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Abstract 

REV-ERB is an orphan nuclear receptor that is widely expressed in the brain and 

inhibits transcriptional activities. A variety of genes affect the activity and expression of 

REV-ERB. In this study, our objective is to identify significant signaling pathways and 

biological processes in the knockout of the REV-ERB mouse brain. The GSE152919 

dataset was originally created by using the Illumina HiSeq 4000 (Mus musculus). The 

KEGG and GO analyses suggested that biological processes "PPAR signaling", "Hippo 

signaling", and "Hypertrophic cardiomyopathy (HCM)" are mostly affected in the 

knockout of REV-ERB. Furthermore, we identified a number of genes according to the 

PPI network including NPAS2, CRY2, BMAL1, and CRY1 which were involved in the 

lack of REV-ERB in the brain. Therefore, our study provides further insights into the 

study of circadian clocks. 

 

Introduction 

The circadian clocks control the behavior and physiology of living organisms according 

to the external environment1, 2. The core circadian clocks regulate transcriptional and 

physiological rhythms which form a transcriptional-translational feedback loop3. The 

core circadian clocks contain transcriptional activators Bmal1/ClOCK which activates 

their repressor proteins such as PER, CRY, and REV-ERB4. The circadian clocks 

control various cellular processes such as metabolism, inflammation, and mitochondrial 

homeostasis5-9. Clocks' function and cycles of energy metabolism are closely and 

reciprocally linked10-12. The disruption of clocks leads to metabolic diseases such as 

type 2 diabetes and heart diseases13.  

REV-ERBα is a nuclear reporter protein that is directly mediated by BMAL114. REV-

ERBα is also a transcriptional repressor that restrains Bmal1 expression and potential 

downstream genes at specific sites within the genome15. Given that REV-ERBα locates 

in the nucleus, it becomes a potential drug target that can be regulated by small-

molecule agonists and antagonists16. Recent reports showed that REV-ERBα is one of 

the key regulators in mediating the energy metabolism17. The REV-ERBα mice depicted 

remarkable changes in the homeostasis of carbohydrate and lipid, which displayed an 

up-regulation of lipid accumulation and storage18. REV-ERBα is regulated by 
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BMAL1/CLOCK heterodimers through transactivation and posttranslational protein 

degradation17. REV-ERBα indicates circadian rhythmic activity, which competes and 

binds with the RORE sites (AGGTCA hexamer with a 5′ A/T-rich sequence) of ROR 

proteins19. REV-ERBα knockout mice exhibited significantly changed cortical resting-

state functional connectivity, which was found in neurodegenerative models20.  

In our study, we evaluated the effects of knockout of REV-ERB in the suprachiasmatic 

nucleus (SCN) during the nighttime by analyzing the RNA sequence data. We identified 

a number of DEGs and the potential affected biological processes. We also performed 

the gene functional enrichment and constructed the protein-protein interaction (PPI) 

network for finding the potential interacting proteins. These important genes and 

biological processes could provide efficient guidance on drug development. 

 

Methods 

Data resources  

Gene dataset GSE152919 was collected from the GEO database. The data was 

created by using the Illumina HiSeq 4000 (Mus musculus) (Institute for Diabetes, 

Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, 

Philadelphia, PA19104-5160, US). The analyzed dataset includes 5 WT and 4 REV-

ERB KO at CT16. 

 

Data acquisition and preprocessing 

The data were conducted by the R package. We used a classical t-test to identify DEGs 

with P<.05 and fold change ≥1.5 as being statistically significant21, 22. 

 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) 

analyses 

KEGG and GO analyses of DEGs in this study were conducted by the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) (http://david.ncifcrf.gov/). 

P<.05 and gene counts >10 were considered statistically significant. 

 

Protein-protein interaction (PPI) networks 
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The Molecular Complex Detection (MCODE) was used to construct the PPI networks. 

The significant modules were created from constructed PPI networks. The pathway 

enrichment analyses were performed by using Reactome (https://reactome.org/), and 

P<0.05 was used as the cutoff criterion. 

 

Results 

Identification of DEGs in WT and REV-ERB KO  

Since REV-ERB showed higher expression during the night in comparison with daytime, 

we analyzed the DEGs from the WT and REV-ERB KO mice at Zeitgeber times (ZT) 

1623. A total of 228 genes were identified to be differentially expressed with the 

threshold of P<0.05. The up- and down-regulated genes for WT and REV-ERB KO 

samples were depicted by the heatmap and volcano plot (Figure 1). Among them, the 

top ten DEGs were selected and listed in Table 1.  

 

Enrichment analysis of DEGs in WT and REV-ERB KO  

To further understand the biological roles of REV-ERB, we performed KEGG and GO 

enrichment analysis (Figure 2). The top five significant KEGG pathways were analyzed 

including " Circadian rhythm”, “Oxytocin signaling pathway”, “Hippo signaling pathway”, 

“Hypertrophic cardiomyopathy (HCM)”, and “PPAR signaling pathway”. We identified 

the top ten MF categories of GO including “Nucleoside−triphosphatase regulator 

activity”, “Enzyme activator activity”, “GTPase regulator activity”, “Metal ion 

transmembrane transporter activity”, “amide binding”, “GTPase activator activity”, 

“Calcium ion transmembrane transporter activity”, “Voltage−gated cation channel 

activity”, “calcium channel activity”, and “Voltage−gated calcium channel activity”.  

Then, we identified the top ten BP categories of GO including “Synapse organization”, 

“Calcium ion homeostasis”, “cellular calcium ion homeostasis”, “Urogenital system 

development”, “Extracellular matrix organization”, “Extracellular structure organization”, 

“External encapsulating structure organization”, “vascular process in circulatory system”, 

“negative regulation of cell development”, and “synapse assembly”. We also identified 

the top ten CC of GO including “collagen−containing extracellular matrix”, “Intrinsic 

component of synaptic membrane”, “cation channel complex”, “extrinsic component of 
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plasma membrane”, “cytoplasmic side of membrane”, “cell−substrate junction”, “integral 

component of postsynaptic membrane”, “sarcolemma”, “ndoplasmic reticulum 

protein−containing complex”, “basement membrane”. 

 

PPI network analysis in WT and REV-ERB KO  

The PPI network was created to explore the relationships of DEGs affected by REV-

ERB. The criterion of combined score >0.4 was set to construct the PPI by using the 

127 nodes and 201 edges. The top ten genes with the highest degree scores are shown 

in Table 2. The top two significant modules were selected to depict the functional 

annotation (Figure 3). We also analyzed the DEGs and PPI with the Reactome analysis 

tools.  

The Reactome map showed the most biological functions affected by the knockout of 

REV-ERB (Figure 4). We also identified the top ten signaling pathways including 

“Circadian Clock”, “BMAL1:CLOCK, NPAS2 activates circadian gene expression”, 

“Transcriptional activation of cell cycle inhibitor p21”, “Transcriptional activation of p53 

responsive genes  “, “Heme signaling”, “TFAP2 (AP-2) family regulates transcription of 

cell cycle factors”, “TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle 

Arrest”, “Sodium-coupled phosphate cotransporters”, “Extracellular matrix organization” , 

and “RUNX3 regulates CDKN1A transcription” (Supplemental Table S1). 

 

Discussion 

As one of the transcriptional repressors, REV-ERB can inhibit gene transcription by 

recruiting co-factors nuclear receptor co�repressor 1 (NCOR1) and histone deacetylase 

3 (HDAC3)24. Given that REV-ERBα regulates the clock and metabolic genes, it is 

proposed as a drug target for treating metabolic syndromes such as obesity and 

diabetes25. Recent studies showed various roles of REV-ERBα including inflammatory 

diseases, cancers, and heart diseases25. Moreover, REV-ERBα and its ligands have 

been considered valuable pharmacological molecules16. 

REV-ERB is important for the development of metabolic diseases16. In our study, the 

KEGG analysis showed PPAR signaling, Hippo signaling, and Hypertrophic 

cardiomyopathy (HCM) are the most affected biological processes during the knockout 
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of REV-ERB at night. In the study by Coralie Fontaine, REV-ERBα can activate the 

PPAR and further drive the adipocyte differentiation26. Protein modification is an 

important step in regulating molecular activity under physiological and pathological 

conditions. REV-ERBα facilitates cytosolic and nuclear protein O-GlcNAcylation that can 

change the activity of YAP in the hippo signaling pathway27. Moreover, Lilei et al found 

REV-ERBα inhibits heart failure by repressing the transcription28. These findings are 

supported by our study. In the study of GO (BP analysis), we found that the nucleoside-

triphosphatase regulator activity was the most affected process during the deficiency of 

REV-ERB. The core circadian clocks such as BMAL1 and CLOCK were located in the 

nucleus and regulated the transcriptional activities of target genes including NF-κB and 

RANKL to further regulate the downstream signaling pathways29-31. REV-ERBα was 

also located in the nucleus and repressed the activity of BMAL132. It is suggested that 

REV-ERBα may affect the transcriptional activities through BMAL1. Interestingly, we 

also found that the knockout of REV-ERB can affect GPCR signaling pathways. GPCR 

and RGS signaling pathways play key roles in mediating the physiological and 

pathological processes such as metabolism33, 34, inflammation35-39, and tumorigenesis40, 

41. It was found that REV-ERB forms complexes with NR2E3 to further regulate the 

expression of Guanine nucleotide-binding protein 1 (Gnat1)42. We also found that REV-

ERB KO affects the synapse organization and assembly. Supportively, Tianpeng et al 

found the disorder of REV-ERBα inhibits GABAergic function and drives epileptic 

seizures in preclinical models43. Moreover, REV-ERB regulates the complement 

expression and microglial synaptic phagocytosis44. 

In our study, the PPI analysis identified a number of critical genes that may affect the 

biological processes in REV-ERB KO mice. NPAS2 is highly expressed in the brain and 

can control the anxiety-like behavior and GABAA receptors45. Cry2 is one of the core 

components of circadian clocks which has been linked to depression in patients46. 

BMAL1 is a basic helix loop helix transcription factor that binds with its partner CLOCK 

or NPAS2 to control the circadian oscillations47. The circadian controlled pathways 

include PER, CRY, NR1D1, and other genes that underlie circadian oscillation of ER 

stress, molecule activity, and oxidant defenses48-51. Cry1 is also highly expressed in the 

brain that associates with PER, which leads to the inhibition of CLOCK-BMAL1 to 
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further control the clock-controlled genes52. As a core circadian gene, Per3 can regulate 

the embryonic development of the cerebral cortex53. Bhlhe41 is required for the 

competitive fitness of alveolar macrophages and the knockout of Bhlhe41 inhibits the 

proliferation of macrophages54. Hui et al found NR1D2 can promote the progression of 

liver cancer by regulating the epithelial transition55. As a survival factor, NFIL3 can 

inhibit the FOXO-regulated gene expression in cancer56. TEF (thyrotroph embryonic 

factor) is an important factor of the PAR bZip members, which is expressed in the brain 

and is relevant to intractable epilepsy57, 58.  

In summary, our study provided the insight into the knockout of REV-ERB in mouse 

brains.  The PPAR signaling, Hippo signaling, and Hypertrophic cardiomyopathy (HCM) 

are the significant biological processes during the deficiency of REV-ERB in the brain. 

Our future studies will explore the upstream and downstream of the important 

processes. Our study may facilitate the research on circadian rhythms. 
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Figure Legends 

 
Figure 1. Heatmap and volcano plot between WT and REV-ERB KO 

(A) Heatmap of significant DEGs between WT and REV-ERB KO. Regularized matrix 

was generated using the R package. Significant DEGs were used to create the heatmap. 

(B) Volcano plot for DEGs between WT and REV-ERB KO. The most significant genes 

are highlighted grey dots and gene symbols marked. 
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Figure 2. KEGG and GO analyses of DEGs between WT and REV-ERB KO 

(A) KEGG analysis was performed by DAVID online tool. The significant terms were 

depicted. (B) Different colors represent biological processes (BP). (C) The molecular 

functions (MF) were analyzed by DAVID. (D) The cellular components (CC) were 

performed by DAVID. 
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Figure 3. The PPI network analysis of DEGs between WT and REV-ERB KO 

The 227 DEGs were input into the STRING database for PPI network analysis. Cluster 

1 (A) and cluster 2 (B) were constructed by MCODE in Cytoscape. 
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Figure 4. Reactome diagram representation of the significant biological 

processes of the protein elements identified between WT and REV-ERB KO 
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