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Abstract: We study the potential for the de novo evolution of genes from random nucleotide sequences using librar- 6 
ies of E. coli expressing random sequence peptides. We assess the effects of such peptides on cell growth by moni- 7 
toring frequency changes of individual clones in a complex library through four serial passages. Using a new anal- 8 
ysis pipeline that allows to trace peptides of all lengths, we find that over half of the peptides have consistent effects 9 
on cell growth. Across nine different experiments, around 16 % of clones increase in frequency and 36 % decrease, 10 
with some variation between individual experiments. Shorter peptides (8–20 residues), are more likely to increase 11 
in frequency, longer ones are more likely to decrease. GC content, amino acid composition, intrinsic disorder and 12 
aggregation propensity show slightly different patterns between peptide groups. Sequences that increase in fre- 13 
quency tend to be more disordered with lower aggregation propensity. This coincides with the observation that 14 
young genes with more disordered structures are better tolerated in genomes. Our data indicate that random se- 15 
quences can be a source of evolutionary innovation, since a large fraction of them are well tolerated by the cells or 16 
can provide a growth advantage. 17 
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1. Introduction 20 
New genes can arise by two alternative mechanisms (Andersson, Jerlstrom-Hultqvist, & Nasvall, 21 

2015; Chen, Krinsky, & Long, 2013; McLysaght & Guerzoni, 2015; Schloetterer, 2015; Tautz & Domazet- 22 
Loso, 2011; Van Oss & Carvunis, 2019). The first is through duplication and/or recombination of existing 23 
genes or gene fragments, which later accumulate mutations that render them different from their pa- 24 
rental genes. The second is de novo evolution from previously non-coding sequences. While this was 25 
long thought to be unlikely, there is now plenty of evidence that the process has probably been active 26 
throughout evolution (James et al., 2021; Neme & Tautz, 2013; Neme & Tautz, 2016; Pavesi, Magiorkinis, 27 
& Karlin, 2013; Ruiz-Orera, Messeguer, Subirana, & Alba, 2014; Wilson, Foy, Neme, & Masel, 2017). 28 
However, since it is difficult to distinguish de novo evolution from duplication followed by divergence 29 
beyond sequence recognition (Weisman, Murray, & Eddy, 2020), one can prove true de novo evolution 30 
only for relatively recent events, where evolutionary time has not been enough for accumulation of too 31 
many mutations (Tautz & Domazet-Loso, 2011). Several dedicated studies on individual genes, includ- 32 
ing functional analyses, have been published (Cai, Zhao, Jiang, & Wang, 2008; Heinen, Staubach, 33 
Haeming, & Tautz, 2009; D. Li et al., 2010; Reinhardt et al., 2013; Xie et al., 2019). In addition to this, 34 
there are well-documented cases of peptides with biological function derived from randomly synthe- 35 
sized sequences (Bao, Clancy, Carvalho, Elliott, & Folta, 2017; Keefe & Szostak, 2001; Knopp et al., 2021; 36 
Knopp et al., 2019; Stepanov & Fox, 2007).  Overall genome comparisons between recently separated 37 
species have suggested that de novo evolved genes arise continuously with a high rate, but can also get 38 
lost at high rates (Durand et al., 2019; Neme & Tautz, 2014; Palmieri, Kosiol, & Schlotterer, 2014; Zhao, 39 
Saelao, Jones, & Begun, 2014). This dynamic transformation of non-coding sequences into coding ones 40 
is very clear, especially in eukaryotes, where large parts of the non-coding genome are transcribed. 41 
Comparisons between closely related mouse populations and species revealed the transcription of these 42 
non-coding regions is subject to fast evolutionary change, such that within a time span of 10 million 43 
years the whole genome can become transcribed and thus subjected to evolutionary testing (Neme & 44 
Tautz, 2016). Hence, the raw material for de novo evolution, namely transcripts from initially non-coding 45 
DNA regions, is abundantly present. 46 
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Based on these insights, we previously developed an experimental approach to ask which fraction 47 
of random sequences has a potential biological function that could become subject to further adaptive 48 
evolution (Neme, Amador, Yildirim, McConnell, & Tautz, 2017). We expressed a library of sequences 49 
with random sequence composition in bacterial cells and monitored which sequences could provide a 50 
growth advantage or disadvantage to the cell in the context of four growth cycles of the whole library. 51 
The general experimental design for this experiment is shown in Figure 1. 52 

 53 
Figure 1. Experimental design to evaluate the fraction of bioactive sequences in a library of random sequences. 54 
A pool of random 150bp sequences generated by adding equimolar amounts of each nucleotide at every synthesis 55 
step was ligated into a commercial inducible expression vector (pFLAG-CTC, Sigma). This vector has start and 56 
stop codons in frame of the restriction site used for cloning, which means that the random sequences were 57 
flanked by a common sequence of 12 bp on the 5’-end and 36 bp on the 3’-end with a FLAG-tag (grey boxes). The 58 
resulting 195 nucleotide and 65 amino acid full sequences are shown. The pool of clones was used to transfect E. 59 
coli (DH10B) to generate a library of bacterial cells. Expression of the cloned peptides was induced by adding iso- 60 
propyl β-d-1-thiogalactopyranoside (IPTG) to the culture media. Replicates were sampled every three hours for a 61 
total of 12 hours (3-hour cycles, 12-hour experiments) whereby one tenth of the culture volume was used for seed- 62 
ing the culture at each passage. The overall experiment replicated the one described in (Neme et al., 2017), where 63 
the analysis focused on full-length peptides only and included also experiments with 24-hour growth cycles (5- 64 
day experiments). Here we use a newly designed pipeline to analyse all experiments and all peptide lengths. 65 

The experiments showed that a surprisingly large fraction of random sequences affected cell 66 
growth, either by enhancing it, or by slowing it down. In the initial analysis, between 11 to 25 % of the 67 
sequences increased in frequency in all replicates of each experiment, whereas 18 to 53 %, decreased 68 
(Neme et al., 2017). However, the study focussed exclusively on the full-length peptides in the library, 69 
although the design strategy with random synthesis of the insert produces also a large number of trun- 70 
cated peptides with premature stop codons. 71 

In the present study, we first reproduced the experiment, but with a lower concentration of starting 72 
library in an attempt to reduce the possible impact of very many low-frequency clones on the overall 73 
mean fitness of the complex library. Plus, we designed a new pipeline to analyse the new experiment, 74 
as well as all of the previous experiments. This new pipeline allowed us to include the clones expressing 75 
truncated peptides and to assess whether the expressed vector without insert could have a growth effect 76 
on the cells harbouring it. 77 

The new goal of this project was to explore the possible effects of shorter peptides in relation to the 78 
full-length peptides studied before. All peptides in the original analysis have common C-terminal resi- 79 
dues (FLAG-tag—see Figure 1), which may have contributed to their stability and/or biological effects. 80 
Since naturally de novo evolved peptides would not have such a common C-terminus, it is important to 81 
verify whether the same spectrum of effects is also seen with peptides that have random C-termini. 82 
Furthermore, we wanted to explore sequence features of the peptides that could make them more or 83 
less likely to be tolerated by the cells and to be maintained in the population through several cycles of 84 
growth. Finally, we wanted to address the critical points that were raised against our original 85 
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experiment, where (Weisman & Eddy, 2017) and (Knopp & Andersson, 2018) suggested a vector effect 86 
driving the patterns of peptides that rise in frequency. In this view, the vector itself would have a neg- 87 
ative effect due to expressing a 38 amino acid peptide (or a secondary RNA structure) under induction 88 
conditions, which would be relieved when a "neutral" random sequence was replacing it, giving the 89 
impression that the "neutral" sequence acts positively. While we had argued that this effect could not 90 
fully explain the data that we had at that time (Tautz & Neme, 2018), further analysis of this question is 91 
certainly warranted. 92 

2. Materials and Methods 93 
Library and replication experiment 94 

We used the original library described in (Neme et al., 2017) from a stock frozen in 20 % glycerol. 95 
The general design of the library and the experiment are depicted in Figure 1. In order to assess whether 96 
there could be a complexity effect, we repeated the original experiment using a 100-fold dilution of the 97 
original library and a 1-day sampling schedule, with samplings every 3 hours for a total of 4 samplings 98 
in 12 hours. This was done by seeding 5 µL from the stock on 25 mL LB liquid medium with 500 µg/mL 99 
ampicillin, and allowed it to grow overnight at 37 ˚C with constant shaking (250 rpm). After 16 hours, 100 
500 µL of the liquid culture were transferred into five 5 mL tubes containing 4.5 mL of LB medium with 101 
10-3 mol/L IPTG to induce expression of the random sequences. For each cycle, 500 µL of culture from 102 
each tube were used to seed a new replicate after 3 hours of growth (37 ̊ C, 250 rpm). From the remaining 103 
bacterial culture for each replicate, 3 mL were collected and used for plasmid extraction using a QI- 104 
Aprep Spin Miniprep kit (QIAGEN). Extracted plasmids were eluted in 30 µL of elution buffer and 105 
stored at -20 ˚C until use. 106 

Amplicon sequencing of the library was performed using specific barcoded primers to amplify a 107 
356-nucleotide fragment including the random sequences in a one-step PCR using PHUSION HF master 108 
mix (Invitrogen). The cycling program consisted of an initial denaturation at 98 ˚C for 30 seconds, fol- 109 
lowed by 25 cycles of 98 ˚C for 10 seconds, 65 ˚C for 20 seconds, and 72 ˚C for 1 minute. After a final 110 
elongation step of 72 ˚C for 10 minutes, samples were purified using a Qiagen MinElute Gel Extraction 111 
kit. Concentration of samples was calculated through relative quantification in an agarose gel, using a 112 
Molecular Imager(R) Gel Doc(TM) XR+ System with the Image Lab(TM) Software (Bio-Rad). Barcoded 113 
samples were pooled together in equal concentrations to obtain the sequencing library. Sequencing was 114 
done using Illumina's MiSeq Reagent Kit v3 with 300 cycles to get overlapping 300-nucleotide paired- 115 
end reads. 116 
Available data 117 

In addition to sequencing data from the diluted library experiment described above, we used the 118 
original fastq files for eight experiments described in (Neme et al., 2017). The original experiments were 119 
done following two different sampling schedules: either a 1-day course with samplings every 3 hours, 120 
or a 4-day course with samplings every 24 hours. In either case, four timepoints were sampled. The 121 
number of replicates, cycle duration and experiment length for each of the experiments are summarized 122 
in Table 1. In addition to three experiments with 10 replicates of each type of sampling schedule, we 123 
used two 4-day experiments with 5 replicates. One of them (experiment 7) was done with a treatment 124 
control without induction with IPTG, while the other one (experiment 8) was sequenced more deeply 125 
(5x more reads than the other experiments) to capture even rare clones present at low frequencies in the 126 
population. 127 
Analysis Pipeline 128 

First, the paired end reads for each experiment were trimmed using Trimmomatic (v. 0.36), and 129 
merged using the software USEARCH10 (-fastq_mergepairs, -fastq_maxdiffs 30, -fastq_minmergelen 130 
100) (Edgar, 2010). Since each read in a pair covers the entire random sequence, up to 30 mismatches 131 
were allowed between the paired forward and reverse reads. The fastq_mergepairs algorithm resolves 132 
discrepancies between the forward and reverse reads by comparing the quality score for the conflicting 133 
position in each read. It keeps the residue with the best quality score in the merged read. Merging the 134 
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reads with this algorithm reduces the percentage of sequencing errors kept in each read. Note that it is 135 
not possible to account for PCR errors that have occurred during the library preparation. 136 

To remove reads that do not belong to a PCR product from the plasmids in the library, a custom 137 
Perl script was used to find and save all merged reads containing pre-defined sequences up- and down- 138 
stream of the random sequences on the pFLAG-CTC plasmid. The pre-defined sequences were a 18bp 139 
sequence around the start codon, and the FLAG-tag, including the stop codon. The reads thus selected 140 
are considered clean amplicon reads, trimmed around the pre-defined sequences, and used for all sub- 141 
sequent analyses. 142 
Database generation 143 

To generate a database of all unique sequences in the library that could be detected by the amplicon 144 
sequencing approach, all clean reads from all available experiments and replicates were first derepli- 145 
cated using USEARCH10. Dereplication was done in 3 rounds. In the first round, the nucleotide se- 146 
quences were sorted alphabetically, and the -fastx_uniques option was used to remove duplicate se- 147 
quences, keeping only one sequence of each type in the database while keeping track of the number of 148 
total sequences of each type with the -sizeout option. In this way repeated identical sequences were 149 
removed and a “size” annotation was added to the read name indicating how many identical matches 150 
were present in the clean read files. In the second round, all files with singletons removed were merged 151 
into a single file of all amplicon sequences available, sorted and de-replicated again using the same 152 
exact-match method. This exact matching approach is prone to enrichment of PCR or sequencing errors, 153 
since any two reads with even a single nucleotide difference are kept as individual sequences in the 154 
database. Singleton reads—more likely to be PCR or sequencing errors—were removed and a third 155 
dereplication round using a clustering approach was implemented. 156 

The third round of dereplication aimed to remove reads generated by PCR or sequencing artefacts. 157 
The clustering approach used is based on the one used for OTU validation in microbiome analyses. 158 
Reads were sorted in decreasing order of size annotation, and the -cluster_smallmem option of 159 
USEARCH10 was used with an identity cut-off of 0.97. The clustering algorithm used by USEARCH is 160 
a greedy clustering approach. Here, sorting by the size annotation means that high-frequency reads are 161 
used as centroids or seeds for clusters first. This strategy relies on the assumption that reads found in 162 
high frequencies are more likely to be real, and less-common, highly-similar reads are probably gener- 163 
ated through PCR or sequencing errors. The identity threshold of 0.97 allows less frequent reads with, 164 
for example, up to 5 mismatches in the expected 195-nucleotide sequence to join the high-frequency 165 
centroids forming the clusters. Using an additional filter of minimum cluster size of 8 reads, commonly 166 
used in microbiome amplicon sequencing analyses, removes other artefacts from the database. The re- 167 
sulting library of unique clusters (full database, SuppData_BACT.tsv) was used as the final database. 168 

This database served also basis for the simulation of a 100.000 sequence library in R by sampling 169 
A, T, G and C using the calculated probabilities for each nucleotide at each position (see below). 170 
Sequence features 171 

Several parameters were used to characterise the sequences in the complete database, as well as in 172 
the sequence groups generated after mapping of the reads to find changes in frequency. ORFs were 173 
predicted using the program getorf form the EMBOSS suite (Rice, Longden, & Bleasby, 2000) using the 174 
full database as input (-minsize 12, -find 3). Only the first ORF was kept for each sequence. Predicted 175 
ORFs were translated in the first frame using transeq from the EMBOSS suite, and the first predicted 176 
peptide was kept for each ORF. Sequence length was calculated for each read, as well as the predicted 177 
ORF and peptide using bash programs. 178 

The number of peptides of each length depends on the probability of getting a stop codon at each 179 
consecutive position, and not before. This is best described by the probability function of a geometric 180 
distribution: 181 

(1-p)(k-1)*p, (1) 

where k is the number of trials, in this case, the number of positions or the length of the sequence; 182 
and p is the probability of “success” or getting a stop codon. Multiplying this probability distribution 183 
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by the number of synthesised sequences, one gets the expected count of peptides of each length. The 184 
resulting expected distribution of peptide lengths was used to confirm library quality (Supplementary 185 
Figure 2). 186 

GC content was calculated as the percentage of guanine (G) and cytosine (C) in a sequence relative 187 
to its length using custom Perl scripts. This was done for the complete read, the random part of the 188 
sequence (obtained by trimming 12 nucleotides on the 5`-end and 33 nucleotides from the 3`- end of the 189 
clean reads), and the predicted ORF. Amino acid composition of the database and different sequence 190 
groups were calculated using the Biostrings package (V 2.58.0) from Bioconductor in R. Lists of se- 191 
quences from each database formatted as AAStringSets were used as input for the letterfrequency func- 192 
tion and amino acid frequencies were plotted for each sequence correcting for length. For the complete 193 
database, full-length predicted peptides were used, and frequencies were calculated for each sequence 194 
independently in order to obtain frequency distributions. For the group analysis, the flanking sequences 195 
were trimmed from the peptides and amino acid frequencies were calculated for the complete set of 196 
random amino acids as a single sequence. 197 

Intrinsic disorder was calculated using the command line version of IUPred (IUPred2A) (Meszaros, 198 
Erdos, & Dosztanyi, 2018) with the -short option. Intrinsic disorder scores were averaged for each pep- 199 
tide to obtain single average disorder values. In addition to this, the fraction of residues with a predicted 200 
disorder score equal to or larger than 0.5 was calculated, producing comparable results (data not 201 
shown). 202 

Protein aggregation propensity was calculated for all sequences in the database using the program 203 
PASTA 2.0 on the web server of The BioComputing POS lab of the University of Padua (Italy) 204 
(http://old.protein.bio.unipd.it/pasta2/) (I. Walsh, Seno, Tosatto, & Trovato, 2014). For each sequence, 205 
free energy for the single best pairing was obtained using the default settings for peptides. The best 206 
energy pairing for self-aggregation was obtained for each sequence from the output files, and energies 207 
of -5 or less were considered indicative of a high probability of aggregation. 208 
Mapping of reads to full database 209 

Clean reads for all replicates and timepoints in each experiment were mapped to the database using 210 
a global alignment-based method from the program USEARCH10 (option -usearch_global). For con- 211 
sistency with the clustering analysis, alignments had a minimum required identity of 0.97, minimum 212 
query coverage of 0.9, and maximum one hit and 5 gaps. Hits were extracted from the search results 213 
and counted using custom bash scripts to generate count tables for each replicate in each experiment. 214 
Frequency change determination and group assignment 215 

Raw count tables for each experiment were used as input for statistical analyses using the package 216 
DESeq2 in R (Love, Huber, & Anders, 2014). Count data of each experiment were analysed inde- 217 
pendently using cycle number as explanatory variable, and keeping only sequences that had at least 5 218 
reads mapped in the whole experiment.  219 

DESeq2 was designed mostly for the analysis of RNASeq data, but is broadly applicable to a large 220 
range of data types that require to control for large dynamic range and dispersion effects (Love et al., 221 
2014). This makes different experiments better comparable between each other. Based on the log2-fold 222 
changes provided by DESeq2 (SuppData_DESeq2_ALLexp_Cycle4vs1.tsv) we classify the clones into 223 
NEG for negative changes and POS for positive changes. In addition, we chose the multiple-testing 224 
corrected padj value (provided by the program) as a cut-off to create a category of NS ("non-significant") 225 
clones. For category assignment, a flag was added to each sequence on the database table depending on 226 
whether its fold-change was positive (> 1) or negative (< 1) and significant (padj < 0.05), or non-significant 227 
(padj > 0.05) for each experiment. For the overall assignments of sequences to one of the three categories, 228 
category flags were compared across all experiments, and a general flag (sign.most, in the database 229 
table) was assigned when at least the strict majority of experiments had the same flag (5 or more). 230 

While P-values should normally not be used for a ranking between experiments, we believe that 231 
errors created in this way are small, or at least smaller than the variances that we see between the ex- 232 
periments anyway. A possible alternative for ranking the clones would be to calculate their individual 233 
fitness effects in the background of the mean fitness of the whole library, as suggested by (F. F. Li, Salit, 234 
& Levy, 2018). However, these authors advise against using their procedure under conditions where 235 
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fitness distribution are broadly spread, as it is the case in our experiments (compare Figures 1 and 2 in 236 
(Neme et al., 2017)). 237 

 238 

3. Results 239 
Replication with diluted library  240 

In experiments with a complex library, all clones compete against each other, but rare clones gen- 241 
erate only few reads that cannot be reliably analysed. Hence, these unaccounted background clones 242 
could influence the behaviour of the more frequent clones. In attempt to test this possibility, we repeated 243 
the experiment of (Neme et al., 2017), but with a starting stock that was diluted by 100-fold compared 244 
to the previous ones and used a sampling schedule with samplings every 3 hours for a total of 4 sam- 245 
plings in 12 hours. The further experimental steps were conducted as described in (Neme et al., 2017). 246 
The overall results showed that there was no major difference compared to the previous results (see 247 
Table 1 below). The majority of clones identified in the previous experiments could again be detected 248 
even with a 100-fold dilution. Hence, we decided to do the in-depth analysis described below across all 249 
available data. 250 
Characterization of the sequences in the random clone library 251 

To analyse all experiments done with the given clone library, we first produced a reference se- 252 
quence database including all different sequences reliably detected in any of the sequencing experi- 253 
ments. This required the establishment of a pipeline for filtering of PCR and sequencing errors, which 254 
we conducted based on a common approach that is also used in microbiome studies. We required that 255 
each sequence was represented by at least eight reads, biasing against rare variants that can be gener- 256 
ated in the PCR amplification steps before sequencing.  257 

The median number of paired-end reads per replicate was 284,875. On average, 79.3 % of them 258 
could be successfully merged, and both known plasmid-derived sequence regions could be found in 259 
96.44 % (±1.46 %) of those merged. The resulting database consisted of 5,701 unique sequences with 260 
minimum cluster size of 8. This includes 647 peptides with the FLAG-tag sequence, of which 25 are not 261 
full-length due to internal deletions. 253 peptides end with frameshift versions of the FLAG-tag se- 262 
quence. Furthermore, since for the random part of peptides of lengths 4, 5 and 6 there are only 1, 21, 263 
and 441 possible different amino acid sequences, respectively, different clones can code for the same 264 
peptide. For example, the library includes 200 clones coding for the shortest possible peptide (MKLS - 265 
derived from the vector, see Figure 1), where the first triplet in the random sequence is a stop codon. 266 
Overall, the 5,701 unique sequence clones code for 5,234 different peptides.  267 

The dereplication algorithms used to generate the database provide information about the fre- 268 
quency of the different sequences in the library. The cluster size distribution is shown in suppl. Figure 269 
1. It has a right skewed distribution (mean: 20,274, median: 9,870 sequences per cluster) with one ex- 270 
treme outlier with 4.2x107 sequences, which corresponds to the vector plasmid without insert ("empty" 271 
vector).  272 

The ORF length distribution in the database has the expected composition and features of a random 273 
database of sequences, i.e., it follows largely the expected distribution of predicted peptide lengths 274 
(suppl. Figure 2). Deviations concern mostly the longest sequence classes, due to the constant sequences 275 
derived from the vector. Note that some of the longest classes are also partly derived from frameshift 276 
versions.  277 

With respect to GC content, we found that the sequences in the databases do not fully reflect a 278 
completely random synthesis. The mean and median GC content of the full reads is 53.8 %, and median 279 
GC content of the predicted ORFs is slightly higher (mean 53.04 %, median 54.6 %) with larger variance 280 
due to the shorter sequences (suppl. Figure 3A). A closer look to the GC content at every position in the 281 
database for reads with exactly the designed sequence length revealed a generalised bias towards lower 282 
A and higher G content at every position, remarkably larger on the 3’ end of the sequences starting at 283 
position 36 (suppl. Figure 3B). This is probably due to a bias during library synthesis, with a presump- 284 
tive new supply of chemicals in between. Still, given that the length distribution of resulting peptides 285 
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conforms mostly to the random expectation (compare suppl. Figure 2), we consider the library as being 286 
primarily made up of random nucleotide sequences. 287 

A relevant descriptor of the structural properties of an amino-acid sequence is its intrinsic disorder 288 
level. Intrinsically disordered proteins lack defined secondary and tertiary structures, and naturally oc- 289 
curring genes have a higher intrinsic disorder than random sequences (Basile, Sachenkova, Light, & 290 
Elofsson, 2017; Heames, Schmitz, & Bornberg-Bauer, 2020; Wilson et al., 2017; Yu et al., 2016). In addi- 291 
tion to intrinsic disorder scores, GC content (Basile et al., 2017) and amino acid content are used as 292 
indicators of the disorder levels of proteins in a database of sequences. Since large, hydrophobic amino 293 
acids are more likely to promote aggregation or formation of secondary structures, they are called order- 294 
inducing amino acids. The propensity of amino acids to induce order or disorder is one of the factors 295 
used for the calculation of intrinsic disorder scores (Campen et al., 2008). 296 

Intrinsic disorder for the proteins in the database was calculated as the average intrinsic disorder 297 
score (IDS) of all residues in the peptide, using the -short setting of IUPred2A (see Methods). Average 298 
IDS values have a right-skewed bimodal distribution with the majority of sequences having an average 299 
IDS of 1.00 (suppl. Figure 4A). This is due to the large number of short sequences in the database that 300 
are very unlikely to be able to make any secondary structures and are also under the limit of detection 301 
of the software used. Grouping the sequences into length classes shows this effect clearly. The mean of 302 
the distribution of average IDS shifts to smaller values for longer peptide lengths, ranging from 0.947 303 
for the shortest peptides with less than 10 residues, to 0.281 for those with 48 or more residues (suppl. 304 
Figure 4B). There is also a general correlation of IDS with length (suppl. Figure 4C), as well as with GC 305 
content (suppl. Figure 4D).  306 
Frequency changes of clones during the growth experiments 307 

For all sequencing files from the experiments, 80-90 % of clean reads were successfully mapped to 308 
the database, allowing us to calculate frequency changes during the experiments. Raw count tables were 309 
used to do enrichment analyses using DESeq2. Although this algorithm was originally designed for the 310 
analysis of RNAseq sequencing data, it is also frequently used for the analysis of amplicon sequencing 311 
data. The assumption behind this is that the distribution of data in amplicon sequencing should follow 312 
a near-log normal distribution, with many low frequency counts and few high-frequency ones. The 313 
overall results of the DESeq2 analyses with respect to categorizing clones with positive (POS), negative 314 
(NEG) or non-significant (NS) changes are summarized in Table 1.  315 

There is some variation between single experiments, especially with respect to the number of clones 316 
in the POS group. This is not directly related to the experiment type, i.e., the two experiments with the 317 
lowest fraction of POS clones (Exp1 and Exp7) have different cycle times (3h vs. 24h). Similarly, the 318 
range of log2-fold changes for individual clones varies considerably (Table 1). This suggests that even 319 
small variations in experimental conditions can lead to somewhat different outcomes. However, for all 320 
experiments there are always more NEG clones than POS clones. The average across all experiments 321 
shows 16 % POS clones, 36 % NEG clones and 48 % NS clones.  322 

With the new pipeline, we could also trace the overall performance of the empty vector in the dif- 323 
ferent experiments using the log2-fold change values. In experiments 1 to 3 it goes slightly up, in exper- 324 
iments 5 to 9 it goes slightly down, and in experiment 4 it has no significant change (Table 1). Only in 325 
experiment 5 the down trend was stronger than the average in this experiment. Note, however, that the 326 
DESeq2 normalization procedure penalizes against large count numbers in a way that could make neg- 327 
ative trends stronger. Overall, we conclude from these data that the peptide and RNA expressed from 328 
the vector itself has no strong influence on growth. 329 

 330 
 331 
 332 
 333 
 334 
 335 

Table 1: Clone performance in different experiments 336 
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Exp1 Cycle length/ Experiment length 
(replicates) 

N2 POS3 NEG3 NS3 Range log2-fold 
change  

(average) 

Empty vector 
log2-fold 
change4 

1 3h / 1 day (n=10) 5625 0.11 0.36 0.53 -8.0 to 2.7 (-1.1) 1.1  

2 3h / 1 day (n=10) 5606 0.17 0.43 0.41 -7.7 to 2.2 (-1.2) 0.5  

3 3h / 1 day (n=10) 5638 0.18 0.40 0.42 -7.8 to 2.7 (-1.1) 0.4 

4 24h / 4 days (n=8) 5623 0.14 0.30 0.56 -5.2 to 5.2 (-0.5) 0.1 

5 24h / 4 days (n=10) 5596 0.10 0.26 0.64 -5.4 to 5.0 (-0.6) -1.7 

6 24h / 4 days (n=10) 5632 0.26 0.41 0.32 -5.9 to 2.2 (-0.7) -1.1 

7 24h / 4 days (n=5) 5623 0.07 0.28 0.65 -7.2 to 4.0 (-0.9) -0.2  

8 24h / 4 days (n=5) 5689 0.27 0.46 0.27 -11.2 to 1.4 (-1.6) -0.4  

9 3h / 1 day (n=5) / diluted library 5651 0.16 0.32 0.51 -8.4 to 5.6 (-0.7) -0.7 

 All experiments averages5:       
 All clones 5621 0.16 0.36 0.48   

 Clones with 4aa ORF  200 0.04 0.73 0.18   

 Clones with 5aa ORF  221 0.02 0.52 0.44   

 Clones with 6aa ORF 209 0.06 0.37 0.56   

 Clones with FLAG sequence  638 0.03 0.77 0.17   

 Clones with FLAG+1 sequence 129 0.03 0.68 0.20   

 Clones with FLAG+2 sequence 126 0.05 0.64 0.23   

 Clones 48+ aa without FLAG 237 0.06 0.55 0.34   
1For experiments 1- 8 we reanalysed the original fastq data from (Neme et al., 2017), experiment 9 with a diluted 337 
starting library was done within the framework of this study.  338 
2Number of clones detected among the 5,701 unique sequence clones in the database for which at least 5 reads 339 
were mapped in each experiment.  340 
3Fraction of clones in each category. POS and NEG were assigned when padj <0.05, otherwise the clone was catego- 341 
rized as non-significant (NS). 342 
4All vector clone frequency changes were highly significant (padj <0.01) in their respective experiment, except for 343 
Exp 4 (padj >0.05). 344 
5The distribution of values from the 9 experiments is not significantly different from a normal distribution 345 
(Shapiro-Wilk test, p >0.5). 346 

 347 
We assessed also whether translation of the flanking sequences has a specific effect. The first 4 348 

amino acids (MKLS) of the peptides are coded by the vector (see Figure 1). Of the clones that express 349 
only these first 4 amino acids due to a direct stop codon in the random sequence only 4 % are POS while 350 
78 % are NEG, indicating a negative effect of this peptide compared to the overall clone performance 351 
(Table 1). Interestingly, this overall negative effect is relieved when only one or two additional amino 352 
acids are translated, with the percentage of NEG clones falling to 53 % and 38 % respectively (Table 1). 353 
From this analysis we conclude that the vector-derived, constant N-terminal amino acids of the peptides 354 
have an overall negative effect on growth, which can be overcome by additionally coded amino acids 355 
or the RNA sequence components in the clones. 356 

The C-terminus of the full-length peptides is formed by 3 constant amino acids plus the 8 amino- 357 
acid FLAG tag sequence (see Figure 1). Of the different clones with this translated FLAG tag sequence, 358 
only 3 % are POS while 75 % are NEG across most experiments (Table 1), which would indicate a neg- 359 
ative effect of this sequence. However, we find also the two frameshift translation versions of this se- 360 
quence among the clones and both show a similar excess of NEG versus POS effects (Table 1). This 361 
suggests that it is not the FLAG tag sequence that acts negatively, but that longer peptides have 362 
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generally a higher likelihood to be in the NEG group. This is also supported by the fact that peptides 363 
with a length of 48+ but without including any of the FLAG tag versions show a similar bias towards 364 
NEG (Table 1) (see also the further analysis of the length effects below). 365 
Length, GC content and amino acid composition dependence 366 

For the further analysis, we have assigned each sequence in the database into the categories POS, 367 
NEG or NS, based on having consistent category assignments in the majority of experiments (see Meth- 368 
ods). Since most sequences (> 95 %) fall consistently within one of these three categories (with the re- 369 
mainder being inconsistent and therefore not further analysed), one can compare whether peptides of 370 
different length are equally represented in each of these groups. Figure 2 shows that this is not the case. 371 
The fraction of NEG clones is particularly high for the shortest and the longest peptides. This is most 372 
likely caused by the negative effects of the vector derived parts of the sequence, as discussed above. The 373 
relative fraction of POS and NS clones is particularly high in the length classes between 8-20 amino 374 
acids. 375 

 376 
Figure 2: Length distribution of all predicted peptides in the random sequence database and assignment to 377 
response groups. Histogram of sequence lengths for each group of sequences. The coloured bars represent the 378 
number of peptides of each length assigned to each group in the experiments. Light blue: peptides showing a de- 379 
crease in frequency (NEG); dark grey: peptides showing no significant change in frequency (NS); orange: pep- 380 
tides showing an increase in frequency (POS). The light grey bars in each panel represent the predicted peptide 381 
lengths of the complete database (compare suppl. Figure 2). Dashed lines represent the kernel density estimates 382 
for each category. 383 

The GC content distribution of ORFs in each of the groups is depicted in Figure 3. The peaks are 384 
similar for all three classes at about 57 % GC, slightly higher than the average for the whole library 385 
which is at 53 % GC. The POS and NS peptides show broader distributions than the NEG peptides, with 386 
a stronger shoulder towards lower GC contents. The NEG peptides show a second peak at 42 % GC, 387 
mostly driven by the negative effect of the shortest clones with only the vector-derived peptide (see 388 
above). 389 
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 390 
Figure 3. Density plots for the GC content of sequences in each of the three clone groups. Dashed line: average 391 
GC content of all ORFs in the library (53 %). The colours represent the assignment to the three groups of clones in 392 
the experiments: Light blue: sequences showing a decrease in frequency (NEG); dark grey: sequences showing no 393 
significant change in frequency (NS); orange: sequences showing an increase in frequency (POS). 394 

We have also compared amino acid compositions of the peptides from the three clone groups. For 395 
this analysis we excluded the vector derived parts of the sequences. The overall frequencies for the 396 
whole database and the three groups of peptides are presented in suppl. Table 1. Figure 4 shows the 397 
differences for each group compared to the database. The largest differences are found for A, G and S 398 
in the comparison between POS and NEG groups. It is also notable that the frequency of 7 out of the 10 399 
amino acids considered to be more disorder-inducing is lower in the NEG group than in the database, 400 
while 9 out of 10 of the order-inducing amino acids are depleted in the NS group. The POS group shows 401 
in general the largest deviations from the database. 402 

 403 
Figure 4. Differences in amino acid frequencies for the three groups of peptides. Frequencies were calculated as 404 
the percentage of each amino acid in all sequences in the groups and the complete database. Differences are 405 
shown as absolute values and the direction of the change is represented as +, if positive, or – is negative for each 406 
comparison. Light blue: NEG minus the database; grey: NS minus the database; orange: POS minus the database. 407 
Amino acids are ordered from left to right according to the TOP-IDP scale that reflects propensity for disorder 408 
induction from order promoting (left) to disorder promoting (right) (Campen et al., 2008). 409 
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Structural features 410 
The intrinsic disorder score (IDS) differs between the different clone groups, with the NEG group 411 

showing a stronger bimodal distribution than the two other groups (Figure 5). When breaking up the 412 
IDS in peptide length classes, it becomes clear that the highest IDS are due to the shortest classes (1-17 413 
amino acids), for which the IDS calculation is anyway not very meaningful (compare also suppl. Figure 414 
4). The lowest IDS scores are seen for the longest peptides (48+ amino acids), but otherwise there is no 415 
clear difference, especially between the POS and NS group of peptides (Figure 5).  416 

 417 
Figure 5. Intrinsic disorder scores (IDS) for the three groups of peptides. Histograms of average IUPred2 scores 418 
(IDS) coloured by the length categories depicted to the right. OR Empirical cumulative distribution of average 419 
IUPred2 scores (IDS) coloured by the length categories. 420 

There are generally few highly ordered sequences in the library (i.e., sequences with an average 421 
IUPred2 score of less than 0.25). This could be due to the fact that highly ordered sequences tend to 422 
aggregate, and are expected to be highly insoluble and detrimental to the cells. In order to assess aggre- 423 
gation propensity, we used the software PASTA 2.0. It calculates the free energy of predicted ß-strand 424 
intermolecular pairings for each sequence and reports the lowest value for each peptide as the best 425 
pairing (I. Walsh et al., 2014). Lower aggregation energies mean that it is easier for the peptides to form 426 
amyloids or to aggregate. In general, aggregation energies lower than -5 pasta energy units (PEU) are 427 
considered evidence for possible amyloid formation. Sequences in the NEG group show generally lower 428 
PEU values than the two other groups with a peak at - 4 PEU and a distribution shifted towards even 429 
lower values (Figure 6A). There is also a secondary peak at aggregation energies higher than the other 430 
two groups (Figure 6A). 431 
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 432 
Figure 6. Aggregation energy analysis for the three clone groups and different length classes of peptides. (A) 433 
Density plots for the best aggregation energy of sequences in each group. (B) Best aggregation energy of se- 434 
quences in each group and each length class. The lower and upper hinges correspond to the first and third quar- 435 
tiles (the 25th and 75th percentiles). The whiskers are the minimum and maximum data points up to 1.5 times the 436 
closest IQR. 437 

In order to see whether sequences of a particular length are driving the observed pattern, we com- 438 
pared the data distribution for the different peptide length classes (Figure 6B). Interestingly, the distri- 439 
butions show different patterns between the groups of clones at the highest and lowest length values, 440 
but more similar ones at the intermediate ones. The secondary peak found in the NEG group at very 441 
high aggregation energies seems to be generated mostly by the shortest peptides, and the shift towards 442 
negative values, by the longest ones. 443 

4. Discussion 444 
Here we have performed an in-depth analysis of all available data from amplicon sequencing ex- 445 

periments of a library of E. coli cells expressing different randomly synthesized sequences and grown 446 
for four expansion cycles to allow competition between clones. The experiments, first described by 447 
(Neme et al., 2017), were set up to assess which fraction of random DNA sequences expressed in a living 448 
organism have the potential of producing molecules that have an effect on cell growth or fitness. This 449 
question is relevant for the study of the origin of innovation in biological systems and, in particular, of 450 
de novo genes derived from more or less random non-coding sequences. 451 

The main goal of the present study was to broaden the analysis to all peptides in the data, irrespec- 452 
tive of their length. (Neme et al., 2017) had originally focused on the full-length peptides only, with 453 
FLAG-tags derived from the vector sequences. The broadening of the focus to all expressed peptides 454 
allowed us to investigate whether the constant sequences flanking the random inserts in the library 455 
influenced the growth effects. In addition to this, we wanted to test whether there are particular molec- 456 
ular or structural features of the sequences driving their effect on the growth of the cells in this popula- 457 
tion. Studies looking at young and novel genes in diverse species report that novel genes and proto- 458 
genes can have distinct features such as ORF length or intrinsic disorder levels that differentiate them 459 
from older genes and intergenic regions (Carvunis et al., 2012; Heames et al., 2020; James et al., 2021; 460 
Schmitz, Ullrich, & Bornberg-Bauer, 2018; Wilson et al., 2017; Yu et al., 2016). A possible explanation for 461 
these observations is that certain features make sequences more likely to be positively selected—or at 462 
least not selected against. 463 
New analysis pipeline 464 
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The first step in our analysis was to ask whether amino acid sequences of different lengths present 465 
in the population and not analysed in the original publication show a similar behaviour as the full- 466 
length (65 amino-acid-long) sequences that were the focus of the (Neme et al., 2017) study. This required 467 
us to generate a new analysis pipeline which addresses three limitations of the original one. The first 468 
two—the incomplete removal of PCR and sequencing errors from the database, and the resulting artifi- 469 
cial redundancy—are the result of using the predicted translation of the ORFs to generate the reference 470 
database of clones, instead of the nucleotide sequences. This was done to take advantage of the genetic 471 
code redundancy and to, at least partially, compensate for PCR and sequencing errors. The strategy, 472 
however, was insufficient as can be seen from the finding in the original publication of several very 473 
similar clones coding for peptides with only one or a few substitutions—an extremely improbable event 474 
in a library composed of random sequences of that length. 475 

To compensate for such PCR and sequencing errors in this new analysis, we used a dereplication 476 
approach that removes all singleton reads from each sequencing file before joining them together and 477 
clustering them to a 97 % identity. We used the full-length merged and trimmed reads for database 478 
generation and mapping, which allowed us to keep track of all clones that code for the same (shorter) 479 
peptides independently, which was important to detect protein vs. RNA effects (see further discussion 480 
below). The database generated was composed of more than 5,000 reliably identifiable sequences pre- 481 
dicted to code for peptides of all expected lengths. Furthermore, from its composition, it is possible to 482 
confirm that the library was indeed generated from random sequences, albeit with a slight bias towards 483 
a higher guanidine content during the synthesis process. 484 

The final improvement to the pipeline was to change the algorithm used for mapping the reads 485 
back to the database from a local to a global alignment strategy. This greatly improved the speed and 486 
accuracy of the pipeline. Over 90 % of all reads containing the flanking sequences mapped back to our 487 
database of unique sequences in all experiment replicates. This represents a 30-50 % increase of mapped 488 
reads when compared with the pipeline used for analyses in the (Neme et al., 2017) study. As a result 489 
of this, we found that the change of frequencies can actually be much larger than what was initially 490 
reported. Some sequences, for example have a decrease in frequency between the first and the last cycle 491 
of the experiments of up to 1000-fold. 492 
Clone effects 493 

Having identified how the frequency of sequences changes in the available experiments, we were 494 
able to classify the sequences in groups according to the direction of the change. With the improved 495 
mapping pipeline, we found that over 80 % of the sequences in the database had a consistent behaviour 496 
in at least 5 of the 9 experiments, suggesting that the observed results are indeed an effect of the se- 497 
quences and not due to chance or drift. This is noteworthy, considering that the experiments were per- 498 
formed independently, by different researchers, at different times, and have variations between sam- 499 
pling schedules, seed size, sequencing depths and number of replicates. 500 

Over half of the sequences in the database were consistently assigned to be either neutral (48 %) or 501 
to go up in frequency (16 %), suggesting that they are at least not very deleterious to the cells expressing 502 
them. This large proportion of sequences tolerated in a population of E. coli suggests that random se- 503 
quences could be expressed and maintained in large numbers also in natural populations, making them 504 
an abundant source for possible evolutionary innovations. 505 

We have also specifically evaluated the vector effects that were suggested to cause indirectly the 506 
observed positive effect (Knopp & Andersson, 2018; Weisman & Eddy, 2017). In dedicated experiments, 507 
(Knopp & Andersson, 2018) found that just expressing the 38 amino acid peptide from the empty vector 508 
(i.e. without a cloned insert), has a slightly negative effect on the exponential growth of the E. coli cells. 509 
By disrupting this vector peptide with a potentially neutral peptide, one could generate an apparent 510 
positive effect. However, we find in our analysis that this peptide behaves mostly like a neutral peptide 511 
in the context of the full experiment, i.e. when not only focussing on the exponential growth phase as 512 
done in (Knopp & Andersson, 2018), but taking all competition cycles into account. While there is, on 513 
average, a small negative effect across experiments, it is not strong enough to explain the growth of 514 
most POS clones as merely its relief. Hence, we conclude that the, in principle, justified reservations 515 
about positive effects in our experiments (Knopp & Andersson, 2018; Weisman & Eddy, 2017) are not 516 
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warranted in the face of the full data shown here, as well as the arguments provided previously (Tautz 517 
& Neme, 2018). 518 
Negative effects of vector coded amino acids 519 

Our data show that the first four amino acids expressed by the vector have by themselves a nega- 520 
tive fitness effect on the cells. 73 % of clones encoding only the first 4 residues consistently decrease in 521 
frequency in 5 or more experiments. A reason for this might be that the second and third codons in the 522 
sequence—lysine (AAG) and leucine (CTT), respectively—are not the most commonly used by E. coli 523 
for these amino acids. Interestingly, this negative effect diminishes quickly when one or two additional 524 
amino acids are translated. Hence, it is not of much concern for the overall experiment with mostly 525 
longer peptides, although it contributes to the observed bimodal distributions of peptide length, intrin- 526 
sic disorder and aggregation propensity for the NEG peptides. 527 

The same observation demonstrates, however, that not only the coding part of a random sequence 528 
is important for its maintenance in a population. Over 20 % of the clones coding for the same peptide, 529 
but with different RNA sequences, show different growth trends in at least 5 experiments. In other 530 
words, clones with the same coding peptide had different effects on the growth trajectory of cells, due 531 
to the non-coding parts of their sequence. (Neme et al., 2017) had already shown that the RNA can have 532 
a different effect on growth than the protein by introducing a stop codon in single clones, disrupting 533 
the reading frame but keeping the rest of the sequence intact. 534 

Systematic studies on replacing non-coding positions in an artificially expressed GFP RNA in E. 535 
coli have also shown that even small differences in RNA sequence can have differential fitness conse- 536 
quences for the cells (Mittal, Brindle, Stephen, Plotkin, & Kudla, 2018), although this might be mostly 537 
caused by perturbing co-translational protein folding (I. M. Walsh, Bowman, Santarriaga, Rodriguez, & 538 
Clark, 2020). On the other hand, transcription has also been shown to contribute strongly to the meta- 539 
bolic burden that is caused by overexpressing genes in E. coli (Z. P. Li & Rinas, 2020). It is thus expected 540 
that the clone effects that we find are a combination of effects from the expressed RNA and protein 541 
together. 542 
Protein structure correlations 543 

Notwithstanding the possible fitness contribution of the RNA of the clones, we have analysed pro- 544 
tein structural properties in the three different groups of peptides. The most compelling difference be- 545 
tween clones with POS or NEG responses is their length. Shorter peptides in the length range of 8-20 aa 546 
are prevalent in the POS and NS groups, while longer ones are prevalent in the NEG group. While it is 547 
generally known that newly evolved genes are shorter than older genes (Carvunis et al., 2012; Neme & 548 
Tautz, 2013; Schmitz et al., 2018), the differences we observe here are at a much smaller scale than what 549 
is usually studied, since the ORF lengths of 4-65aa in our database are often not even annotated. Inter- 550 
estingly, in a study on the phenotypic impact of random sequences in Arabidopsis (Bao et al., 2017) used 551 
also very short peptides (with cores of six or 12 random amino acids) and found a substantial fraction 552 
having an effect on the phenotype, including possibly beneficial ones. 553 

The NEG group of peptides shows in average lower intrinsic disorder and higher aggregation pro- 554 
pensity compared to the POS group. This is in line with the observation that naturally occurring young 555 
genes are more likely to have higher intrinsic disorder (Wilson et al., 2017), which could be the reason 556 
why they are better tolerated by the cells (Tretyachenko et al., 2017). 557 

We find no major differences in the three groups of peptides with respect to GC-content. But there 558 
are some differences with respect to overall amino acid composition. The largest contrasts occur be- 559 
tween POS and NEG peptides, whereby POS peptides have more alanine and serine but less glycine. 560 
With its six codons, serine is a frequent amino acid in the random sequences and it has a strong disorder 561 
promoting effect (Campen et al., 2008). This could explain the higher disorder tendency in the POS 562 
peptides. Alanine and glycine, on the other hand, have both four codons and are therefore expected to 563 
occur equally frequently in random sequences and they have similar disorder promoting effects. It is 564 
therefore unclear why alanine is more prevalent in POS and glycine is more prevalent in NEG clones. 565 

An additional possible implication of the enrichment of serine in both the POS and NS groups is 566 
its potential for evolution. Creixell et al. (Creixell, Schoof, Tan, & Linding, 2012) found that serine is the 567 
fastest-evolving amino acid and attribute this to fact that its six codons can be divided into two, very 568 
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different, groups (AGY and TCN). The fact that the codons are so different facilitates non-synonymous 569 
substitutions, which allows evolution to explore a large sequence space in a shorter period of time. If, 570 
as our data seem to show, sequences containing larger fractions of serine are better tolerated by the cells, 571 
such sequences would be excellent starting material for the evolution of new functional peptides. 572 

5. Conclusions 573 
Although no single determining feature of a sequence could be identified that would earmark in- 574 

dividual peptides as having potentially positive or negative effects on the cells, some differences exist 575 
with respect to structural properties. In particular, we found that shorter and more disordered peptides 576 
have a greater potential for being retained in a population as a primary source for novel genes, support- 577 
ing the conclusions by James et al. on the general patterns of protein domain evolution (James et al., 578 
2021). Most importantly, our data confirm that random sequences have the potential of being beneficial 579 
for the cell, especially in the context of the complex competition between clones that we study in these 580 
experiments. However, we show in the accompanying paper (Bhave & Tautz, 2021) that individual can- 581 
didate POS clones can provide also a growth advantage in pairwise competition experiments, although 582 
not necessarily with the same strength as seen in the bulk experiments. We conclude that our experi- 583 
ments support the notion that random sequences are an abundant source for generating evolutionary 584 
novelty. 585 
 586 
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