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compared to the others. Interestingly, even within a given culture like set 2, organoids can 

express high levels of mature hepatic markers (e.g. A-B and C/*&), while others were enriched 

in ductal and progenitor markers (e.g. D'%4B9, C.&@ or EF(G, ), indicating that organoids 

within one culture can lean towards two different fates. 
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Fig. 4: Inter-organoid heterogeneity. A) - D) Projection of organoids within each set after 

dimensionality reduction by PCA, including the annotation of each organoid’s size as dot size. The 

variance for each PC is indicated in the axis labels. E) Heatmap showing the expression values for 

marker genes after limma-voom normalization, with a minimum count = 1. Rows are annotated by 

official gene symbols and colours indicating marker for proliferation (red), Wnt pathway (grey), epithelial 

(yellow) as well as progenitor and mature cell types for hepatic (orange, brown) and ductal (blue, violet). 

Data is clustered hierarchically by row and column and scaled by row. F) Bar graph showing number of 

organoids for each cell cycle phase, coloured by set, after analysis with cyclone.  

 

To understand whether the size of an organoid might impact gene expression programs, we 

went back to the PCA analysis, in which the size in which the size of the organoid is indicated 

(Figure 4A-D). However, no clear relationship between transcriptome and size was 

observable. To confirm this result, we plotted the loadings of the first two principal components 

against the size of the organoids and fitted a regression line to the data (Supplementary Figure 

3A,B). While in some instances there was a good correlation between size and the PC 

loadings, this was not the case in general. In conclusion, organoid size does not seem to be 

a driver of the individual transcription programs within single organoids. Finally, we evaluated 

whether the overall proliferative state of organoids might contribute to the differences in 

transcriptional states. As a proxy for the level of proliferation, we performed a cell cycle 

analysis using Cyclone (Scialdone et al. 2015). Cyclone is a machine learning based approach 

allowing cell cycle stage prediction based on a reference transcriptome. Here, a sample is 

assigned to G1 or G2M, when it reaches the threshold of 0.5 for the particular phase. If both 

G1 and G2M scores stay below 0.5, the sample will be categorized as S-phase. The majority 

of organoids were assigned to G1 phase (Figure 4F). While some organoids were predicted 

to fall more into G2M phase, this assignment did not correlate with the clustering in the PCA. 

Still, most organoids showed variability in the cell cycle score. In conclusion, proliferative 

states of individual organoids will contribute to the organoid-to-organoid variability as well as 
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size, but these two parameters alone were not able to predict the stark differences in gene 

expression programs. 

 

DISCUSSION AND CONCLUSION 

Organoid-to-organoid variability has been observed and reported before for epithelial 

organoids (Hof et al. 2021) and is particularly prevalent in organoids recapitulating high tissue 

complexity, such as brain organoids (Quadrato et al. 2017; Velasco et al. 2019). Recent 

studies have analysed in depth the effect of different culture conditions and treatments in gene 

expression variability (Criss et al. 2021) and the donor batch effect of different donors on 

cultures of human gut organoids (Mohammadi et al. 2021). Here, we report that also less 

complex organoids, derived from genetically identical mice show a high degree of variability 

from organoid to organoid. Nevertheless, reproducibility (as measured in bulk assays) was 

high between several batches of organoids. 

While organoid-to-organoid variability was obvious and marker gene analysis suggested a 

variety of different cellular states between the organoids, the underlying reason for the 

variability was less clear. Organoid size and proliferation state - as delineated from predicted 

cell cycle stage - contributed to the overall variability, but their impacts were not large enough 

to fully explain the extent of variability. Given the contribution of culture conditions on variability 

as seen in the shaking organoid culture, it is reasonable to assume that intra-well conditions 

might be a strong driver of culture variability (Snijder and Pelkmans 2011). During culturing, 

assemblies of organoids of various sizes and numbers can be observed, as well as single 

organoids. Thus, cell-to-cell or cell-to-Matrigel contacts will be different in each scenario and 

might change the underlying transcriptional program. This might ultimately lead to different 

signalling events as well. Taken together, in order to grasp biological meaningful signals, 

scientists need to include multiple technical replicates from organoid cultures of different 

biological hosts. In addition, depending on the question, specific culture conditions, passaging 

and culturing time is an important consideration as it can change the cellular state within the 

organoids.  
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SUPPLEMENTARY FIGURES 
 

 
Supplementary Figure 1: Sizes of individual organoids. Sizes of individual organoids in 
square mm measured from 2D images with FIJI as table (A) and graphic (B).  
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Supplementary Figure 2: Differential expression analysis by limma-voom approach 
across sets. A) The upset plot displays the overlap of differentially expressed genes (DEGs) 
between comparisons. The coloured horizontal bar graphs indicate the number of DEGs for 
each comparison, respectively. The black vertical bar graphs visualize the intersection size 
of DEGs and the blue dots represent contributing comparisons from the DE analysis. Only 
the first 25 intersections are plotted. 
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Supplementary Figure 3: Investigation of a potential correlation between organoid 
size and principal components. Principal component (PC) 1 in (A) and PC 2 in (B) are 
plotted for Set 1 – Set 4 in i) -iv), respectively. Organoids are coloured according to their 
similarity in size. A regression line was fitted including respective formulas and r-squared 
values. F-statistics for PC1: Set 1 = 0.03711, Set 2 = 0.6302, Set 3 = 0.2571, Set 4 = 
0.01428; PC2: Set 1 = 0.898, Set 2 = 0.001454, Set 3 = 0.1787, Set 4 = 0.5695. 
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