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Abstract 

Gastric cancer (GC) is a malignancy with the highest mortality among diseases of the digestive 

system worldwide. The study of GC-alterations is crucial to understand tumor biology, to 

establish important aspects of cancer prognosis and treatment response. Here, we purified DNA 

and performed whole-genome analysis with high-density arrays in samples from Mexican 

patients diagnosed with GC: diffuse (DGC) or intestinal (IGC), or non-atrophic gastritis (NAG) 

samples that served as controls. We identified shared and unique copy number alterations 

(CNA) between these altered tissues involving key genes and signaling pathways associated 

with cancer, allowing their molecular distinction and identification of the most relevant 

molecular functions impacted. When focused on epithelial-mesenchymal transition (EMT) 

genes, our bioinformatic analysis revealed that the altered network associated with 

chromosomal alterations included 11 genes shared between DGC, IGC, and NAG, as well as 

19 DGC- and 7 IGC-exclusive genes, whose main molecular functions included adhesion, 

angiogenesis, migration, metastasis, morphogenesis, proliferation, and survival. This study 

presents the first whole-genome high-density array study in GC from Mexican patients and 

reveals shared and exclusive CNA-genes in DGC and IGC. In addition, we provide a 

bioinformatically predicted network focused on CNA-altered genes involved in the EMT, 

associated with the hallmarks of cancer, as well as precancerous alterations that could lead to 

gastric cancer. 

Implications: Molecular signatures of diffuse and intestinal GC, predicted bioinformatically, 

involve common and distinct CNA-EMT genes related to the hallmarks of cancer that are 

potential candidates for screening  GC biomarkers, including early stages. 
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Introduction 

According to Global Cancer Observatory (GCO or GLOBOCAN) statistics, cancer is the 

leading cause of death in the World with 9.9 million deaths in 2020. This year, cancer had an 

incidence of 20% in the Caribbean and South America with high mortality rates (14%). 

Worldwide, gastric cancer (GC) is estimated to be the fifth most common cancer in both 

genders, ranking sixth in new cases with over one million per year and third in mortality (1). 

In Mexico, according to statistics from the Instituto Nacional de Estadística y Geografía 

(INEGI), three out of ten cancer deaths in the age group among 30-59 years old were due to 

cancer of the digestive system. From 2011 to 2016, four out of 10 and three out of 10 cancer 

deaths in women and men aged 60 years old or more, respectively, resulted from tumors in 

digestive organs (2). 

GC refers to any malignancy originating in the region between the gastroesophageal junction 

and the pylorus. The World Health Organization and the Lauren classification system (3) have 

described two types of GC: intestinal and diffuse. The intestinal or differentiated gastric cancer 

(IGC) is characterized by localized and expansive growth, while diffuse gastric cancer (DGC) 

has an infiltrating growth pattern, is an undifferentiated adenocarcinoma, and presents dispersed 

cells with individual or group invasive capacity (4). The development of IGC is preceded by a 

precancerous process of several years and stages: active chronic gastritis, multifocal atrophic 

gastritis, complete intestinal metaplasia, incomplete intestinal metaplasia, dysplasia and 

adenocarcinoma (5). GC has a multifactorial origin: diet, lifestyle, genetics, socioeconomic 

factors, and it has been observed that 80% of cases of IGC are associated with previous 

Helicobacter pylori infection (6,7). GC is characterized by a complex etiology with a set of 

factors, such as genetic alterations and external factors. However, it has been reported that less 

than 3% of GC is due to heredity, and involves hereditary DGC, proximal polyposis of the 

stomach, and hereditary colorectal cancer not associated with polyposis (6). Regarding 

molecular pathogenesis, chromosomal instability (aneuploidy, chromosomal translocation, 

amplification, deletions and loss of heterozygosity), gene fusion and microsatellite instability 

(hypermethylation of gene repair promoters) are involved (7). 

The number of copy alterations (CNA) represent a class of genetic variation that involve 

cumulative somatic variations, CNA are defined as non-inherited genetic alterations that occur 
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in somatic cells (8). These unbalanced structural variants usually contain gains or losses. Its 

interpretation and the CNA report continue to be a topic of interest in health, and become 

evident to play an important role in GC (9,10). 

The majority of gastric adenocarcinomas, like many other solid tumors, show defects in the 

maintenance of genome stability, resulting in DNA CNA that can be analyzed by comparative 

genomic hybridization (CGH) (11). There is a widespread and common phenomenon among 

humans and several studies have focused on understanding these genomic alterations that are 

responsible for cancer and might be used in diagnosis and prognosis (12). 

Currently, there are few published studies involving genotyping of GC samples employing 

high-density microarrays (13–15); however, in those altered chromosomes, gains and losses 

have a phenotypic impact, and different signaling pathways are involved. The presence of CNA 

changes the genetic dose and would modify several molecular mechanisms as epithelial-

mesenchymal transition (EMT), which is the transformation of epithelial to mesenchymal cells 

and a critical stage for the transition to metastasis (16). Currently, there are more than 1184 

genes at the Epithelial-Mesenchymal Transition Gene Database 2.0 (dbEMT 2.0), which are 

involved in other cancer-related processes such as proliferative signaling, evading growth 

suppressors, avoiding immune destruction, disabling replicative immortality, tumor-promoting 

inflammation, inducing angiogenesis, genome instability, mutation, resting cell death, 

deregulation cellular energetic activity, invasion and cell plasticity (17). EMT includes 

activation of transcription factors, expression of specific cell-surface proteins, reorganization 

and expression of cytoskeletal proteins, and production of extracellular matrix (ECM) 

degrading enzymes (18). EMT has been linked to the progression of cancer and increased 

stemness of tumors (18,19), and observed in the formation, invasion and metastasis of GC 

(20,21). Also, a relationship has been established between the presence of CNA and its effect 

on the expression of EMT genes in different cancer cell lines (22). Reports of CNA events 

involving Latin American populations are still scant (23,24). In fact, at present there are few 

studies of GC genotyping by whole-genome high-density microarrays in Mexican patients 

(14,15). Therefore, our study aimed to determine CNA in DGC and IGC to identify through 

bioinformatics analyses, the main genes and signaling pathways involving EMT-genes. 

 

Material and Methods 
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Samples 

Institutional Review Board approval was obtained for the study origin (Register number: 2008-

785-001). Clinical data and patient samples were processed under informed consent. All 

samples were collected over three years (April 2010-May 2013) following standardized 

endoscopy preservation protocols (25). The histology of the biopsies was assessed 

independently by two trained pathologists. They assigned the phenotypic diagnosis of diffuse 

or intestinal tumors and non-atrophic gastritis (NAG) samples. Only samples with identical 

results were included in the study. 

We included 21 patients (5 females and 16 males) with tissue samples that met the quality 

criteria from DGC (n=7) and IGC (n=7) diagnoses, as well as NAG (n=7) as controls. To 

identify the most relevant alterations for GC, we focused our analysis on alterations present in 

at least three patients as an arbitrarily threshold (cut-off ≥ 3 patients; ≥ 40% samples). 

 

DNA extraction 

DNA extraction was done with a commercial kit (QIAamp® micro Kit, QIAGEN®) according 

to the manufacturer’s instructions. The extraction was modified to include an initial incubation 

at 95°C for 15 min followed by 5 min at room temperature as described previously, before being 

digested with proteinase K for three days at 56°C in a water-bath adding fresh enzyme at 24 h 

intervals (26). 

 

DNA quality assessment and preparation 

The extracted DNA was quantified by spectrophotometry (Nanodrop 2000, Thermo Scientific). 

Multiplex PCR was done to assess the quality of DNA (Multiplex PCR kit, QIAGEN®) with a 

set of primers to amplify various regions of the GAPDH gene (27). Products were visualized 

by electrophoresis (RedGel® Nucleic acid gel stain, Biotium) on a 1% agarose gel and 

documented under an ultraviolet light transilluminator system (Syngene, Frederick, MD, USA).  

 

High-density whole-genome microarray analysis 

Samples were analyzed by Affymetrix® CytoScan™ microarrays according to the 

manufacturer’s protocol beginning with 250 ng DNA, except for the addition of five PCR cycles 
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to increase the DNA sample. PCR products (90 micrograms) were fragmented and labeled using 

the additional PCR. 

 

Copy number processing 

Raw intensity files (.CEL) retrieved from the commercial platform were analyzed using their 

proprietary software Chromosome Analysis Suite v3.2, using NetAff 33 Libraries based on the 

construction of the hg19 genome (Feb 2009) as a reference model. 

Data processing was based on the segmentation algorithm, where the Log2 ratio for each marker 

was calculated relative to the reference signal profile. To calculate CNV, the data were 

normalized to baseline reference intensities using the reference model (provided by ChAS) 

including 270 HapMap samples, as well as 96 healthy normal individuals. The Hidden Markov 

Model (HMM) available in ChAS was used to determine the copy number state (CN-state) and 

their breakpoints. The customized high-resolution condition was used as a filter for the 

determination of CNV: CN-gains with 50 marker count and 400 Kb, and CN-losses with 50 

marker count and 100 Kb. We used the median absolute pairwise difference (MAPD) and the 

single nucleotide polymorphism quality control (SNP-QC) score as the quality control 

parameters. Only samples with values of MAPD > 0.25 and SNP-QC < 15 were included in 

further analysis. 

 

Bioinformatic analysis 

We developed a Perl script to load the CNV segment data files generated by ChAS for each 

sample, compare the files to build a table of genes that contains events types (gains or losses), 

frequencies of altered regions, including chromosomes and cytogenetic bands, and Online 

Mendelian Inheritance in Man (OMIM) information, and incorporate additional information 

from different databases: haploinsufficiency information from DECIPHER database of 

genomic variation, genes reported at dbEMT 2.0, and genes affected in gastric adenocarcinoma 

from Harmonized Cancer Datasets (Table S1). 

The genes altered in at least three patients (cut-off ≥ 3) with DGC, IGC or NAG were included 

for analysis and visualizations with the language and environment for statistical computing and 

graphics R v4.0.2 and Bioconductor v3.12 packages.  
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The karyotype was created with KaryoploteR and BSgenome.Hsapiens.UCSC.hg19 v1.4.0. The 

comparison among samples was made using Venn diagrams with the jVenn server and the 

heatmap with gplots. Enrichment and gene ontology (GO) analysis were performed with the 

ClusterProfiler v3.16.1 packages, org.Hs.eg.db 3.11.4, enrich plot v1.8.1, and GOplot v1.0.2, 

with the support of functional enrichment analysis via DAVID v6.8 bioinformatics resources. 

The profile of altered molecular functions in GC was summarized according to the proportion 

of CNA-genes and the Molecular Function (MF) gene collection of the gene ontology terms 

from the DAVID database, adjusted by FDR. We used dot plots, heatmaps, and chord plots to 

visualize the general GC CNA profiles for DGC, IGC, and NAG. 

To identify the main genes and signaling pathways involving CNA EMT-genes, we analyzed 

and compared GC CNA-genes (cut-off ≥ 3) according to those previously reported in the 

dbEMT 2.0 accessed on October 12th, 2020. 

Finally, to establish the profile-associated hallmarks of cancer involving DGC, IGC, and NAG 

EMT-genes, we generated an interaction network by CNA-type (gains and losses) based on 

genetic and physical interactions, biological pathways, and predicted relationships using the 

GeneMANIA prediction server and Cytoscape v.3.8.2, including the manual annotation of their 

corresponding cancer hallmarks: adhesion, angiogenesis, inflammation, migration, metastasis, 

morphogenesis, proliferation, and survival (28) with punctual scrutiny and help from databases 

such as The Human Protein Atlas. For further consultation of the databases, protocols, software, 

and specific packages used in this study see Table S2. 

 

Results 

 

Sample characteristics 

Samples from 21 Mexican patients (third-generation Mexicans) between 35 and 91 years old 

(61.7 ± 15.9 years) without previous cancer treatment (naïve) were included in our study. The 

data includes 21 samples: seven DGC, seven IGC and seven NAG (control samples). Our data 

have been deposited in the NCBI Gene Expression Omnibus and assigned the GEO series 

accession number GSE117093. We have seven adjacent tissue files (.CEL), but these files were 

not included in data analysis, because some adjacent tissues were contaminated with cancer 

cells or these were not of the quality required for subsequent analyzes. 
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Table 1 shows the identity card (ID) and the percentage of neoplastic cells for tumor tissues 

ranging between 50-70%. Blood agar culture showed that one IGC and three NAG patients 

were positive for Helicobacter pylori (data obtained from our biobank database). Tumor size 

(T), number of lymph nodes (N) and metastasis (M) classification data are also presented in 

Table 1. 

 

Table 1. Characteristics of GC samples analyzed in this study. 

ID 

Age 

(years) Gender CT % CC H. pylori TNM Treatment 

3CG-008 72 M Intestinal 70 Positive IB T1 N1 M0 Naïve 

3CG-126 80 M Intestinal 60 Negative IIA T4 N0 M0 Naïve 

3CG-128 91 M Intestinal 70 Negative IIA T3 N2 M0 Naïve 

3CG-046 52 F Intestinal 60 Negative IV T4 N2 M0 Naïve 

3CG-099 59 M Intestinal 50 Negative II T3 N0 M0 Naïve 

3CG-146 71 M Intestinal 60 Negative IIB T3 N2 M0 Naïve 

3CG-104 69 M Intestinal 60 Negative III A T4 N0 M0 Naïve 

3CG-047 58 M Diffuse 70 Negative IV T4 N3 M0 Naïve 

3CG-173 76 M Diffuse 70 Negative III A T2 N3 M0 Naïve 

8CG-004 76 M Diffuse 70 Negative II T1 N0 M0 Naïve 

1CG-001 45 M Diffuse 60 Negative IV T4N2M1 Naïve 

3CG-035 55 M Diffuse 60 Negative IV T4N2M0 Naïve 

3CG-042 64 M Diffuse 50 Negative IV T4, N2 M0 Naïve 

3CG-064 38 M Diffuse 50 Negative IV T4 N2 M0 Naïve 

4GB-001 64 M Gastritis 0 Negative NA  NA 
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4GB-031 62 M Gastritis 0 Negative  NA  NA 

4GB-015 35 F Gastritis 0 Negative NA   NA 

4GB-025 39 M Gastritis 0 Positive  NA   NA 

4GB-033 76 F Gastritis 0 Positive  NA   NA 

4GB-036 38 F Gastritis 0 Positive   NA   NA 

4GB-042 77 F Gastritis 0 Negative   NA  NA 

ID, identification code; CT, cancer type; CC, cancer cells; M, male; F, female; NA, not 

applicable; TNM, T: the extent of the primary tumor; N: the absence or presence and extent of 

regional lymph node; M: the absence or presence of distant metastasis (29–31). 

 

Genomic detection of CNA 

We obtained the total number of CNA and classified them as gains or losses for each 

chromosome in GC and NAG samples. By total CNA, DGC had more CNA than IGC (3505 

and 2781, respectively), while there were 828 events in NAG samples. By tissue, we observed 

more gains than losses (G/L) in both cancer types, DGC (2310/1195) and IGC (1550/1231), but 

the opposite occurred in NAG (375/453) (Table S3). 

To identify the most relevant CNA in GC and NAG, we analyzed alterations occurring in at 

least three patients (cut-off ≥ 3). This comparison showed a similar pattern for total CNA with 

more events in DGC (710), IGC (590), and NAG (332). Also, we observed more gains than 

losses (G/L) in DGC (516/194), IGC (314/276) and even in NAG (196/136), unlike when all 

patients were included. In addition, DGC had the highest number of gains and IGC had the 

highest number of losses (Table S3). In Table 2 we show chromosomes and sizes with gain and 

loss numbers, representative and summarized. 

 

Table 2. Principal affected chromosomes by CNA cumulative length in diffuse gastric 

cancer, intestinal gastric cancer and non-atrophic gastritis.  
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Type Chromosome Gains Losses Length 

(Mb-cl) 

DGC 1 327 -----  117.9 

4 -----  155 40.8 

5 -----  148 74.23 

IGC 1 -----  148 33.78 

8 365 -----  139.8 

X -----  66 167.1 

NAG 6  ----- 28 0.40 

7 21 -----  0.20 

14 10 -----  3.02 

17 -----  15 1.86 

X -----  87 0.47 

X 207 -----  1.20 

DGC: Diffuse gastric cancer; IGC: Intestinal gastric cancer; NAG: Non-atrophic gastritis; Mb-

cl: Megabases cumulative length.  

 

To visualize the distribution of DGC and IGC chromosome gains and losses, we plotted the 

identified CNA present in a karyogram (cut-off ≥ 3), locating alterations according to the 

coordinates of the Human genome hg19 (Figure 1). The top five altered cytobands are shown 

in Tables 3 and S4. 
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Table 3. Top five altered cytobands in diffuse gastric cancer, intestinal gastric cancer and 

non-atrophic gastritis. 

Type Cytoband Gains Length 

(Mb-cl) 

Number of patients 

DGC Xq28 37 11.5 6 

8q24.22 25 15.8 5 

1q32.1 26 12.16 5 

8q24.3 25 17.46 6 

1q23.3 22 15.26 6 

IGC 8q24.3 24 12.662 4 

13q34 18 4.9018 4 

8q24.21 18 6.2619 4 

8q24.22 16 6.4856 4 

8q12.1 16 5.8523 4 

NAG Xq26.2 24 34.026 6 

Xq21.2 22 33.586 7 

Xp22.33 19 167.504 7 

Xq23 16 63.79 6 

Xq26.3 13 217.774 7 
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DGC: Diffuse gastric cancer; IGC: Intestinal gastric cancer; NAG: Non atrophic gastritis; Mb-

cl: Megabases cumulative length.  

 

Interestingly, in DGC and IGC the most frequent CNA lengths were 100-200 Kb, while 1-50 

Kb were more common in NAG, considering gains and losses (Table S5). 

 

 

Figure 1. Karyogram with CNA distribution in diffuse and intestinal gastric cancers. CNA 

events (gains or losses) were present from chromosomes 1 to 22, X, and Y. Gains (blue and 
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dark blue) and losses (orange and red) are plotted for ≥ 3 DGC or IGC patient samples. 

Cytobands (gray, black or white bars) and centromeres (green bars) are shown. 

 

Gastric cancer genes associated with CNA 

Overall, we found 2441 CNA-genes in DGC-IGC-NAG. GC had 2420 affected genes (99%) 

while only 108 genes (4%) were affected in NAG; some of these alterations were shared 

between GC and NAG. We observed 1317 unique CNA-genes in DGC, 596 in IGC, and 21 in 

NAG; both cancer types shared 420 genes, while 60 genes were shared between GC and NAG. 

In addition, 19 NAG genes were shared with DGC and eight genes with IGC (Figure 2A and 

Table S6).  

To identify possible emerging patterns among samples, we performed hierarchical clustering 

heatmaps (Figure 2B). Results showed the molecular signature and hierarchical clustering of 

samples according to 2441 genes. The emerging pattern of altered genes affected by CNA 

distinguishes DGC and IGC from NAG. 

 

 

Figure 2. Profile of CNA-genes in gastric cancer from ≥ 3 patients. (A) The Venn diagram 

presents frequencies of specific and shared genes in diffuse gastric cancer (DGC), intestinal 

gastric cancer (IGC) or non-atrophic gastritis (NAG) in CNA. (B) The heatmap shows the 

hierarchical clustering of gains (blue), losses (red), and no alterations (light blue and light red). 

 

GO analysis of gastric cancer  
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We obtained the functional profile for GC through enrichment and gene ontology (GO) analysis 

of 1317 genes altered only in DGC and 596 in IGC. To identify the principal molecular 

functions altered in GC, we categorized these CNA-genes, independently of GC-type, in two 

groups: gains and losses (Figure 3A and 3B). The top ten molecular functions (MF) associated 

with CNA gains or losses revealed that transcription activator, tyrosine kinase activity, growth 

factors and hormone binding, as well as intracellular signal transduction genes were enriched 

in GC. Gene-losses mainly involved transcription coactivator and serine/threonine kinase 

activity, as well as, several receptors binding to hormone, steroid hormone, nuclear receptor, 

beta-catenin, intermediate filament, mitogen-activated protein kinase binding genes. In 

addition, we identified the principal CNA-genes affecting the MF by GC type: DGC and IGC 

(Figure 3C, 3D, and 3E). 
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Figure 3. Molecular function profiles of gastric cancer CNA-genes. Gene enrichment 

analysis affected by CNA-genes in ≥ 3 gastric cancer (GC) patients. It is summarized by CNA-

type with dot plots for gains (A) and losses (B), according to the proportion of CNA-genes and 

Molecular Functions (MF) gene collection of the gene ontology (GO) terms from the DAVID 
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database, adjusted by FDR. The heatmap (C) shows the main MF altered by CNA-genes in 

Diffuse-GC and Intestinal-GC. The CNA-genes-MF networks depict the possible relationship 

between CNA gains (D) and losses (E) within GC. Gene-ratio (M/N) is the proportion between 

CNA genes in ≥ 3 GC patients (M) and the collection of genes from the GO term database 

function (N). Count (circle sizes) represents the number of CNA-genes associated with MF.  

 

CNA-EMT genes in DGC and IGC 

To identify the main genes and signaling pathways involving CNA-EMT genes in GC and 

NAG, we compared GC CNA-genes against a comprehensive and annotated database of 

epithelial-mesenchymal transition genes (dbEMT). We found 551 CNA-EMT genes for DGC, 

619 for IGC and 28 for NAG. With a cut off ≥ 3 in DGC-112, IGC-66 and NAG-5. The 

complete data of EMT-genes for DGC, IGC, and NAG with chromosome and cytoband 

locations, CNA-type (gain or loss), and p-values can be found in Table S1. 

 

GO Analysis of EMT-genes 

We performed a gene ontology (GO) enrichment analysis to determine the MF of the main 

CNA-EMT genes affected in DGC, IGC, and NAG (Figure 4). Our analysis shows that CNA-

EMT gene-gains in DGC involved transmembrane receptor tyrosine kinase, DNA and RNA 

binding, several receptor binding: insulin, growth factor, toll-like, hormone, as well as SMAD, 

p53, chromatin, calcium ion binding and microtubule binding (Figure 4A). CNA-EMT gene-

losses included DNA and chromatin binding, nuclear hormone receptor binding, beta-catenin, 

steroid hormone, mitogen-activated protein binding, intermediate filament binding, p53 

binding, RNA polymerase II-specific DNA binding (Figure 4B). Moreover, CNA-EMT gene-

gains in IGC involved insulin receptor substrate and phosphatase binding, kinase regulation, 

neurotrophin receptor binding, 1-phosphatidylinositol-3-kinase activity, transmembrane 

receptor protein tyrosine kinase adaptor activity, and VEGF receptor binding; while CNA-EMT 

gene-losses in IGC involved only coenzyme binding and transcription coactivator activity 

(Figure 4C). On the other hand, the main MF for CNA-EMT gene-gains in NAG included 

transcription regulatory region DNA, transcriptional activator activity RNA, armadillo repeat 

and C2H2 zinc finger domain binding, gamma- and beta- catenin binding, as well as cysteine-

type endopeptidase inhibitor activity involved in apoptotic process and estrogen receptor and 
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steroid hormone receptor activity; while CNA-EMT gene-losses in NAG involved damaged 

DNA, WW domain, and p53 binding as well as DNA-binding transcription activator activity 

(Figure 4D). 
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Figure 4. Principal molecular functions associated with CNA-EMT genes in gastric cancer 

and non-atrophic gastritis. The main MF associated with CNA-EMT are represented with 

chord plots and dot graphics for (A) DGC gains, (B) DGC losses, (C) IGC gains or losses, and 

(D) NAG gains or losses. Chord plots (left panels) show associations between genes and 

molecular functions, indicating their CNA-type by color coding (gains/blue and losses/red). Dot 

plots (right panels) show an enrichment analysis of molecular functions, and loss or gain genes 

counts in samples. CNA, copy number alteration; EMT, epithelial mesenchymal transition; 

DGC, diffuse gastric cancer; IGC, intestinal gastric cancer; NAG, non-atrophic gastritis. 

 

CNA-EMT genes associated hallmarks of cancer  

Based on the main molecular profile of altered CNA-EMT genes in GC and NAG, we generated 

the functional network between 39 previously selected unique CNA-EMT genes, (19 genes for 

DGC, seven for IGC, 11 common to GC, and two for NAG; cut-off ≥ 3 patients). Gained genes 

with the highest degree, at least four interactions per gene, were EGFR, MICAL2, MYC, 

NDRG1, and PIK3R1, while lost genes included GLI2, EP300 and PTPN11. The principal 

functions related to these CNA-EMT genes have been previously associated with several 

hallmarks of cancer: adhesion, angiogenesis, inflammation, migration, metastasis, 

morphogenesis, proliferation, and survival (Figure 5). 
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Figure 5. Gastric cancer and non-atrophic gastritis CNA-EMT genes network and 

associated hallmarks of cancer. The functional interactions among CNA-EMT genes 

identified in DGC (rectangles), IGC (ovals), and shared genes (hexagons) are identified by their 

CNA-type (gains/blue and losses/red) and associated hallmarks of cancer (colored dots). DGC, 

diffuse gastric cancer; IGC, intestinal gastric cancer; NAG, non-atrophic gastritis; EMT, 

epithelial-mesenchymal transition; CNA, copy number alterations. 

 

Discussion  

This is the first whole-genome high-density array study in GC from Mexican patients in three 

groups: DGC, IGC, and NAG as non-cancerous control. Using this experimental strategy, it 

was possible to generate a karyogram and obtain molecular signatures for diffuse and intestinal 

GC, and their relationship with CNA-EMT genes independently of age, gender, % CC, H. pylori 

presence/absence, TNM, and treatment (naïve samples in our set). In addition, our genomic 

analysis was focused on the molecular profile of GC, particularly involving alterations of EMT-

genes, given their role in cancer progression as epithelial cell transformation to mesenchymal 

cells is fundamental to metastasis (32) and chemoresistance (33,34). Our results coincide with 

those previously reported in the literature, which provides validity and robustness to our 
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findings and allows us to report novel data or not yet explored potential diagnostic, prognostic, 

and treatment response markers. 

Globally, the alteration profile in GC was dominated by gains. This phenomenon, where gains 

are more abundant than losses, has been previously reported in different tumor lines, including 

gastric cell lines (35). Chromosomal gains in cancer might result in increased gene functions, 

providing cancer cells a competitive advantage for the development of metastasis (36), while 

chromosomal losses might involve the down-regulation of tumor suppressor genes (37), 

disrupting homeostasis and accelerating cancer progression. The most affected CNA-

chromosomes for DGC were 1, 4, and 5; for IGC 1, 8, and X, and for NAG 6, 7, 14, 17, and X. 

The altered cytobands associated with GC found in this work (Table 3) are in agreement with 

previous studies; as an example, 8q24 has been implicated in the development of different 

tumors (38). The highest frequencies of gains in advanced GC were found at 8q24.21 (65%) 

and 8q24.3 (60%), and the pattern of CNA in advanced GC was quite different from that in 

early GC, this increased CNA numbers is associated with disease progression from early to 

advanced GC (39). The 8q24 cytoband has also been reported in Latin American countries such 

as Brazil (40) and Venezuela (41), as well as in Asian countries like Korea (42). 

Interestingly, the most frequent CNA length in GC was 100-200 Kb in both DGC and IGC 

versus 1-50 Kb in NAG. The biological implications of this alteration length pattern in GC 

compared to non-cancerous tissues such as NAG is yet to be determined. Meanwhile, it is 

important to highlight that a resolution of 100-200 Kb versus Mb is an advantage of molecular 

resolution approaches over classical cytogenetics (CGH, FISH, among others) to discover 

"small" potentially important alterations in cancer samples. 

The cumulative length averages (Mb-cl) of these alterations were 183.44 for DGC, 113.56 for 

IGC, and 1.19 for NAG. These lengths, whether gained or lost, describe the magnitude of global 

alterations per tissue; yet, their relevance lies on the molecular functions, biological process, 

and interaction networks in which they participate. 

We identified a molecular profile that distinguishes GC from NAG, based on 2441 genes 

affected by CNA. They are associated with GC, as well as the differences and similarities 

between histological subtypes, DGC (undifferentiated) and IGC (well-differentiated) compared 

to a non-cancerous tissue such as NAG (43). Interestingly, we identified 60 affected genes 

shared between GC and NAG, 19 were shared exclusively with DGC while only eight with 
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IGC. This emerging pattern of shared altered genes between cancerous and non-cancerous 

tissues, should be further studied to identify possible CNA-dependent oncogenic pathways and 

progression trajectories from NAG to either GC subtype, particularly in conjunction with 

environmental factors such as H. pylori infection, diet, and lifestyle, that might be involved in 

spread patterns affecting patient survival (43). 

In the heatmap (Figure 3B) a separation between NAG and GC is observed, showing clusters 

based on the molecular profiles of CNA-genes. There is a greater heterogeneity between the 

IGC samples in clusters, but there are more genes affected in DGC. The front-line tool for IGC 

distinction has been based on different criteria such as the histopathological classification 

proposed by Lauren. However, due to the challenges, conflicts in the correct assignment, 

diagnosis and treatment new criteria have been proposed such as the molecular characterization 

by The Cancer Genome Atlas Research Network (TCGA), which divides GC into four subtypes 

(44). Our observations agree with the need for new proposals for the classification of GC, which 

includes defined subgroups with the integration of several genomic and genetic parameters 

where CNA are present. 

We analyzed and determined the molecular function profile of GC CNA-genes. Concerning 

gains, we observed increased alterations involving transcription, signaling, tyrosine kinases, 

growth factors, hormones, insulin; while in losses, molecules involved in transcription, 

serine/threonine and MAP kinases, hormones, steroids, beta-catenin binding, filament binding 

were decreased. These gene sets are important in GC biology. CNA-IGC genes were 13, e.g. 

CDH1, LAST1, ROCK1, and WWOX; and CNA-DGC genes were 49, e.g. CRIM1, EGFR, 

MIR9-1, MUC1, MYC, NDRG1, SCRIB, SNAI2, VEGF, and ZEB2, hence, we focus on these 

example genes with the intention of comparing our findings with others and placing them in a 

biologically coherent context. For example, CDH1 codes for E-cadherin and, from a simplified 

viewpoint, E-cadherin maintains the epithelial phenotype; if CDH1 is lost, this promotes the 

mesenchymal phenotype, i.e., it favors loss of adhesion and metastasis (32). 

We performed an enrichment analysis of unique CNA-genes for all tissues and observed several 

shared molecular functions, such as protein binding. Some gained genes coding for RNA-

binding proteins (RBP) (45) have diverse targets and participate in tumor progression by 

regulating homeostasis and changing expression patterns. Chromatin binding is another altered 

function in GC that participates in regulating eukaryotic gene expression, methylation profiles 
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modulation, and genome stability maintenance (46). EMT is a process that involves changes in 

histone modification, DNA methylation, and chromatin accessibility. These changes can be 

promoted through transcription, allowing the cell to have an identity or to have a MET-EMT 

conversion (47). The kinase function in DGC and IGC gains (48) have recently been considered 

key regulators in the development of cancer. Many kinases are related to the initiation and 

progression of carcinogenesis, and are one of the main therapeutic targets for the development 

of inhibitors in the clinical area. Kinases are able to promote EMT and enhance invasion, 

migration, and evasion of apoptosis (49). In IGC, we highlight PIK3R1 and PIK3CA. The PI3K 

pathway is a key regulatory hub for cell growth, survival and metabolism (50). Activation of 

PI3K is a frequent hallmark of cancer, highlighted by the prevalence of somatic mutations in 

genes encoding key components of this pathway (51). These enzymes are responsible for 

transferring a phosphate group; however, the reverse process is carried out by phosphatases 

which also are particularly affected in IGC. PIK3R1, is a gene frequently affected by mutations 

or copy numbers in various types of cancer according to the TCGA project. These genes 

converge on the PI3K/AKT/mTOR pathway, involved in the regulation of many processes (51). 

At present, the differences between DGC and IGC have been insufficiently explored and 

understood; differences in etiology, location, incidence, genetic profiles, among others, have 

been observed (52). The GC CNA-EMT network (Figure 5) was generated with relevant genes 

according to different criteria: frequency among patients as well as genetic connections, 

reported pathways, and experimental associations with several databases: EMTDB, The Human 

Protein Atlas, COSMIC (53), Cancer Hallmark Genes (CHG) database (54). Shared and 

exclusive altered genes were observed for each tissue-type. The common CNA-EMT genes 

between DGC and IGC include GLI2, associated with proliferation (55); EP300, with multiple 

functions as an inhibitor of anti-tumor immune response via metabolic modulation (56); 

PTPN11, associated with GC progression; and NDRG1, associated with metastasis and poor 

prognosis in GC (57). A relevant gene in DGC is EGFR, which given its consistent CNV-GC 

association, is now the target for the development of anti-GC therapies (58). IGC-exclusive 

EMT-genes are MICAL2, MYC, and PIK3R1. MICAL2, a destabilizing F-actin in cytoskeletal 

dynamics, has been found in poor prognosis GC (59). MYC gains have also been reported in 

several GC studies, as expected for a common oncogenic gene (60) associated with 

proliferation, differentiation, and apoptosis (61). PIK3R1 participates in the PI3K/AKT 
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signaling pathway with roles in apoptosis and cell survival, as well as chemotherapy resistance 

in GC (62). 

A large amount of data remains to be analyzed, including LOH, mosaicism, and other gene sets  

that participate in different hallmarks of cancer. Another limitation of our study was the absence 

of the transcriptomic exploration to validate our GC EMT-signature, particularly for DGC and 

IGC. Yet, the concordance of CNA with expression alterations of EMT-related genes is 

plausible, as previously observed for multiple cancer types from The Cancer Genome Atlas 

(TCGA) data (35). Also, further inclusion of precancerous stages would allow us to depict the 

"profile" of IGC progression. The results from our genomic approach, coincide with those 

already reported in the literature, which gives validity and solidity to our results. After all, this 

strategy allowed us to report novel data, scarcely or not yet explored, to identify differential GC 

CNA, associate them to relevant molecular functions related to the hallmarks of cancer, and 

predict the EMT-signature for DGC and IGC. We believe that targeting these networks will 

potentially serve as diagnostic, and prognostic markers. Additionally, the use of NAG as a non-

malignant control allowed us to study the molecular and cellular events of GC, and identify 

possible biomarkers for the “early” gastric cancer stages. 
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