T subclone fitness estimates, 306 
defined as the relative growth advantage of the selected subpopulation over the background population, 307 
ranged from ~1.9 to 2.6 (Figure 4F) while subclone emergence time estimates ranged ~20 to 24 tumour 308 
doublings (Figure 4G) in samples with ongoing subclonal selection. We note that emergence times of ~20 309 
to 24 tumour doublings represent approximately 0.001 to 0.16% of the final tumour volume, which is 310 
consistent with theory and empirical evidence suggesting subclones must arise early during tumour growth 311 
to reach detectable frequencies7,14,17,38. 312 
 313 

Discussion 314 
In this study, we developed a synthetic supervised learning approach, TumE, for cancer evolutionary 315 
inference. Overall, the synthetic supervised learning approach, TumE, provides four major advantages. 316 
First, by generating synthetic data using models of cancer evolution, we are able to explicitly account for 317 
the neutral and non-neutral evolutionary dynamics observed in tumour VAF distributions7,12,16, thereby 318 
avoiding systematic overestimates in the number of subclones due to misclassifying low frequency neutral 319 
‘tails’. Second, by using neural networks that can naturally handle high-dimensional VAF distributions as 320 
input, we avoid information loss that comes with compressing data into a single statistic, or distance metric, 321 
prior to inference, improving model accuracy across all evolutionary inference tasks considered here. Third, 322 
by separating simulation and model training from prediction, via amortized inference, we significantly 323 
decrease inference time per sample, reducing time from minutes to seconds relative to existing methods. 324 
Finally, we show how we can use open set domain adaptation35,36, a form of transfer learning, to recycle 325 
our models for alternative evolutionary inference tasks that use VAF distributions as input - drastically 326 
reducing the number of synthetic samples and computational time required for further model development. 327 
Our library of pre-trained models benefits all researchers building inference machines for cancer evolution 328 
prediction, even in a non-deep learning setting. For example, providing fast, evolutionary-informed peak 329 
initializations for mixture model based methods. 330 
 331 
We mention some current limitations. Firstly, as a neural network requires optimization on a finite, static set 332 
of data, estimates, without transfer learning, are constrained to a pre-defined search space. In this study 333 
we focused on cancer evolution in the context of 2 detectable selected subpopulations captured from 334 
frequency information in diploid genomic regions. Although multiple studies have shown it’s rare to detect 335 
2, or even 1, subclones7,14,16,17 in noisy one-dimensional VAF distributions, it’s possible we do not capture 336 
extreme cases of selected subclonal heterogeneity. Furthermore, focusing on diploid regions may obscure 337 
the detection of ongoing selection if mutations are concentrated in copy number aberrated segments. 338 
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However, constraining analyses to diploid regions provides a strong baseline for model development, while 339 
genome-wide linkage provides biological justification for analyzing diploid regions. Finally, our model of 340 
tumour evolution was structured to reflect the biopsy material available here, namely bulk sequenced single 341 
site and time point data. We note that tumour growth over space and time can have profound effects on the 342 
detectability of selection39,40. In this regard, TumE estimates can still be applied in a localized setting and 343 
aggregated globally. Nevertheless, more structured ways of integrating a synthetic supervised learning 344 
approach with multi-region data are necessary for maximizing utility. 345 
 346 
Altogether, in this study, we exhibit how coupling well-specified synthetic data with neural networks provides 347 
fast and accurate amortized estimates that go beyond the current paradigm of single statistics, mixture 348 
models, and approximate Bayesian computation for classifying and quantifying ongoing selection in tumour 349 
populations. The integration of generative and simulation-based models of cancer evolution with modern 350 
deep learning frameworks facilitates robust and efficient estimates of evolutionary and subclonal dynamics 351 
in growing tumour populations. This extensible framework provides future avenues for harnessing 352 
progressive computational methods for the benefit of cancer genomics and, as an end goal, the cancer 353 
patient. 354 
 355 

Methods 356 

Synthetic data generation 357 
We generated synthetic data that encoded the evolutionary dynamics observed in the variant allele 358 
frequency (VAF) distribution (namely the neutral tail, subclones, and clonal peaks) using two 359 
complementary approaches dependent on the underlying evolutionary mode - one for tumors subject to 360 
positive selection and one for tumours evolving neutrally.  361 
 362 
For tumours simulated under positive selection, we utilized a well-established framework of cancer 363 
evolution that models exponential tumour growth under a stochastic branching process7,12,13,15,19,30 and 364 
coupled this with a virtual biopsy procedure to account for sequencing noise observed in whole-365 
genome/whole-exome sequenced tumours from real patient tumours. For implementation, we adapted a 366 
previous cancer evolution framework developed by Williams et al.7 Briefly, this model simulates 367 
exponentially growing tumour populations under a stochastic branching process using a rejection-kinetic 368 
Monte Carlo (MC) algorithm, where a given cell accrues mutations at some Poisson-distributed per 369 
genome per division rate µ and divides or dies with probabilities proportional to its birth or death rate. This 370 
branching process continues by randomly sampling existing cells, weighted by cellular fitness, until a final 371 
tumour population size N, sufficient to recapitulate the features of empirical VAF distributions, is reached. 372 
Following completion of each simulation, a virtual biopsy procedure to account for sequencing noise 373 
observed in real patient VAF distributions is implemented. In this sequencing noise model, the observed 374 
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frequency for a given mutation (VAFobs) relative to the true underlying frequency (VAFtrue) in a tumour of 375 
population size N is given by  376 

 377 

𝑉𝐴𝐹"#$ = 𝑅"#$	/	𝐷"#$where 378 
 379 

𝐷"#$	 ∼ 𝐵𝑖𝑛(𝑛	 = 𝑁, 𝑝	 = 	&
'
), 𝑅"#$ ∼ 𝐵𝑒𝑡𝑎𝐵𝑖𝑛(𝑛	 = 𝐷"#$, 𝑝	 = 𝑉𝐴𝐹()*+, 𝜌)  380 

 381 
where D total indicates the total observed read depth, R indicates the number of observed reads covering 382 
the mutation, VAFtrue indicates the true population frequency of the mutation, and ρ indicates the 383 
overdispersion parameter for the beta-binomial.  384 
 385 
In this study, we modify the Williams et al7 framework in two ways. Firstly, we implement a fully stochastic 386 
arrival of subclones (driver mutations) rather than deterministically injecting a subclone with a specified 387 
fitness at a given time t. Secondly, the fitness of a subclone or cell is dictated by the multiplicative fitness 388 
of all driver mutations. Therefore, when a driver mutation does occur, based on some probability pd, it is 389 
assigned a selection coefficient s > 0 sampled from an exponential distribution which increases the cell’s 390 
growth rate (b - d) by a factor of (1 + s) i.e. the fitness. In the case of multiple driver mutations, the fitness 391 
of a given cell increases multiplicatively i.e. 𝛱(1 + 𝑠). Although this random injection of driver mutations is 392 
more computationally intensive, it implicitly captures a wider variety of potential frequency distributions 393 
without hard coding additional parameter settings - for example, when additional subclones, beyond 1 or 394 
2, are present at undetectable frequencies (e.g. >40% or <10%). In this study, we consider up to 2 395 
detectable subclones but allow for up to 3 selected subclones to be present at the time of biopsy (see 396 
Simulation Parameter Selection below for more details). 397 
 398 
For tumours simulated under neutral evolution, we use a generative sampling process for producing 399 
neutral VAF distributions, rather than using the stochastic simulation framework. We implement this 400 
sampling process because we use a small N population size approximation to generate VAF distributions 401 
in our stochastic simulations (using a small N allows us to increase simulation speed and efficiency, which 402 
makes generating millions of synthetic VAF distributions practically feasible). Although using a small N is 403 
reasonable since the VAF distribution contains no information on population size7 (a final simulated 404 
tumour population size N of 103 - 104 has been shown to be sufficient to recapitulate the properties of 405 
empirical VAF distributions7), neutral stochastic simulations have a higher probability of returning late-406 
occurring spurious subclones due to chance or, in empirical terms, genetic drift. Given the quality of the 407 
synthetic data impacts deep learning model performance, we utilize the fully synthetic generative 408 
sampling scheme to avoid misspecified data relative to the expected null model of neutral evolution. 409 
 410 
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The neutral generative sampling process we implement is based on the observation that neutrally evolving 411 
asexual, non-recombining populations, such as cancer populations, have VAF distributions (excluding 412 
clonal mutations) that follow a power-law or Pareto distribution16,29. Therefore, a VAF for any mutation i in 413 
the neutral tail of a frequency distribution can be realized by sampling 414 
 415 

𝑉𝐴𝐹1 ∼ 𝑓(𝑥	|	𝛼,𝑚) with 𝑓(𝑥	|	𝛼,𝑚) 	= 𝛼𝑚2𝑥3(241) 416 
 417 
where ɑ is the shape parameter and m the scale parameter for the Pareto distribution.  418 
 419 
Given that the generative process for neutral tails is known16,29, if we have empirically valid shape and scale 420 
parameters that define the Pareto distribution, we can generate realizations of neutral allele frequency 421 
distributions that are well-specified. Previously, Caravagna et al16 fit Pareto distributions (and beta 422 
distributions) to thousands of patient tumours extracting both shape and scale parameters. We used these 423 
Pareto distribution fits from diploid regions of patient tumours with greater than 50x sequencing coverage 424 
to build sampling distributions for the shape and scale parameters. We then used these sampling 425 
distributions to generate allele frequencies under a Pareto distribution and, in addition, randomly assigned 426 
clonal mutations to each neutral synthetic VAF. In practice, as previously noted16, the scale parameter can 427 
be set to the minimum observed frequency as this is the maximum likelihood estimate for the Pareto 428 
distribution.  429 
 430 
We note that we added additional noise to synthetic neutral distributions to better account for variability 431 
observed in empirical data in two ways. Firstly, for any synthetically generated neutral distribution, we 432 
randomly trimmed the low frequency neutral tail at a frequency f (10 - 30% VAF) with some probability Ptrim 433 

!"#$%&'%#We perform this step as many VAF distributions observed in patient biopsies lack the characteristic 434 

neutral tail, even at high sequencing depth16. By randomly trimming neutral synthetic VAF distributions, we 435 
tend to more parsimonious explanations of the data, with respect to positive selection, when assessing 436 
incomplete and potentially noisy VAF distributions. Secondly, we randomly shifted the heterozygous, diploid 437 
clonal peak (that should be centered at 50% VAF) to between 45 and 50% VAF. We perform this random 438 
perturbation of the clonal peak to avoid overestimating positive selection when patient samples have 439 
incorrect tumour purity estimates that may have led to spurious elevation in the number of subclonal 440 
mutations.  441 
 442 
Finally, to ensure positively selected and neutrally evolving tumours were not out of distribution with each 443 
other given the alternate data generation approaches, we built an aggregate simulation framework that 444 
generated neutral and positive synthetic tumours in pairs - assigning the neutral VAF distributions with 445 
parameter-matched sequencing noise and equivalent clonal and non-clonal mutations with respect to the 446 
paired positive selection simulation.  447 
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 448 
The synthetic data generation algorithms are outlined in supplementary, and code is available at 449 
https://github.com/tomouellette/CanEvolve.jl.  450 
 451 
Simulation parameter selection 452 
Each stochastic simulation described above was parametrized by the mutation rate (per genome per 453 
division), the probability a mutation was a driver, the mean for the exponential selection coefficient 454 
distribution, the number of clonal mutations in the founder cell, the maximum number of driver mutation 455 
events, the final tumour population size, the sequencing depth, and the sequencing overdispersion. We 456 
chose simulation parameters that were consistent with previous studies7,13,16,30 and that captured the 457 
expected qualitative and quantitative attributes of VAF distributions observed empirically (Supplementary 458 
Table S1). All non-fixed parameters were uniformly random sampled during the development of the 459 
synthetic datasets. To improve computational speed and efficiency in our stochastic simulations, we used 460 
similar simulation approximations as ref7. Namely, a small N population size approximation (where we 461 
simulated data using a final population size of 103) and a fixed growth rate (where the birth rate was set to 462 
log(2) and the death rate was set to 0). In addition, as we were focused on differentiating between neutral 463 
evolution and selection at effective sequencing depths of ~50 - 250x, we constrained our search space to 464 
1 or 2 detectable subclones present between 10 - 40% VAF. We implemented this constraint as (i) it is 465 
extremely rare to detect 3 subclones in a one-dimensional VAF distribution as each subclone has to be >5-466 
10% VAF (10-20% cellular fraction) for detection, (ii) most frequency-based methods or studies show limited 467 
evidence for detecting >1 subclone at 50 - 250x coverage in a single time point, one-dimensional VAF 468 
distribution16, and (iii) below greater than roughly 10% VAF subclones merge with the neutral tail and above 469 
roughly 40% VAF subclones begin to merge with the clonal peak when considering diploid regions. 470 

 471 

Synthetic supervised learning 472 
As outlined in the results, synthetic or simulation-based deep learning has been shown to be equivalent to 473 
amortized approximate inference under a generative model28. Therefore, by optimizing a neural network 474 
using synthetic VAF distributions sampled from a stochastic generative process p(x,z|𝚹) (i.e. the synthetic 475 
data generation scheme defined above), we can build fast approximate inference models for evolutionary 476 
inference. We describe the synthetic supervised workflow from feature generation to prediction below. 477 
 478 
Input representation. For each simulation, we converted mutation frequencies into a VAF distribution 479 
(histogram) of length k that had a fixed range between 2% and 50% VAF. To implicitly condition our model 480 
on mean sequencing depth (readily available from sequenced tumour biopsies), we only included mutations 481 
above a frequency cutoff based on the variance of a binomial sequencing noise model. We note that this 482 
conditioning step is arbitrary and simply acts as a way to improve model optimization during training. In 483 
general, a simple approach to conditioning a neural network on a measurable variable involvings finding a 484 
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reasonable encoding within the feature representation. For example, an alternative approach instead of 485 
using a frequency cutoff would be to concatenate the sequencing depth to the input feature vector. Overall, 486 
each input feature vector was created by counting mutations into k bins where each bin had a width w of 487 

(50 - 2% VAF) / k and a lower frequency cutoff defined by 𝑓!"# + (27𝑓!"#𝑐[1 − 𝑓!"#]	)	/	𝑐 where falt is the 488 
minimum alternative reads to call a mutation divided by mean sequencing depth and c is mean sequencing 489 
depth. For all model development and training, we generated and concatenated two feature vectors with k 490 
= 64 and k = 128 for each simulation to capture varying levels of information depending on the sparsity of 491 
mutations in a given synthetic tumour. 492 
 493 
Model search. We initially developed neural networks for three single or multi-task inference problems: (i) 494 
evolutionary mode (neutral evolution or positive selection) and number of subclones classification (Mms), (ii) 495 
frequency prediction for a single subclone (M1s), and (iii) frequency predictions for two subclones (M2s). For 496 
each multi-task, we performed a random hyperparameter search using a one dimensional (1D) 497 
convolutional neural network (CNN) with task-specific fully connected branches as a base architecture. For 498 
the random search, the hyperparameters included the number of convolutional layers (1 - 20) the task-499 
specific branch type (fully connected or global average pooling), the number of feature maps/channels for 500 
each convolutional layer (4 - 32), the convolutional kernel width for the left trunk, right trunk, and task-501 
specific branches (1 - 17, odd), the learning rate (10-7 - 10-3), and the patience for early stopping (3 - 5). To 502 
tend toward higher precision and lower recall for predicting selection, we also tuned a penalty term on the 503 
positive class in the binary cross entropy loss. Batch size was fixed to 256. Hardswish activations were 504 
used at each hidden layer. Dropout, fixed at a probability of 0.5, was added after each layer to allow for 505 
downstream application of uncertainty estimation (see Uncertainty Estimation below). We note that we also 506 
explored inferring subclone emergence time under a multiplicative fitness model, but could not effectively 507 
recover parameters likely due to a complex non-linear relationship between subclonal fitness and 508 
emergence time. However, we provide these estimates as an ‘experimental’ output in the TumE python 509 
package (links below).  510 
 511 
Model training. We trained over 150 models for each evolutionary inference task(s) using an Adam 512 
optimizer, minimizing the cross-entropy loss for classification tasks (Mms) and the L1 loss for regression 513 
tasks (M1s and M2s), on approximately 40 million synthetic tumours simulated with parameters outlined in 514 
Supplementary Table S1. For training, each batch consisted of 20,000 unique simulations and training was 515 
stopped after 4 epochs or when early stopping, updated after each batch, was activated based on specified 516 
patience. To avoid overrepresentation of any subclone frequency during training, we re-balanced positive 517 
selection simulations before each batch to have an equal number of subclones at each frequency up to two 518 
decimal places (e.g. 0.11 or 11% VAF). For two subclone simulations, we re-balanced simulations based 519 
on the distance between subclones (fsubclone2 - fsubclone1) and only included simulations where the distance 520 
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between subclones was >5% VAF. Note that only positive selection simulations were used to train M1s and 521 
M2s.  522 
Model selection. Using an independent test set of one hundred thousand simulations, we then selected 523 
the top models across each multi-task for further validation. For Mms, we selected models that maximized 524 
the mean accuracy across the evolutionary mode, P(Selection), and number of subclones, P(N subclones), 525 
classification, and favoured models that assigned a larger penalty term to misprediction of positive selection 526 
(i.e. a lower weight to the positive class in the binary cross entropy loss). For the regression models M1s 527 
and M2s, we selected models that minimized the mean absolute error between the true and predicted 528 
subclone frequency on the test set while also ensuring that predictions properly extrapolated across the 529 
entire simulated parameter range (e.g. ~10 - 40% VAF for subclone frequencies). 530 
 531 
Uncertainty estimation. To capture model-based uncertainty in our estimates, we implemented a form of 532 
Bayesian approximation for deep learning called Monte Carlo (MC) dropout26,27. Conceptually, MC dropout 533 
captures model-based uncertainty by taking advantage of the relationship between model averaging and 534 
standard dropout - a network with dropout at every layer encodes 2n possible network configurations. By 535 
keeping dropout on at test time, each prediction is a stochastic pass through a set of randomly activated 536 
neurons. More specifically and with a slight abuse of notation w.r.t to ref26 ignoring the variational notation, 537 
we make estimates of our target variable y (e.g. subclone frequency) by performing T stochastic forward 538 
passes through the network and averaging, E(y), the results: 539 
 540 

𝐸(𝑦) 	≈
1
𝑇
@ 𝑦A(𝑥,𝑊=

(, . . . ,𝑊>
()

?

(	@	=

 541 

 542 
where 𝑦B is the output with respect to the input data x for a neural network with L layers, and W corresponds 543 
to a weight matrix for each layer L. For every stochastic pass, each W is assigned a randomly sampled 544 
vector of Bernoulli random variables such that each individual neuron is inactivated with a probability equal 545 
to the dropout rate. Under this framework, MC sampling over T stochastic passes through the network 546 
generates an approximate posterior for our target variables with respect to the input data. 547 
 548 
Making predictions. For differentiating between neutral evolution and positive selection, P(Selection), and 549 
predicting the number of subclones, P(N subclones), in both synthetic and real patient tumours, we took a 550 
conservative, more parsimonious approach to prediction by considering the variance in the approximate 551 
posterior. For P(Selection), we only called positive selection if the lower bound of an 89% equal-tailed 552 
interval for the approximate posterior, computed across 50 stochastic passes through Mms, was greater 553 
than 0.5. If the lower bound was less than 0.5, we called neutrality and zero subclones, independent of the 554 
result of P(N subclones). We show the utility of this strategy for mitigating model overconfidence in a 555 
synthetic toy example (Supplementary Figure 6). For the regression tasks of predicting subclone frequency 556 
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and emergence time, we estimated the true value by performing 50 stochastic passes through the networks 557 
and averaging the results, while also providing the complete approximate posterior. We describe additional 558 
considerations for making estimates in real patient tumour biopsies below. 559 
 560 
All model development and training was done using pytorch v1.8.1. We provide a python package, scripts, 561 
and all trained neural network models for downloading, use, and modification at 562 
https://github.com/tomouellette/TumE.  563 
 564 
Model performance in synthetic tumour sequencing datasets 565 
We simulated or collected 3 different datasets of synthetic tumour sequencing data to study the 566 
performance of TumE under changing parameter regimes or changes to model assumptions. The first 567 
dataset, generated by our simulation framework described above, consisted of ~2.8 million synthetic 568 
tumours simulated across varying sequencing depths and overdispersions (all parameters provided in 569 
Supplementary Table S1). Using this dataset, we compared TumE against six frequency-based summary 570 
statistics for differentiating between positive selection and neutral evolution. Four of the statistics were 571 
cancer evolution statistics developed previously12 and provided in the R package neutralitytestr. For each 572 
sample, the parameters of neutralitytestr were set as follows: ploidy = 2, cellularity = 1, read_depth = 573 
simulated mean sequencing depth, rho = simulated overdispersion (rho). Two of the statistics were common 574 
population genetic statistics, Tajima’s D20 and Fay and Wu’s H21. Only variant allele frequencies and 575 
sequencing depth were required for input to compute these statistics. We provide an implementation of 576 
Tajima’s D and Fay and Wu’s H for tumour sequencing data in the github repository. We additionally 577 
evaluated a mixture model based approach MOBSTER16 for subclone detection and frequency 578 
quantification. To enable analysis of ~2.8 million synthetic tumours, we ran MOBSTER with the following 579 
parameters: K = 1:3, samples = 2, init = "peaks", tail = c(TRUE, FALSE), epsilon = 1e-6, maxIter = 100, 580 
fit.type = "MM", seed = 12345, model.selection = "reICL", pi_cutoff = 0.02, N_cutoff = 10. We defined the 581 
number of subclones that MOBSTER detected as follows. If a tail and 3 beta components were fit then we 582 
assigned 2 subclones, if a tail and 2 beta components or if no tail and 3 beta components were fit we 583 
assigned 1 subclone, and for all remaining fits we assigned 0 subclones or neutrality.  584 
 585 
The second dataset was retrieved from Caravagna et al.16 and consists of synthetic tumour sequencing 586 
data from 150 tumours sequenced to 120x depth using a beta-binomial sequencing model and grown to a 587 
size of >108 at a birth rate of 1 and death rate of 0.2. The complete description is provided in the 588 
supplementary of ref16. We used this dataset to evaluate the small N approximation and to compare TumE 589 
to existing mixture model methods. We applied both MOBSTER and a variational Bayesian mixture model 590 
sciClone24 to this dataset. MOBSTER was run under default package settings without parallel computation 591 
and with K = 1 to 3 beta components. sciClone was run under default package settings with 592 
copyNumberCalls fixed to 2 and maximumClusters fixed to 4. To estimate the number of selected subclones 593 
with sciClone, which doesn’t account for neutral evolutionary dynamics, we took the inferred number of 594 
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subclones and subtracted 2 (representing the neutral tail and clonal peak). Per-sample runtimes for TumE, 595 
MOBSTER, and sciClone were computed on a single machine with 16GB memory and a 2.3GHz quad-596 
core Intel i7 processor. 597 
 598 
The third dataset was used to evaluate variable birth and death rates on TumE estimates for predicting 599 
positive selection, determining the number of subclones, and estimating subclone frequency. The dataset 600 
consisted of ~6 million synthetic tumours, generated by our simulation framework described above, grown 601 
at variable birth and death rate combinations. Mutation rate and mean sequencing depth were both fixed 602 
to 100. Other parameters were uniformly sampled and all parameters evaluated are outlined in 603 
Supplementary Table S1. 604 
 605 
All statistical analyses comparing methods, including computation of AUROC, correlation coefficients, and 606 
performance metrics such as precision and recall, were performed in R v4.0.3. 607 
 608 

Evolutionary parameter estimates in bulk sequenced single tumour 609 
biopsies 610 
In this study, we used diploid regions of patient tumours for evolutionary inference as we did not have 611 
access to accurate phased mutation information for copy number correction of VAFs at non-diploid sites. 612 
However, in the absence of complete whole-genome duplication, mutated diploid regions should be 613 
sufficient to capture ongoing selection, due to selective sweeps from genome-wide linkage, if a sufficient 614 
number of neutral passengers mutations are accumulated during cell division over time7,16. 615 
 616 
In addition to only analyzing diploid regions, we only accepted tumour samples that had at least a 50x mean 617 
effective coverage (mean sequencing depth times purity). We set this cutoff as previous studies have shown 618 
that tumour genomes sequenced below 50-70x coverage are exceedingly noisy and have insufficient limits 619 
of detection relative to low-frequency mutations for proper evolutionary inference16,31. 620 
 621 
Relative to our simulations, VAFs in bulk sequenced single tumour biopsies may also be confounded by 622 
impurity, where purity (cellularity) is defined as the percentage of cells in the biopsy that are of malignant 623 
or tumour origin. In general, low tumour purity can lead to spurious identification of subclones as it results 624 
in lower observed VAFs relative to the true underlying population VAFs. To ensure our inferences weren’t 625 
biased by impurity, we corrected all VAFs using corresponding tumour purity estimates collected from the 626 
study of origin where VAFcorrected = VAFobserved / purity.  627 
 628 
We also note that some purity estimates may be incorrect - in these cases updating the VAFs with incorrect 629 
purity estimates can lead to a heterozygous clonal cluster (that should be centered at approximately 50% 630 
VAF) in the subclonal frequency range (~10 - 40% VAF). To ensure clonal clusters were properly centered 631 
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at 50% VAF following purity correction, we performed additional adjustments to each patients’ VAF 632 
distribution using the following heuristic. We first computed the density for each VAF distribution and then 633 
identified all the locations where the second derivative of the density was zero i.e. peak finding. If the closest 634 
peak to 50% VAF (the theoretical diploid clonal cluster) was above 35% VAF, we considered it a 635 
misrepresented clonal peak. We made this assumption as analyses in pan-cancer datasets suggest that all 636 
tumours are initiated in somatic cells already carrying mutations10,11. We then fit a Gaussian distribution to 637 
the identified clonal cluster of each patient VAF distribution and adjusted each VAF by multiplying by 0.5 638 
divided by the mean of the fit. Although a Beta distribution is generally used for fitting clonal clusters in 639 
cancer genomics, a Gaussian is a reasonable approximation for adjusting VAFs based on incorrect purity 640 
estimates as it provides accurate estimates of the cluster mean, and has been used in previous subclonal 641 
clustering methods41. Plots of patient VAF distributions before and after application of this correction are 642 
provided in (Supplementary Figures 17 & 18). 643 
 644 
Heuristic clustering using the estimated subclone frequencies was performed either using the expected 645 
variance under a binomial sequencing noise model or, alternatively, using the subclone frequency estimates 646 
to initialize the means of a gaussian mixture model. Clustering under the binomial framework was performed 647 
as follows. Given an estimated subclone frequency q, all mutations within the frequency range of 𝑞	 ±648 

(𝜀7𝑞𝑐[1 − 𝑞]	)	/	𝑐 were assigned to the subclone, where ε scales the cluster width and c is the mean 649 
sequencing depth across the tumour genome or exome. We fixed ε to 2 in this study. 650 
 651 
Transfer learning for inference in alternative synthetic data regimes 652 
Given a pre-trained network with weights optimized to a source domain S, composed of input space XS, 653 
output space YS, transfer learning attempts to use pre-training to improve the performance on another target 654 
domain T composed of XT and YT . We employ a variant of transfer learning called open set domain 655 
adaptation36 to take advantage of our pre-trained models for additional inference tasks. In this case, the 656 
input spaces remain constant (Xs = Xt, VAF distribution) but the inferred tasks are allowed to differ. Open 657 
set indicates that some tasks may overlap with the output space of both the source and target domains.  658 
 659 
To provide a concrete use case for transfer learning in synthetic supervised learning, we aimed to infer 660 
additional evolutionary parameters such as subclone fitness, subclone emergence time, mutation rate, and 661 
subclone cellular fraction (subclone frequency * 2) using synthetic tumour sequencing data generated by 662 
an alternative cancer simulation framework TEMULATOR37. TEMULATOR differs from our synthetic data 663 
generation scheme, which was built around a multiplicative fitness driver model, as subclones are 664 
deterministically initiated at user specified emergence times and fitnesses. To facilitate transfer between 665 
previous and new tasks, we performed architecture renovation on the pre-trained neural networks, retaining 666 
all convolutional layers while replacing existing task-specific fully-connected branches with new task-667 
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specific fully connected branches (4 in total). To maximize the amount of information transferred to new 668 
tasks, we combined the convolutional layers from both the Mms and M1s models described above.  669 
 670 
We then simulated 500,000 synthetic tumours at a birth rate of 1, death rate of 0.2, and final population 671 
size of 104 (additional parameters such as mutation rate were uniformly sampled and are outlined in 672 
Supplementary Table S3). To facilitate efficient simulation, we first fit a noisy Gaussian process (GP) 673 
regression to the viable emergence time and fitness parameter combinations (that generated detectable 674 
subclones between ~10-40% VAF) and used the GP to sample viable emergence times given a uniformly 675 
sampled fitness. We made the GP noisy to facilitate parameter combinations that resulted in subclones 676 
across the entire frequency range. The GP was fit using three kernels (RBF with length scale 100, dot-677 
product, and white noise) and an alpha of 10-6 in the python package scikit-learn v1.0. Next, we used the 678 
simulations to re-optimize the pre-trained model weights, using an Adam optimizer to minimize the L1 loss 679 
(mean absolute error) for predicting new evolutionary inference tasks. To ensure fair benchmarking 680 
between networks with and without pre-trained weights, we performed a random hyperparameter search 681 
with ~150 pre-trained and ~150 non-pretrained models, tuning the learning rate and number of fully 682 
connected layers in the task-specific branches. Additional synthetic data used for evaluating performance 683 
was generated under similar parameter settings. We corrected modest yet systematic overestimates in 684 
mutation rate (~50% mean percentage error) in the final transferred model by fitting a polynomial (degree 685 
2) ridge regression in scikit-learn v1.0 to the predicted mutation rates. The mutation rate adjustment was 686 
performed using VAF distributions from 1000 synthetic tumours. We validated the correction on an 687 
additional 100,000 synthetic tumours. All TEMULATOR synthetic tumours were generated using parameter 688 
settings in Supplementary Table S3. 689 
 690 
Predictions in empirical samples were performed by taking 500 Monte Carlo dropout samples and 691 
averaging the results. Dropout was only activated at test time on the new task-specific branches. Per-base 692 
mutation rate estimates in whole-exome sequenced MMR-GE samples were rescaled based on the 60MB 693 
Agilent SureSelectXT Human All Exon v6 kit used in the original study33. Because subclone fitness and 694 
emergence time is impacted by final tumour size, we rescaled our estimates to a realistic tumour size of 695 
1010 cells, similar to ref7. Previous work7 has shown that given subclone frequency 𝑓$%& and an estimated 696 
final population size 𝑁'(), the age of a tumour at time of biopsy can be estimated by 𝑡'() = 𝑙𝑜𝑔2([1 − 𝑓$%&] ∗697 
𝑁'()). Therefore, given that the relationship between emergence time in tumour doublings and log 698 
population size is linear, we can generate a rescale fitness estimate wR as follows. 699 
 700 

𝑤M = 1 + (𝑤 − 1) ∗
𝑡+NO − 𝑡$
𝑡+NO! − 𝑡$!

 701 

 702 
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where w equals subclone fitness, tend indicates time at tumour biopsy or final population size in tumour 703 
doublings, and ts indicates the time of subclone emergence in tumour doublings. R subscript indicates 704 
values rescaled to population size of 1010.  The parameters fsub, w, and ts are all inferred. We approximate 705 
the rescaled subclone emergence time 𝑡$!as 𝑡$ ∗ 𝑙𝑜𝑔(𝑁'()!)/𝑙𝑜𝑔(𝑁'()). 706 

 707 

Data availability 708 
All TumE predictions in synthetic and empirical datasets, intermediate processing data, data used for 709 
generating figures, and fully trained deep learning models can be found at 710 
https://doi.org/10.5281/zenodo.5575877 repository. Whole-genome sequenced AML samples were 711 
retrieved from Griffith et al31. Multi-region whole-exome sequenced mismatch deficient repair gastro-712 
esophageal samples were retrieved from von Loga et al33. The remaining whole-genome sequenced 713 
samples were retrieved from PCAWG11. We provide hosting of the electronic supplementary at 714 
https://tomouellette.gitlab.io/ouellette_awadalla_2021/.  715 
 716 
Code availability 717 
Scripts for generating figures and analyses can be found at https://doi.org/10.5281/zenodo.5575877. Code 718 
for generating synthetic tumour sequencing data can be found at 719 
https://github.com/tomouellette/CanEvolve.jl. Code for performing inference with TumE can be found at 720 
https://github.com/tomouellette/TumE.  721 
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