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Abstract 

While single-cell RNA sequencing (scRNA-seq) is widely used to profile gene expression, 

few methods are available to infer gene regulatory networks using scRNA-seq data. Here, we 

developed and extended IReNA (Integrated Regulatory Network Analysis) to perform 

regulatory network analysis using scRNA-seq profiles. Four features are developed for 

IReNA. First, regulatory networks are divided into different modules which represent distinct 

biological functions. Second, transcription factors significantly regulating each gene module 

can be identified. Third, regulatory relationships among modules can be inferred. Fourth, 

IReNA can integrate ATAC-seq data into regulatory network analysis. If ATAC-seq data is 

available, both transcription factor footprints and binding motifs are used to refine regulatory 

relationships among co-expressed genes. Using public datasets, we showed that integrated 

network analysis of scRNA-seq data with ATAC-seq data identified a higher fraction of 

known regulators than scRNA-seq data alone. Moreover, IReNA provided a better 

performance of network analysis than currently available methods. Beyond the reconstruction 

of regulatory networks, IReNA can modularize regulatory networks, and identify key 

regulators and significant regulatory relationships for modules, facilitating the systems-level 

understanding of biological regulatory mechanisms. The R package IReNA is available at 

https://github.com/jiang-junyao/IReNA. 
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Key points: 

1. We have developed IReNA, a new method for reconstructing regulatory networks using 

either scRNA-seq and ATAC-seq data or scRNA-seq data alone. 

2. IReNA can establish modular regulatory networks to identify key regulatory factors and 

statistically significant regulatory relationships among modules. 

3. Through analyzing three public scRNA-seq datasets, IReNA shows better performance on 

identifying known regulators than Rcistarget, the most widely used alternative method. 
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INTRODUCTION 

Dynamic expression of transcription factors and changes in chromatin accessibility 

regulate gene expression in biological systems[1]. This fact makes it possible to infer gene 

regulatory networks using transcriptomic and epigenomic profiles[2]. Transcriptomes are 

conventionally measured through bulk RNA-seq, which only provides average mRNA levels 

of diverse cell types present in the sample. Recently, however, the development of single-cell 

RNA sequencing (scRNA-seq) has made it possible to measure the transcriptomes of 

thousands of individual cells[3]. ScRNA-seq provides new opportunities to reconstruct cell 

type-specific regulatory networks. Several features of regulatory networks could be identified 

by analysis of transcriptomes. For instance, genes regulated by the same transcription factors 

are likely co-expressed[4]. Given that biological systems are organized as modular networks, 

genes in the same functional module tend to share similar expression profiles[5]. 

Complementary to transcriptomics, epigenomic analysis identifies dynamic chromatin states 

that allow to identify key features of regulatory networks, including changes in chromatin 

accessibility and transcription factor binding sites. These features can be measured using 

Assay for Transposase Accessible Chromatin using sequencing (ATAC-seq)[6]. Binding 

motifs in regulatory regions indicate transcription factor binding and regulation of nearby 

genes. Transcription factor binding motifs can be used to refine gene regulatory relationships 

inferred from co-expression analysis. 

Several methods have been developed to reconstruct regulatory networks using bulk or 

single-cell transcriptomes. Through calculating weighted co-expression, WGCNA performs 

network analysis using bulk transcriptomes[7]. For single-cell transcriptomes, the software 

SCENIC has been developed for gene co-expression and cis-regulatory analysis[8]. Although 

current methods can infer regulatory networks to identify key regulators, they do not reveal 

regulatory relationships among modules of co-expressed genes. Methods for reconstructing 

regulatory networks by integrating single-cell transcriptomes with ATAC-seq profiles are 

very limited. Recently, we have developed IReNA to integrate both bulk and single-cell 

RNA-seq data with bulk ATAC-seq data to reconstruct modular regulatory networks which 

provide key transcription factors and intermodular regulations on retinal regeneration[9]. 

Here, we further extended the function of IReNA to regulatory network analysis only using 

single-cell transcriptomes, since only scRNA-seq data are available for many biological 

samples. Using IReNA, we analyzed published single-cell transcriptomes and ATAC-seq 
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profiles, reconstructed regulatory networks, identified key regulators, and revealed regulatory 

relationships among modules. In comparison with Rcistarget parckage from SCENIC, one of 

the most frequently used existing methods, IReNA shows better performance on identifying 

known regulators through modular network analysis. 

  

MATERIALS AND METHODS 

Depending on the availability of ATAC-seq data, two methods were developed to 

reconstruct regulatory networks using IReNA. If ATAC-seq is not available, only 

transcription factor binding motifs are used to refine correlation relationships obtained 

through scRNA-seq data analysis. If ATAC-seq data is available, transcription factor 

footprints and binding motifs are identified by analyzing ATAC-seq data, and then used to 

refine correlation relationships obtained from scRNA-seq data analysis. 

Description of scRNA-seq and ATAC-seq data 

To demonstrate analysis flow of IReNA, we used public scRNA-seq and ATAC-seq 

data from three studies, which respectively analyzed datasets obtained from models of 

nonalcoholic steatohepatitis (NASH), liver regeneration, and spermatogonial stem cell (SSC) 

development[10–12]. 

The scRNA-seq and ATAC-seq data from the study of NASH are available through the 

accession numbers GSE128334 and GSE128335 at Gene Expression Omnibus (GEO) 

database https://www.ncbi.nlm.nih.gov/geo/. In this study, liver tissues from mice fed a 

control or NASH diet were analyzed [10]. ScRNA-seq profiles were measured on 6184 non-

parenchymal cells, including Kupffer cells, from healthy and NASH mice. ATAC-seq was 

conducted on Kupffer cells from two healthy and two NASH samples. 

For the study of liver regeneration, partial hepatectomy (PHx) was performed in 

mice[11]. ScRNA-seq profiles were measured on 5010 hepatocytes at 0 and 48 hours after 

PHx (accession number GSE158866). ATAC-seq was conducted on hepatocytes with two 

replicates at each of 0 and 48 hours after PHx (accession number GSE158865). 

The scRNA-seq and ATAC-seq data for spermatogonial stem cell development are 

separately available through GSE92276 and GSE92279. In the study, SSEA4 and KIT were 
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separately used as markers of spermatogonial stem cells (SSCs) and spermatogonia[12]. 

SSEA4+ SSCs and KIT+ spermatogonia from adult human testis were isolated for genome-

wide sequencing. ScRNA-seq profiles were measured on 101 SSEA4+ SSCs and 74 KIT+ 

spermatogonia. ATAC-seq was conducted on one biological replicate of embryonic stem 

cells (ESCs) and two replicates of pooled SSEA4+ SSCs. 

Identify regulatory relationships using scRNA-seq data 

IReNA includes four steps for analyzing scRNA-seq data to obtain regulatory 

relationships. (I) Use Monocle (version 2.1.8) to construct the trajectory and calculate the 

pseudotime of single cells[13]. (II) Identify differentially expressed genes (DEGs) during 

pseudotime (q-value < 0.05, fraction of expressed cells > 10% and single-cell expression 

difference > 0.1). Single-cell expression difference was defined as described previously[9]. 

(III) Calculate the smoothed expression profiles based on pseudotime and divide DEGs into 

different modules using the K-means clustering of the smoothed expression profiles. For each 

module of DEGs, ClusterProfile (version 3.18.1) was used to perform functional enrichment 

analysis[14]. (IV) Calculate expression correlation (Pearson’s correlation) for each pair of 

DEGs and select highly correlated gene pairs which contain at least one transcription factor 

from the TRANSFAC database (version 2018.3) as potential regulatory relationships. IReNA 

used the R packages pheatmap to visualize expression profiles. 

Identify binding motifs of transcription factors in regulatory regions of targeted genes  

If ATAC-seq data is not available, IReNA uses transcription factor binding motifs 

present in the promoter regions of DEGs to refine gene regulatory relationships inferred from 

scRNA-seq data analysis. Fimo was used to identify transcription factor binding motifs in the 

promoter regions (ranging from 1000bp upstream to 500bp downstream of the transcription 

start sites) of the genes[15]. Regulatory relationships were selected for further analysis if the 

binding motif of transcription factor occurs in the promoter region of the target gene. 

Analyze ATAC-seq data to refine identified regulatory relationships 

To process ATAC-seq data for IReNA, we first removed adaptors of pair-end raw reads 

using fastp software (version 0.21.0)[16]. Reads were aligned to GRCh38/hg38 genome for 

the human or GRCm38/mm10 genome for the mouse using bowtie2 (version 2.4.1) with 

default parameters[17]. Then, we filtered low-mapping-quality reads (MAPQ < 10) and 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.22.469628doi: bioRxiv preprint 

https://paperpile.com/c/iItV57/mhMED
https://paperpile.com/c/iItV57/aWP5o
https://paperpile.com/c/iItV57/XzvIV
https://paperpile.com/c/iItV57/Mw5qw
https://paperpile.com/c/iItV57/righ1
https://paperpile.com/c/iItV57/1A0aP
https://paperpile.com/c/iItV57/B2b5Q
https://doi.org/10.1101/2021.11.22.469628


excluded duplicated reads separately using Samtools (version 1.3.1) and Picard 

(http://broadinstitute.github.io/picard/)[18]. Peak calling was performed through MACS2 

(version 2.1.0) with the parameter extsize = 200 and shift = 100[19]. HTseq (version 0.12.4) 

was used to calculate the counts of each peak[20]. Then we combined the peaks across all 

samples to obtain the union peaks and identified differentially accessible peaks using 

EdgeR[21]. Finally, we identified the footprints from ATAC-seq data through HINT (version 

0.13.2) and selected high-quality footprints (tag-count score > 80th percentile) for 

downstream analysis[22]. 

After processing ATAC-seq data, we used IReNA to analyze footprints and to refine 

regulatory relationships in the following five steps. (I) Select footprints which are covered by 

differentially accessible peaks. (II) Run Fimo to find motifs in the footprints according to the 

position weight matrices of motifs from TRANSFAC database[15]. (III) Use ChIPseeker 

(version 1.26.2) to identify footprint-related genes and select footprints which contain DEGs 

from expression analysis[23]. (IV) Use Rsamtools (version 2.6.0) to obtain the sequencing 

depth of the mapped reads which is used to calculate the number of insertions at each position 

of footprints (https://bioconductor.org/packages/Rsamtools). (V) Use the number of 

insertions to calculate footprint occupancy score (FOS), and then select regulatory 

relationships which have high FOS to reconstruct regulatory networks. FOS was calculated 

using the formula defined as previously described[9].  

𝐹𝑂𝑆 = 𝑚𝑖𝑛(−𝑙𝑜𝑔2
𝑁𝐶 + 1

𝑁𝐿 + 1
,−𝑙𝑜𝑔2

𝑁𝐶 + 1

𝑁𝑅 + 1
) 

where NL, NC and NR are numbers of insertions separately in the left, center and right 

regions of the motif. 

Reconstruct regulatory networks 

The refined regulatory relationships were used to reconstruct regulatory networks of 

DEGs. Cytoscape was used to display regulatory networks[24]. We performed the 

hypergeometric test to calculate the probability that an individual transcription factor 

regulates each module, and identified the enriched transcription factors which significantly 

regulate each module of DEGs. We then reconstructed regulatory networks using enriched 

transcription factors. Next, we carried out another hypergeometric test to determine 

significant regulatory relationships among modules and reconstructed intermodular 
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regulatory networks. For above two hypergeometric tests, the probability was calculated as 

previously described[9]. 

𝑃(𝑥 = 𝑘) =
(
𝐾
𝑘
) (

𝑁 − 𝐾
𝑛 − 𝑘

)

(
𝑁
𝑛)

 

Here, (
𝑎

𝑏
) is a binomial coefficient. For identifying the significant transcription factor 

regulating module A, N and n represent numbers of all regulations and regulations targeting 

module A, respectively. K and k separately indicate the number of regulations from 

transcription factor and the number of regulations targeting module A from transcription 

factor. 

For identifying the significant regulatory relationship from module A to module B, N 

and n represent numbers of all regulations and regulations from module A, respectively. K 

and k separately indicate the number of regulations from module B and the number of 

regulations from module A to module B. 

Comparison of regulatory networks 

To compare regulatory networks inferred from the integrated analysis of both scRNA-

seq and ATAC-seq data, and from scRNA-seq data alone, we checked whether the top 25% 

(ranked by degree) of transcription factors in the network had been previously reported in the 

literature. For the three studies of nonalcoholic steatohepatitis, liver regeneration, and 

spermatogonial stem cell development, we separately used the biological terms ‘nonalcoholic 

steatohepatitis or fatty liver disease’, ‘regeneration’ and 'stem cell' to search the literature in 

the Google Scholar and PubMed databases. We also confirmed if the gene symbol and/or 

common gene name for individual transcription factors were present. If the gene symbol/gene 

name and biological term were both present in the title or the same sentence in the abstract, 

the biological function of the enriched transcription factor was regarded to have been 

reported in the literature. 

To compare IReNA with existing methods for inferring gene regulatory networks, we 

also reconstructed gene regulatory networks through SCENIC using the same scRNA-seq 

data[8]. R package Rcistarget from SCENIC was used to calculate normalized enrichment 

score (NES) which measure the enrichment of transcription factor binding motifs in the 

promoter regions of DEGs. We reconstructed regulatory networks for transcription factors 
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which have > 3 NES. Then, we checked whether the top 25% of transcription factors 

identified through Rcistarget were reported in the literature. 

  

  

RESULTS 

To illustrate the features and application of IReNA, we firstly used public scRNA-seq 

and ATAC-seq data of Kupffer cells from a mouse model of nonalcoholic steatohepatitis 

(NASH)[10]. Although scRNA-seq and ATAC-seq data were obtained, the original study 

didn’t perform regulatory network analysis. We used IReNA to reconstruct two types of 

regulatory networks. The first was inferred using scRNA-seq data alone. The second was 

obtained from integrating scRNA-seq with ATAC-seq profiles (Figure 1). After 

reconstruction, regulatory networks of differentially expressed genes (DEGs) were 

modularized to identify enriched transcription factors. Regulatory networks among modules 

were further inferred according to regulatory networks of enriched transcription factors. 

Network analysis only using scRNA-seq data  

First, IReNA was used to infer regulatory networks by analyzing scRNA-seq data alone. 

We used 2748 Kupffer cells from healthy and NASH liver tissues to construct the trajectory 

and calculate the pseudotime of cells (Figure 2A). We then identified 2523 DEGs changed 

during the pseudotime from the health to NASH. Given the sparsity of scRNA-seq data, we 

used the smoothed expression profiles to perform downstream analysis. The smoothed 

expression profiles were obtained through dividing pseudotime into 50 equal intervals and 

calculating the average expression profile of single cells in each interval. Through K-means 

clustering of the smoothed expression profiles, 2523 DEGs were separated into three modules 

(Figure 2B). DEGs in three modules showed specific expression profiles and distinct 

enriched functions, such as myeloid cell differentiation, cytoplasmic translation, and 

oxidative phosphorylation (Figure 2C). We then identified potential regulatory relationships 

based on expression correlations. The correlation was calculated for each pair of 2523 DEGs. 

We selected 46,729 gene pairs as the potential regulatory relationships, each of which has > 

0.4 absolute correlation and contains at least one transcription factor. 
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To refine 46,729 potential regulatory relationships, we further analyzed transcription 

factor binding motifs in the promoter regions of DEGs. We obtained 16,923 regulatory 

relationships and reconstructed regulatory networks (Figure 2D). For regulatory networks of 

DEGs, we performed the hypergeometric test and identified 41 enriched transcription factors 

which significantly regulate modules of DEGs. Regulatory networks of enriched transcription 

factors were further reconstructed (Figure 2E). To identify significant regulatory relationships 

among modules, we performed the hypergeometric test on regulatory networks of enriched 

transcription factors. Five significant regulations among modules were identified and used to 

establish intermodular regulatory networks (Figure 2F). In intermodular regulatory networks, 

we observed that transcription factors from the module of myeloid cell differentiation 

significantly repress transcription factors related to oxidative phosphorylation. 

Network analysis through integrating scRNA-seq and ATAC-seq data 

Next, we use IReNA to infer regulatory networks through integrating scRNA-seq and 

ATAC-seq data. To refine 46,729 potential regulatory relationships from co-expression 

analysis, we analyzed ATAC-seq data and obtained 73,282 peaks from healthy and NASH 

Kupffer cells (Figure 3A). Within the peaks, we identified 31,551 footprints which have > 1 

footprint occupancy score. Genes related to footprinted regions were identified and linked to 

binding motifs of individual transcription factors. Comparing footprints with 46,729 

correlated gene pairs, we refined 2982 regulations and reconstructed regulatory networks 

which contain 994 DEGs. 

Analyzing modular regulatory networks of 994 DEGs, we identified 28 transcription 

factors which significantly regulate the expression of each module of genes (p-value < 0.01). 

We then reconstructed regulatory networks of 28 enriched transcription factors (Figure 3B). 

Four significant regulations among three modules were also identified to reconstruct 

intermodular regulatory networks (FDR < 0.05, Figure 3C). We observed that intermodular 

regulatory networks from the integrated analysis of scRNA-seq and ATAC-seq data are 

consistent with intermodular regulatory networks obtained from analyzing scRNA-seq data 

alone. 

Performance of IReNA on regulatory network analysis 

To directly compare the performance of other methods with IReNA, we analyzed 

scRNA-seq data to reconstruct regulatory networks using the Rcistarget package from 
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SCENIC software[8]. Using Rcistarget, we identified 42 transcription factors whose binding 

motifs are overrepresented in the promoter regions of 46,729 potential regulations inferred 

from scRNA-seq data analysis. We obtained 152 significant regulatory relationships for 42 

enriched transcription factors, and then reconstructed gene regulatory networks (Figure 3D). 

We then compared gene regulatory networks inferred through three different approaches 

described above. Among 41 transcription factors identified using IReNA analysis of scRNA-

seq data alone, 20 (48.78%) transcription factors are also present in the networks inferred by 

IReNA using integrated analysis of scRNA-seq and ATAC-seq data (Figure 3E). By 

comparing gene regulatory networks obtained by analyzing only scRNA-seq data separately 

using IReNA and Rcistarget, we observed an overlap of 46.34% (19 in 41) of all transcription 

factors. These indicated that about half transcription factors were identified by two methods. 

To further assess the significance of transcription factors identified by IReNA or 

Rcistarget, we manually checked whether these factors had been previously reported in the 

literature. We ranked and checked top 25% enriched transcription factors in regulatory 

networks. We found that in regulatory networks from the integrated analysis of scRNA-seq 

and ATAC-seq data, 57.14% transcription factors are reported in NASH-related literature, 

including Fos, Egr1 and Fosb (Figure 3F and Table S1). In regulatory networks inferred from 

analyzing scRNA-seq data alone, 50.00% transcription factors are reported in NASH-related 

literature. 45.45% transcription factors in regulatory networks inferred by Rcistarget are 

reported in NASH-related literature. Among three types of regulatory networks, the highest 

fraction of transcription factors is reported for regulatory networks from the integrated 

analysis of ATAC-seq data with scRNA-seq data. These results indicate that integrated 

network analysis of ATAC-seq with scRNA-seq data using IReNA improved the 

identification of known transcription factors. Moreover, IReNA shows better performance at 

identifying known regulators than the Rcistarget method. 

To further demonstrate the performance of IReNA, we performed regulatory network 

analysis on another two datasets from liver regeneration and spermatogonial stem cell 

development. Prior to identifying gene regulatory networks controlling liver regeneration, we 

reconstructed the trajectory of 5010 hepatocytes from liver tissues at 0 h and 48 h after 

hepatectomy. We found that hepatocytes formed two distinct branches (named the activation 

branch and the proliferative branch) in the trajectory at 48 h after hepatectomy (Figure S1A). 

We further identified and divided 4641 DEGs into 4 modules (Figure S1B). DEGs in the 
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activation branch (module 3 and 4) are enriched in genes involved in fatty acid metabolic 

process and ribosome, whereas DEGs in the proliferative branch (module 1) are enriched for 

focal adhesion (Figure S1C). Then, regulatory networks were inferred using the same three 

methods described above (Figure 4A-4B and Figure S1D-S1E). In comparison with 

regulatory networks inferred by Rcistarget, regulatory networks reconstructed by IReNA 

contain a higher fraction of transcription factors previously reported in the literature related to 

liver regeneration (75.00% for scRNA-seq + ATAC-seq + IReNA, 55.56% for scRNA-seq + 

IReNA and 37.50% for scRNA-seq + Rcistarget) (Figure 4C and Table S1). 

For the study of spermatogonial stem cell development, we used the 2684 DEGs and 

four modules reported by the original paper to reconstruct three types of regulatory networks 

(Figure 4D-4E and Figure S2A-S2B). IReNA analysis using scRNA-seq and ATAC-seq data, 

IReNA analysis using scRNA-seq data alone, and Rcistarget analysis using scRNA-seq data 

alone respectively identified 77.78%, 70.59% and 66.67% transcription factors which are 

reported to associate with spermatogonial stem cell development (Figure 4F and Table S1). 

The integrated analysis of ATAC-seq with scRNA-seq data overall substantially improved 

the reconstruction of gene regulatory networks and identified a higher fraction of known 

transcriptional regulators. In addition, regulatory networks reconstructed from scRNA-seq 

data alone using IReNA show improved accuracy relative to those identified using Rcistarget. 

  

  

DISCUSSION 

In the study, we developed the R package IReNA to perform regulatory network 

analysis. In IReNA, gene regulatory networks could be reconstructed using either scRNA-seq 

data alone or the integrated analysis of scRNA-seq and ATAC-seq data. When only scRNA-

seq data are used, expression correlation and transcription factor binding motifs are 

calculated to determine regulatory relationships. When both scRNA-seq and ATAC-seq data 

are available, expression correlation, transcription factor binding motifs and footprints are 

used to identify regulatory relationships. Beyond the reconstruction of gene regulatory 

networks, IReNA provides additional insights, including the modularization of regulatory 

networks, the enrichment of transcription factors in each module, and the inference of 

regulatory relationships among modules. IReNA not only provides cell type-specific 
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regulatory networks, but also identifies modular regulatory networks which are associated 

with distinct cell states of the same cell type, such as healthy and NASH Kupffer cells. 

In previous work, we demonstrated that IReNA can be used to integrate bulk RNA-seq, 

scRNA-seq and ATAC-seq to reconstruct gene regulatory networks controlling retinal 

regeneration[9]. Through network analysis using IReNA, we identified modular gene 

regulatory networks and key transcription factors regulating different cell states in retinal 

Müller glia in zebrafish and mice. Using genetic loss of function analysis, we confirmed that 

several transcription factors identified by IReNA are critical for retinal regeneration, 

including hmga1a and yap1 in zebrafish and Nfia/b/x in mice. These results indicate that 

IReNA can provide reliable regulatory networks and reveal key regulators during biological 

processes including retinal regeneration. 

Using public scRNA-seq and ATAC-seq data from three studies, we further performed 

regulatory network analysis through IReNA, using either integrated analysis of both datasets 

or scRNA-seq data alone. When both scRNA-seq and ATAC-seq data are used, a much 

higher fraction of known transcription factors is identified by IReNA. For instance, in 

analysis of NASH samples, we identified Fos and Klf6, which regulate TH17/Treg cells in 

NASH patients and are up-regulated in the context of steatohepatitis, respectively[25,26]. 

IReNA also identified Cebpa and Hnf4a as regulators of liver regeneration[27]. In regulatory 

networks associated with SSC development, IReNA identified transcription factors DMRT1 

and NR6A1, which were reported as regulating SSC development in the original study[12]. 

The results indicate that IReNA could be applied to identify key regulators in different 

biological processes and outperforms Rcistarget, the most widely used alternative method. 

  

  

SUPPLEMENTARY DATA 

Supplementary data are available online. 

  

ACKNOWLEDGEMENT 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.22.469628doi: bioRxiv preprint 

https://paperpile.com/c/iItV57/XzvIV
https://paperpile.com/c/iItV57/u0n4A+agTpi
https://paperpile.com/c/iItV57/pqoXD
https://paperpile.com/c/iItV57/mhMED
https://doi.org/10.1101/2021.11.22.469628


This work was supported by the National Natural Science Foundation of China [32170849], 

and the Guangdong Province Science and Technology Program [2020B1212060052]. 

 

AUTHOR CONTRIBUTION 

J.W., and J.Q. conceived the project. J.W., J.Q., and S.B. supervised the research. J.Y., and 

J.W. developed IReNA and performed sequencing data analysis to construct regulatory 

networks. 

 

REFERENCES 

1. Thompson D, Regev A, Roy S. Comparative analysis of gene regulatory networks: from 

network reconstruction to evolution. Annu. Rev. Cell Dev. Biol. 2015; 31:399–428 

2. Fiers MWEJ, Minnoye L, Aibar S, et al. Mapping gene regulatory networks from single-

cell omics data. Brief. Funct. Genomics 2018; 17:246–254 

3. Macosko EZ, Basu A, Satija R, et al. Highly Parallel Genome-wide Expression Profiling of 

Individual Cells Using Nanoliter Droplets. Cell 2015; 161:1202–1214 

4. Saha A, Kim Y, Gewirtz ADH, et al. Co-expression networks reveal the tissue-specific 

regulation of transcription and splicing. Genome Res. 2017; 27:1843–1858 

5. Segal E, Shapira M, Regev A, et al. Module networks: identifying regulatory modules and 

their condition-specific regulators from gene expression data. Nat. Genet. 2003; 34:166–176 

6. Buenrostro JD, Giresi PG, Zaba LC, et al. Transposition of native chromatin for fast and 

sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome 

position. Nat. Methods 2013; 10:1213–1218 

7. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network 

analysis. BMC Bioinformatics 2008; 9:559 

8. Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network 

inference and clustering. Nat. Methods 2017; 14:1083–1086 

9. Hoang T, Wang J, Boyd P, et al. Gene regulatory networks controlling vertebrate retinal 

regeneration. Science 2020; 370: 

10. Seidman JS, Troutman TD, Sakai M, et al. Niche-Specific Reprogramming of Epigenetic 

Landscapes Drives Myeloid Cell Diversity in Nonalcoholic Steatohepatitis. Immunity 2020; 

52:1057–1074.e7 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.22.469628doi: bioRxiv preprint 

http://paperpile.com/b/iItV57/xPdMJ
http://paperpile.com/b/iItV57/xPdMJ
http://paperpile.com/b/iItV57/vvjRm
http://paperpile.com/b/iItV57/vvjRm
http://paperpile.com/b/iItV57/hujC6
http://paperpile.com/b/iItV57/hujC6
http://paperpile.com/b/iItV57/Jbn0r
http://paperpile.com/b/iItV57/Jbn0r
http://paperpile.com/b/iItV57/uMoEH
http://paperpile.com/b/iItV57/uMoEH
http://paperpile.com/b/iItV57/XvVZh
http://paperpile.com/b/iItV57/XvVZh
http://paperpile.com/b/iItV57/XvVZh
http://paperpile.com/b/iItV57/cijde
http://paperpile.com/b/iItV57/cijde
http://paperpile.com/b/iItV57/tviKO
http://paperpile.com/b/iItV57/tviKO
http://paperpile.com/b/iItV57/XzvIV
http://paperpile.com/b/iItV57/XzvIV
http://paperpile.com/b/iItV57/MQw38
http://paperpile.com/b/iItV57/MQw38
http://paperpile.com/b/iItV57/MQw38
https://doi.org/10.1101/2021.11.22.469628


11. Chen T, Oh S, Gregory S, et al. Single-cell omics analysis reveals functional 

diversification of hepatocytes during liver regeneration. JCI Insight 2020; 5: 

12. Guo J, Grow EJ, Yi C, et al. Chromatin and Single-Cell RNA-Seq Profiling Reveal 

Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell 

Development. Cell Stem Cell 2017; 21:533–546.e6 

13. Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell 

trajectories. Nat. Methods 2017; 14:979–982 

14. Yu G, Wang L-G, Han Y, et al. clusterProfiler: an R package for comparing biological 

themes among gene clusters. OMICS 2012; 16:284–287 

15. Bailey TL, Johnson J, Grant CE, et al. The MEME Suite. Nucleic Acids Res. 2015; 

43:W39–49 

16. Chen S, Zhou Y, Chen Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. 

Bioinformatics 2018; 34:i884–i890 

17. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods 

2012; 9:357–359 

18. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and 

SAMtools. Bioinformatics 2009; 25:2078–2079 

19. Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome 

Biol. 2008; 9:R137 

20. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput 

sequencing data. Bioinformatics 2015; 31:166–169 

21. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential 

expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–140 

22. Li Z, Schulz MH, Look T, et al. Identification of transcription factor binding sites using 

ATAC-seq. Genome Biol. 2019; 20:45 

23. Yu G, Wang L-G, He Q-Y. ChIPseeker: an R/Bioconductor package for ChIP peak 

annotation, comparison and visualization. Bioinformatics 2015; 31:2382–2383 

24. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated 

models of biomolecular interaction networks. Genome Res. 2003; 13:2498–2504 

25. Cai C, Chen D-Z, Tu H-X, et al. MicroRNA-29c acting on FOS plays a significant role in 

nonalcoholic steatohepatitis through the interleukin-17 signaling pathway. Front. Physiol. 

2021; 12:597449 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.22.469628doi: bioRxiv preprint 

http://paperpile.com/b/iItV57/5iAH1
http://paperpile.com/b/iItV57/5iAH1
http://paperpile.com/b/iItV57/mhMED
http://paperpile.com/b/iItV57/mhMED
http://paperpile.com/b/iItV57/mhMED
http://paperpile.com/b/iItV57/aWP5o
http://paperpile.com/b/iItV57/aWP5o
http://paperpile.com/b/iItV57/Mw5qw
http://paperpile.com/b/iItV57/Mw5qw
http://paperpile.com/b/iItV57/righ1
http://paperpile.com/b/iItV57/righ1
http://paperpile.com/b/iItV57/1A0aP
http://paperpile.com/b/iItV57/1A0aP
http://paperpile.com/b/iItV57/B2b5Q
http://paperpile.com/b/iItV57/B2b5Q
http://paperpile.com/b/iItV57/1bJom
http://paperpile.com/b/iItV57/1bJom
http://paperpile.com/b/iItV57/4GNJO
http://paperpile.com/b/iItV57/4GNJO
http://paperpile.com/b/iItV57/oltop
http://paperpile.com/b/iItV57/oltop
http://paperpile.com/b/iItV57/5Z6Cf
http://paperpile.com/b/iItV57/5Z6Cf
http://paperpile.com/b/iItV57/ogCck
http://paperpile.com/b/iItV57/ogCck
http://paperpile.com/b/iItV57/KnhIq
http://paperpile.com/b/iItV57/KnhIq
http://paperpile.com/b/iItV57/xWKto
http://paperpile.com/b/iItV57/xWKto
http://paperpile.com/b/iItV57/u0n4A
http://paperpile.com/b/iItV57/u0n4A
http://paperpile.com/b/iItV57/u0n4A
https://doi.org/10.1101/2021.11.22.469628


26. Stärkel P, Sempoux C, Leclercq I, et al. Oxidative stress, KLF6 and transforming growth 

factor-β up-regulation differentiate non-alcoholic steatohepatitis progressing to fibrosis from 

uncomplicated steatosis in rats. J. Hepatol. 2003; 39:538–546 

27. Jakobsen JS, Waage J, Rapin N, et al. Temporal mapping of CEBPA and CEBPB binding 

during liver regeneration reveals dynamic occupancy and specific regulatory codes for 

homeostatic and cell cycle gene batteries. Genome Res. 2013; 23:592–603 

  

  
 

FIGURE AND TABLE LEGENDS 

Figure 1. Workflow of IReNA (integrated regulatory network analysis). (A) Workflow of 

IReNA. (B) Diagram of IReNA. Regulatory networks could be reconstructed by integrating 

gene expression profiles (scRNA-seq or bulk RNA-seq data) in combination with chromatin 

accessibility profiles (ATAC-seq data), or by using only gene expression profiles (scRNA-

seq or bulk RNA-seq data). In cases where only gene expression profiles are used, regulatory 

relationships are inferred from expression correlation and binding motifs. If ATAC-seq data 

is available, expression correlation, binding motifs and footprints are used to reconstruct 

regulatory networks of differentially expressed genes (DEGs). Enriched transcription factors 

(TFs) are identified by performing the hypergeometric test on modular regulatory networks of 

DEGs. Regulatory networks among modules are further inferred by analyzing regulatory 

networks of enriched TFs.   

Figure 2. Regulatory network analysis of Kupffer cells from healthy and NASH liver tissues. 

(A) Trajectory of 2748 Kupffer cells separately colored by pseudotime and samples. (B) 

ScRNA-seq expression profiles of 2523 differentially expressed genes (DEGs). K-means 

clustering was used to divide DEGs into three modules. Each row represents one gene, and 

each column indicates one interval of pseudotime. (C) Enriched functions of three modules of 

DEGs. (D) Fraction of correlated gene pairs which contain transcription factor binding motifs 

in the promoter regions of target genes. (E) Regulatory networks of 41 enriched transcription 

factors obtained from analyzing scRNA-seq data alone. Color of each circle indicates the 

module. Grey edge represents negative regulation, and the yellow edge represents positive 

regulation. (F) Regulatory networks among three modules obtained from analyzing scRNA-

seq data alone. 

Figure 3. Comparison of regulatory networks related to NASH. (A) Genome-wide chromatin 

accessibility of healthy and NASH Kupffer cells measured by ATAC-seq. (B) Regulatory 

networks of 28 enriched transcription factors obtained through the integrated analysis of 

scRNA-seq and ATAC-seq data. Color of the circle indicates the module. Grey edge 

represents negative regulation, and the yellow edge represents positive regulation. (C) 

Regulatory networks among modules obtained through the integrated analysis of scRNA-seq 

and ATAC-seq data. (D) Regulatory networks for 42 enriched transcription factors from 

scRNA-seq data analysis using Rcistarget. (E) Venn diagram of enriched transcription factors 

from three types of regulatory networks, one from the integrated analysis of scRNA-seq and 

ATAC-seq data using IReNA (ATAC-seq + scRNA-seq + IReNA), one from scRNA-seq 

data analysis using IReNA (scRNA-seq + IReNA) and one from scRNA-seq data analysis 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.22.469628doi: bioRxiv preprint 

http://paperpile.com/b/iItV57/agTpi
http://paperpile.com/b/iItV57/agTpi
http://paperpile.com/b/iItV57/agTpi
http://paperpile.com/b/iItV57/pqoXD
http://paperpile.com/b/iItV57/pqoXD
http://paperpile.com/b/iItV57/pqoXD
https://doi.org/10.1101/2021.11.22.469628


using Rcistarget (scRNA-seq + Rcistarget). (F) Fraction of transcription factors reported in 

the literature related to NASH. Top 25% enriched transcription factors were compared for all 

three types of regulatory networks. 

Figure 4. Regulatory network analysis for two studies of liver regeneration and 

spermatogonial stem cell (SSC) development. (A) Regulatory networks of 15 enriched 

transcription factors obtained by integrating scRNA-seq and ATAC-seq data from liver 

regeneration. Module is represented by the color of circles. Grey edge represents negative 

regulation, and the yellow edge represents positive regulation. (B) Regulatory networks 

among modules obtained by integrating of scRNA-seq and ATAC-seq data from liver 

regeneration. (C) Fraction of transcription factors reported in the literature related to liver 

regeneration. (D) Regulatory networks of 34 enriched transcription factors obtained by 

integrating scRNA-seq and ATAC-seq data from SSC development. (E) Regulatory networks 

among modules obtained by integrating scRNA-seq and ATAC-seq data from SSC 

development. (F) Fraction of transcription factors reported in the literature related to SSC 

development. 

Figure S1. Regulatory network analysis of liver regeneration. (A) Trajectory of 5010 

hepatocytes at 0 and 48h after hepatectomy. (B) 4641 DEGs were divided into 4 modules 

according to K-means clustering of scRNA-seq expression profiles. Each row represents one 

gene, and each column indicates one interval of pseudotime. (C) Enriched functions of four 

modules of DEGs. Colors represent modules. (D) Regulatory networks of 73 enriched 

transcription obtained by analyzing scRNA-seq data alone using IReNA. Grey edge 

represents negative regulation, and the yellow edge represents positive regulation. (E) 

Regulatory networks of 33 enriched transcription factors obtained by Rcistarget analysis of 

scRNA-seq data. 

Figure S2. Regulatory network analysis of spermatogonial stem cell (SSC) development. (A) 

Regulatory networks of 67 enriched transcription factors obtained from scRNA-seq data 

analysis using IReNA. Grey edge represents negative regulation, and the yellow edge 

represents positive regulation. (B) Regulatory networks for 24 enriched transcription factors 

obtained from scRNA-seq data analysis using Rcistarget. 

  

Table S1. The list of transcription factors reported in the literature related to nonalcoholic 

steatohepatitis, liver regeneration and spermatogonial stem cell development. Transcription 

factors were identified through the integrated analysis of scRNA-seq and ATAC-seq data 

using IReNA. 

Study 
Transcripti

on factor 
Related literature 

Report of transcription factor in the title 

or abstract of literature 

Nonalcoholic 

steatohepatitis 
Fos 

Cai,C., Chen,D.-Z., Tu,H.-X., et 

al. (2021) Front. Physiol., 12, 

597449. 

MicroRNA-29c Acting on FOS Plays a 

Significant Role in Nonalcoholic 

Steatohepatitis Through the Interleukin-17 

Signaling Pathway. 

Nonalcoholic 

steatohepatitis 
Fosb 

Hasenfuss,S.C., Bakiri,L., 

Thomsen,M.K., et al. (2014) 

Cell Metab., 19, 84–95. 

Regulation of Steatohepatitis and PPARγ 

Signaling by Distinct AP-1 Dimers. Note: 

activator protein 1 (AP-1) is a dimeric 

transcription factor consisting of Fos (c-
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Fos, FosB, Fra-1 and Fra-2) and other 

proteins. 

Nonalcoholic 

steatohepatitis 
Egr1 

Li, Z., Yu, P., Wu, J., et al. 

(2019) Medical science 

monitor: international medical 

journal of experimental and 

clinical research., 25, 2993. 

Transcriptional Regulation of Early Growth 

Response Gene-1 (EGR1) is Associated 

with Progression of Nonalcoholic Fatty 

Liver Disease (NAFLD) in Patients with 

Insulin Resistance. 

Nonalcoholic 

steatohepatitis 
Klf6 

Stärkel, P., Sempoux, C., 

Leclercq, I., et al. 

(2003) Journal of 

hepatology., 39(4), 538-546. 

Oxidative stress, KLF6 and transforming 

growth factor-β up-regulation differentiate 

non-alcoholic steatohepatitis progressing to 

fibrosis from uncomplicated steatosis in 

rats. 

Nonalcoholic 

steatohepatitis 
Ets2 Unreported Unreported 

Nonalcoholic 

steatohepatitis 
Zeb2 Unreported Unreported 

Nonalcoholic 

steatohepatitis 
Klf2 Unreported Unreported 

Liver 

regeneration 
Zbtb7a Unreported Unreported 

Liver 

regeneration 
Hnf4a 

Huck, I., Gunewardena, S., 

Espanol‐Suner, R., et al. 

(2019) Hepatology., 70(2), 666-

681. 

Hepatocyte Nuclear Factor 4 Alpha 

Activation Is Essential for Termination of 

Liver Regeneration in Mice. 

Liver 

regeneration 
Klf13 

Chen, L., Yao, F., Qin, Y., et al. 

(2020) Gene., 735, 144407. 

The potential role of Krüppel-like factor 13 

(Aj-klf13) in the intestine regeneration of 

sea cucumber Apostichopus japonicus. 

Liver 

regeneration 
Cebpa 

Jakobsen, J. S., Waage, J., 

Rapin, N., et al. (2013) Genome 

research., 23(4), 592-603. 

CEBPA and CEBPB (also known as 

C/EBPalpha and C/EBPbeta), at multiple 

time points during the highly dynamic 

process of liver regeneration. 

Spermatogoni

al stem cell 

development 

DMRTB1 

Zhang, T., Oatley, J., Bardwell, 

V. J., et al. (2016) PLoS 

genetics., 12(9), e1006293. 

Here we investigate the role of Dmrt1 in 

mouse spermatogonial stem cell (SSC) 

homeostasis. 

Spermatogoni

al stem cell 

development 

TEAD1 

Pagliari, S., Vinarsky, V., 

Martino, F., et al. (2021) Cell 

Death & Differentiation., 28(4), 

1193-1207. 

YAP–TEAD1 control of cytoskeleton 

dynamics and intracellular tension guides 

human pluripotent stem cell mesoderm 

specification. 

Spermatogoni

al stem cell 

development 

KLF13 

Hu, Y., Zhang, M., Tian, N., et 

al. (2019) The Journal of 

clinical investigation., 129(8), 

3072-3085. 

The antibiotic clofoctol suppresses glioma 

stem cell proliferation by activating KLF13. 
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Spermatogoni

al stem cell 

development 

KLF6 Unreported Unreported 

Spermatogoni

al stem cell 

development 

FOXG1 

Bulstrode, H., Johnstone, E., 

Marques-Torrejon, M. A., et al. 

(2017) Genes & 

development., 31(8), 757-773. 

Elevated FOXG1 and SOX2 in 

glioblastoma enforces neural stem cell 

identity through transcriptional control of 

cell cycle and epigenetic regulators. 

Spermatogoni

al stem cell 

development 

KLF3 

Hao, J., Yang, X., Zhang, C., 

Zhang, X. T., et al. (2020) Cell 

proliferation., 53(11), e12914. 

KLF3 promotes the 8‐cell‐like 

transcriptional state in pluripotent stem 

cells. 

Spermatogoni

al stem cell 

development 

RAD21 

Nitzsche, A., Paszkowski-

Rogacz, M., Matarese, F., et al. 

(2011) PloS one., 6(5), e19470. 

RAD21 cooperates with pluripotency 

transcription factors in the maintenance of 

embryonic stem cell identity. 

Spermatogoni

al stem cell 

development 

TCF4 

Mardaryev, A. N., Meier, N., 

Poterlowicz, K., et al. 

(2011) Development., 138(22), 

4843-4852. 

Lhx2 differentially regulates Sox9, Tcf4 

and Lgr5 in hair follicle stem cells to 

promote epidermal regeneration after 

injury. 

Spermatogoni

al stem cell 

development 

AEBP2 Unreported Unreported 
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Expression profiles 
(scRNA-seq or bulk RNA-seq)

Identify differentially 
expressed genes (DEGs)

Select correlated gene pairs 
as potential regulations

Chromatin accessibility 
profiles (ATAC-seq)

Identify differentially 
accessible peaks and 

corresponding footprints

 Calculate footprint 
occupancy score (FOS) 
and refine regulations

Identify binding motifs
to refine regulations

Identify enriched transcription factors (TFs) which 
significantly regulate DEGs for each module

Reconstruct regulatory networks of enriched TFs

Reconstruct regulatory networks of DEGs

ATAC-seq data is 
available or not

No

Yes

Modularize DEGs based 
on expression profiles

Identify significant regulations among modules

Establish regulatory networks among modules
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