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Abstract 

Immune cells, such as macrophages and dendritic cells, can utilize podosomes, actin-rich 

protrusions, to generate forces, migrate, and patrol for foreign antigens. In these cells, individual 

podosomes exhibit periodic protrusion and retraction cycles (vertical oscillations) to probe their 

microenvironment, while multiple podosomes arranged in clusters demonstrate coordinated wave-

like spatiotemporal dynamics. However, the mechanisms governing both the individual vertical 

oscillations and the coordinated oscillation waves in clusters remain unclear. By integrating actin 

polymerization, myosin contractility, actin diffusion, and mechanosensitive signaling, we develop 

a chemo-mechanical model for both the oscillatory growth of individual podosomes and wave-like 

dynamics in clusters. Our model reveals that podosomes show oscillatory growth when the actin 

polymerization-associated protrusion and the signaling-associated myosin contraction occur at 

similar rates, while the diffusion of actin monomers within the cluster drives mesoscale 

coordination of individual podosome oscillations in an apparent wave-like fashion. Our model 

predicts the influence of different pharmacological treatments targeting myosin activity, actin 

polymerization, and mechanosensitive pathways, as well as the impact of the microenvironment 

stiffness on the wavelengths, frequencies, and speeds of the chemo-mechanical waves. Overall, 

our integrated theoretical and experimental approach reveals how collective wave dynamics arise 

due to the coupling between chemo-mechanical signaling and actin diffusion, shedding light on 

the role of podosomes in immune cell mechanosensing within the context of wound healing and 

cancer immunotherapy. 
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Introduction 

Immune cells, such as dendritic cells (DCs) and macrophages, can crawl between cells and 

components of the extracellular matrix (ECM) to patrol for foreign antigens. During this process, 

these cells utilize actin-rich protrusive structures called podosomes to control adhesions, degrade 

the surrounding ECM, and remodel the extracellular environment1-3. Podosomes are characterized 

by an actin-based core surrounded by an adhesive ring consisting of integrins and adaptor proteins, 

such as vinculin and talin4,5. Podosomes generate protrusive forces to penetrate into the underlying 

ECMs at the core, while applying tensile forces to pull the matrices at the rings6,7. Studies in DCs 

and macrophages have shown that individual podosomes exhibit periodic oscillation in the 

fluorescence intensity of core actin, ring components, and the protrusive forces exerted at the 

podosome core7-9. Collectively, podosomes in immune cells are organized in clusters and show 

spatially correlated behaviors, where the oscillations of podosome components travel in a wave-

like manner within the cluster10,11. However, it remains unclear how the core protrusive forces and 

ring tensile forces lead to the oscillations of individual podosomes and how these vertical 

oscillations are coordinated to form spatiotemporal wave patterns in clusters. Understanding these 

processes can provide insights on how podosomes in a cluster collectively probe and respond to 

chemo-mechanical cues from their surroundings, which is essential for their function.  

To obtain biophysical insights into the dynamics of podosome clusters, we adopted a 

bottom-up modelling approach. We first integrated actin polymerization, myosin contractility, and 

mechano-sensitive signaling pathways into a chemo-mechanical model for oscillatory growth of 

individual podosomes. By considering diffusion of actin monomers within a cluster, our model 

demonstrates how correlations can arise between the vertical oscillations of podosomes to form 

coordinated wave dynamics in clusters, which we call chemo-mechanical diffusion waves. Next, 

using fluorescence microscopy and spatiotemporal image correlation spectroscopy in living 

primary human DCs, we extracted the wavelengths, oscillation periods, and speeds of podosome 

wave dynamics. Our model is quantitatively validated by predicting the influence of 

pharmacological treatments targeting force-generating processes (myosin activity, actin 

polymerization, Rho and Rho-associated kinase (Rho-ROCK) pathways) as well as the impact of 

substrate stiffness on the podosome dynamics. The mechanistic understanding of how the 

individual podosome oscillations, driven by chemo-mechanical signaling, are coordinated at the 

mesoscale and lead to wave-like propagation of podosome components and forces, provides means 
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to modulate immune cell mechanosensing and migration within the context of wound healing and 

cancer immunotherapy. 

 

Results 

 

Fig 1. A chemo-mechanical model for the oscillatory growth of individual podosomes. (A) Schematic 

showing a dendritic cell with podosomes. We also show simplified geometry of the podosome with top and 

side views. (B) Schematic describing the chemo-mechanical model for podosome growth. The orange 

arrows indicate mechano-sensitive signaling through the Rho-ROCK pathway. Inset i): the active 

contractile model for myosin-based force generation, where the active contractile forces 𝐹𝑚  (the green 

element with arrows), the passive actin filament elastic force 𝐹𝑝𝑎 (blue spring), and total ring force 𝐹𝑟 (red 

arrows) are marked.  Inset ii): tensile forces in the ring trigger a conformation change in vinculin, exposing 

binding sites of Src family of tyrosine kinases (SFKs); this change promotes Rho-GTPases by controlling 

the activity of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which 

eventually increases the level of contractile forces in the ventral F-actins  (C) Representative curves 
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showing the theoretically predicted dynamics for podosome core height 𝑙 + 𝑙1 (top panel), protrusion force 

𝐹𝑝  (blue line in the bottom panel), and myosin force 𝐹𝑚  (green line in the bottom panel). (D) A 

representative Lifeact-RFP transfected dendritic cell. Podosome dynamics at different times for the yellow-

dashed region are shown in the top panel. Scale bar 5 μm. (E) Dynamics of Lifeact-RFP fluorescence 

intensity for three representative podosomes, which are marked in (D). 

 

A chemo-mechanical model for dynamics of individual podosomes  

To develop a biophysical description of podosome growth, we start by considering the 

molecular mechanisms of force generation in a podosome. Podosomes have a conical structure 

characterized by a protrusive actin-rich core, an adhesive integrin ring, and ventral actin filaments 

that connect the core with the ring12,13 (Fig. 1A-B). During podosome growth, actin monomers (G-

actin) continuously polymerize into actin filaments (F-actin), generating a protrusive (or 

compressive) force in the core to drive core growth. At the same time, myosin motors are 

dynamically recruited to the ventral actin filaments, generating an active contractile force to 

constrain growth3,9,12. The core protrusive force generated by actin polymerization 𝐹𝑝 is balanced 

by the tensile force generated by the actomyosin contractility 𝐹𝑟  according to 𝐹𝑝 = 𝐹𝑟 cos(𝜃), 

where we assume 𝜃 to be a constant angle between the ventral actin filaments and the core F-actin 

(Fig.1A). This assumption yields a geometric constraint between the ventral actin filament length 

𝑥 and the core height above the undeformed substrate 𝑙, i.e., 𝑥𝑐𝑜𝑠(𝜃) = 𝑙. Next, we describe the 

dynamics of the two force-generating processes individually: 

Actin polymerization drives the protrusion of podosome cores 

In the podosome core, the protrusive force 𝐹𝑝 generated by actin polymerization deforms the 

underlying substrate following 𝐹𝑝 = 𝑘𝑠𝑙1, where 𝑘𝑠 and 𝑙1 are the stiffness and the displacement 

of the substrate, respectively. The resistance force from the substrate reduces actin 

polymerization14,15, which can be expressed as 𝑉𝑝 = 𝑉𝑝𝑚(1 −  𝐹𝑝/𝐹𝑠𝑝0)  , where 𝑉𝑝𝑚  is the 

maximum polymerization speed and 𝐹𝑠𝑝0 is the characteristic protrusive force generated by the 

core. Note that, to account for larger protrusive forces on stiffer substrates revealed by protrusion 

force microcopy7, we write the characteristic stall force as 𝐹𝑠𝑝0 = 𝐹𝑝0𝑘𝑠/(𝑘𝑐 + 𝑘𝑠), where 𝑘𝑐 is 

the core stiffness and 𝐹𝑝0 is the characteristic protrusive force on rigid substrate; the protrusive 

force increases linearly with the substrate stiffness at low levels but saturates on very stiff 

substrates. The growth rate of the core height is determined by the difference between the 

polymerization 𝑉𝑝 and depolymerization speed 𝑉𝑑, which can be written as: 
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𝑑(𝑙 + 𝑙1)/𝑑𝑡 = 𝑉𝑝 − 𝑉𝑑 + 𝜒𝑝 (𝑡).                                                   (1)  

Here, 𝑙 + 𝑙1  is the total podosome height, where 𝑙  is the core height above the undeformed 

substrate, and the Gaussian noise 𝜒𝑝(𝑡) accounts for fluctuations in the polymerization process 

(Fig.1A).  

Mechano-sensitive recruitment of myosin to the ventral actin filaments 

As the F-actin network assembles in the podosome core and generates a protrusive force, 

myosin motors exert contractile forces on the ventral actin filaments to balance the core protrusive 

force and constrain core growth. To model the contraction of actomyosin filaments, we adopt a 

two-element active contraction model16, consisting of an active element (with contractile force 𝐹𝑚) 

in parallel with a passive elastic element (with stiffness 𝑘𝑓). The active element characterizes 

myosin contractility, while the passive (elastic) element represents the stiffness of the ventral actin 

filaments (Fig. 1B, inset i). Thus, the tensile force sustained by the ring 𝐹𝑟 can be written as the 

sum of the active and passive forces: 𝐹𝑟 = 𝐹𝑚 + 𝑘𝑓(𝑥 − 𝑥0),  where 𝑥 and 𝑥0 denote the current 

and initial length of the ventral actin filaments, respectively. In addition, myosin activity is known 

to be mediated by the Rho-ROCK pathway10,17,18. Specifically, the tensile force 𝐹𝑟 transmitted to 

the substrate through the integrin adhesions can positively feed back to the active force 𝐹𝑚 through 

this pathway16 (Fig. 1A, inset ii). In analogy with muscle fibers, the contraction of the actomyosin 

filaments, 𝑥 − 𝑥0,  reduces available binding sites for myosin, causing a decrease of bound myosin 

motors and active contractility16,19,20. Here, we use 𝛼  to characterize the effects of feedback 

(proportional to the tensile force 𝐹𝑟) and 𝛾 to characterize the effects of the actomyosin filament 

length on active contractility (refer to SI Note 1), which leads to the following equation governing 

the dynamics of myosin force: 

𝜏𝑚

𝑑𝐹𝑚

𝑑𝑡
+ 𝐹𝑚 = 𝐹𝑚0 − 𝛾(𝑥 − 𝑥0) + 𝛼𝐹𝑟 + 𝜒𝑚

(𝑡).                                       (2) 

Here 𝜏𝑚 is the characteristic time for the myosin turnover, 𝐹𝑚0 is the base level myosin force, and 

𝜒𝑚(𝑡) is a Gaussian noise signal accounting for fluctuations in myosin dynamics. The equations 

along with the parameters used in the simulations are summarized in the Models and Methods and 

Table S1. 
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Actin polymerization and myosin recruitment govern podosome oscillatory growth  

By combining the governing equations for the core protrusion and ring contraction 

dynamics (Eqs. 1&2), we can simulate the oscillatory behaviors of the core height, the protrusive 

force, and active myosin contractility (Fig. 1C). The time-averaged magnitudes of the simulated 

protrusive force (~10 𝑛𝑁), ventral actin filament length (~1 𝜇𝑚), and core height (~700 𝑛𝑚) agree 

with previous experimental measurements7,9,12. To understand the mechanisms governing 

podosome oscillations, we identify four stages of a typical protrusion-retraction oscillatory cycle 

(Fig. 2A-B): 

(I). In the early stage of growth, the podosome has a small core height and low levels of active 

myosin contractility (green arrows in Fig.2A). The podosome height increases as the 

polymerization speed exceeds the depolymerization speed (via Eq. 1).  

(II). As the F-actin network within the core grows and pushes against the substrate, the 

protrusive force 𝐹𝑝  increases, resisting actin polymerization. The protrusion speed 

gradually decreases. 

(III). When the protrusion speed decreases to zero, the podosome height, protrusive force 𝐹𝑝, 

and ring adhesion force 𝐹𝑟  attain their maximum values, leading to a high level of 

feedback via the Rho-Rock pathway (red arrows in Fig.2A). In response to this signaling 

response, more myosin motors are recruited, generating larger myosin contractile forces. 

Since the myosin force requires the characteristic time 𝜏𝑚 to accumulate (via Eq. 2), there 

is a time delay between the maximum podosome height and the maximum myosin force. 

(IV). As the protrusion speed continues to decrease and drops below zero, the podosome starts 

retracting. Subsequently, the myosin force decays from its maximum value, and 

polymerization speed increases. Once the polymerization speed exceeds the 

depolymerization speed, the next oscillation cycle begins. 

The two force-generating processes, i.e., the polymerization-associated protrusion and the 

signaling-associated myosin contraction, govern the dynamics of podosome oscillations (Fig. 2A). 

Ring contractile forces continue to increase when podosomes reach their maximum height, and 

podosomes begin to retract in response to high contractile forces in the ring. When contractile 

forces decrease and polymerization dominates, podosomes start to grow again. This back-and-

forth interaction between the two force-generating processes regulates podosome oscillations. By 

transfecting human DCs with Lifeact-RFP and vinculin-GFP, we found that both the F-actin and 
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vinculin fluorescence intensity oscillate periodically with time (Fig. 1D-E and Movie S1). It is 

worth noting that fluorescence traces of F-actin and vinculin are highly correlated (Fig. S1A-B). 

In the next section, we study the timescales governing the two competing force generation 

processes and how they affect the podosome dynamics. 

 

Phase diagram predicts the effects of pharmacological treatments on podosome dynamics 

We applied a linear perturbation analysis to study the stability of the steady-state solutions 

for the core protrusion and the actomyosin contractility of the podosomes (refer to Models and 

Methods section). We found that podosome oscillations are governed by the signaling-associated 

feedback parameter 𝛤 =
𝛼𝑘𝑓−𝛾

 𝑘𝑓−𝛾

𝑘𝑠

𝑘𝑠+𝑘𝑓
 and the ratio 𝜏𝑚/𝜏𝑝 between the timescales governing myosin 

turnover ( 𝜏𝑚 ) and the core protrusion ( 𝜏𝑝 ). Note here the protrusion timescale is 𝜏𝑝 =

𝐹𝑠𝑝0

𝑉𝑝𝑚𝑠
(

1

𝑘𝑓
+

1

𝑘𝑠
) (1 −

𝛾

𝑘𝑓
) ~

𝐹𝑠𝑝0

𝑘𝑠𝑉𝑝𝑚𝑠
, which characterizes the time it takes a podosome with 

polymerization speed 𝑉𝑝𝑚𝑠  to grow by a characteristic substrate displacement 𝐹𝑠𝑝0/𝑘𝑠 . The 

magnitude of the feedback parameter 𝛤~ 𝛼, characterizes the strength of Rho-ROCK pathway 

when the stiffness for the passive component is much larger than the effective stiffness of the 

active element of actomyosin filaments, i.e., 𝑘𝑓 ≫ 𝛾. This stability analysis allows us to generate a 

phase diagram, which reveals distinct phases of oscillatory or monotonic dynamic behavior based 

on the feedback parameter 𝛤 and the timescale ratio 𝜏𝑚/𝜏𝑝 (Fig. 2C). We find that podosomes 

exhibit oscillatory growth (region I in Fig. 2C) when the two timescales are comparable 

(𝜏𝑚 𝜏𝑝⁄ ~1,) and the feedback parameter 𝛤 is at an intermediate value. When the two timescales 

substantially differ, the system relaxes monotonically to the steady-state podosome length (region 

II in Fig. 2C); this indicates that oscillatory growth requires that the two competing force-

generating mechanisms occur at similar rates. At the same time, the mechanosensitive Rho-ROCK 

pathway is critical for oscillations, since a very weak signaling feedback 𝛤 → 0 also leads to 

monotonic podosome growth. Linear stability analysis gives the oscillation period 𝑇 ≈ 2𝜋√𝜏𝑚𝜏𝑝 , 

which is on the order of several minutes in line with our experiments (Fig. 1E) and previous 

findings9,10.  

We can further use the phase diagram to predict the effects of pharmacological treatments 

on podosome dynamics. By using different treatments targeting the force generation processes (i.e., 
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actin polymerization and myosin contractility) or mechanosensitive Rho-ROCK pathways, our 

model predicts that podosomes exhibit non-oscillatory behaviors (arrows in Fig. 2C and S2). This 

is because the two timescales (𝜏𝑚, 𝜏𝑝) become not comparable or signaling feedback 𝛤 is reduced 

(for details refer to SI Note 2). To test these predictions, we treated DCs with cytochalasin D, 

blebbistatin, and Y26732 to inhibit actin polymerization, myosin contractility, and the Rho-ROCK 

signaling, respectively. By evaluating the oscillation amplitude ratio of the Lifeact-RFP 

fluorescence intensity (i.e., the ratio between the oscillation amplitude and the time-averaged 

intensity21) to characterize the relative oscillation intensity, we found that all these treatments 

significantly reduce the amplitude ratio. This reduced ratio indicates that oscillations are inhibited 

after pharmacological treatments, in agreement with our predictions (Fig. 2C-D). Overall, the 

combined experimental and theoretical analysis demonstrate that podosomes oscillate only when 

the polymerization-associated protrusion and signaling-associated myosin contraction occur at 

similar rates. 

 
Fig 2. Model predicts the effects of pharmacological treatments on podosome oscillations. (A) 

Schematic showing the interplay of intracellular processes in the four stages of oscillatory podosome 
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growth. The substrate provides only a small resistance force at the beginning, and actin monomers 

polymerize to drive podosome growth (stage I). As the podosome grows and deforms the substrate, the 

protrusion speed gradually decreases (stage II). The active myosin contractility (green arrows) continues 

to increase when the podosome core reaches its maximum height (stage III) because of the time delay 

associated with signaling feedback (red arrows). The podosome begins to retract in response to high levels 

of contractile forces (stage IV). The inset (middle panel): myosin force versus core height. (B) The core 

length 𝑙 + 𝑙1 (blue line in top panel), myosin contractile force 𝐹𝑚 (green line in top panel), and the ratio 

between polymerization and depolymerization speed 𝑉𝑝/𝑉𝑑   (blue line in bottom panel) plotted as a 

function of time. (C) Phase diagram showing two types of protrusion patterns: oscillatory protrusions 

(regime I) and monotonically growing protrusions (regime II), based on the ratio 𝜏𝑚/𝜏𝑝 and the feedback 

parameter 𝛤 . The arrows indicate the influence of cytochalasin D (CytoD, red), blebbistatin (Bleb, 

yellow), and Y27632 (Ytreat, purple) treatments on the dynamics. (D) (Left panel) The amplitude ratio, 

𝑟𝑎 for control (Ctrl, blue), cytochalasin D (red), Blebbistatin (yellow), and Y27632 (purple) treatments. 

Statistically significant differences are indicated (∗∗∗p < 0.001, ∗∗∗∗p < 0.0001, ANOVA with 

Benjamini-Hochberg procedure). (Right panel) Representative fluorescence intensity profiles for control 

and different pharmacological treatments.  

 

Actin diffusion drives coordinated wave-like patterns in podosome clusters 

Next, we studied how the oscillations of individual podosomes give rise to wave-like patterns 

in the collective dynamics of podosomes. To model these spatiotemporal collective dynamics, we 

consider the diffusion and exchange of actin within the cluster. The time evolution of G-actin 

concentration 𝑐𝑎(𝑥, 𝑦, 𝑡)  in the plane of the substrate at time 𝑡  is determined by both actin 

diffusion and actin polymerization (or depolymerization), which is written as: 

𝜕𝑐𝑎

𝜕𝑡
= 𝐷𝑎𝛻2𝑐𝑎 − 𝜇

𝑑(𝑙 + 𝑙1)

𝑑𝑡
.                                                   (3) 

Here 𝐷𝑎  is the G-actin diffusion constant and parameter 𝜇  controls the drop of G-actin 

concentration as actin monomers are assembled into the core to increase its height 𝑙 + 𝑙1;  this is 

proportional to the cross-section area 𝛢 and the planar density of actin monomers 𝜌 of podosome 

core, i.e., 𝜇 ∝ 𝐴𝜌 . At the same time, a larger G-actin concentration at the podosome core increases 

the polymerization speed, that is 𝑉𝑝𝑚 = 𝑉𝑝0 + 𝛽𝑐𝑎, where a linear dependence of polymerization 

speed on actin concentration with sensitivity 𝛽  is assumed for simplicity. By integrating this 

diffusion process with the model for individual podosome dynamics (see Models and Methods 

section), we can simulate the spatiotemporal dynamics of the podosome cluster using discrete and 

coarse-grained approaches. We first consider the dynamics of an array of podosomes individually 

with a uniform distance 𝑑0 from each other in the discrete model (Fig. 3A and S3A); we then 

further generalize the discrete model using a coarse-grained (or continuum) approach (Fig. 3B and 

S3B), where only a spatial average of the podosome heights, treated as a continuous variable, is 
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studied (refer to Models and Methods section and SI Note 2). By assuming an initial distribution 

where only podosomes at the center have large heights, both the discrete and continuum models 

show that a height wave front originates from the center and gradually transits outward, forming a 

radial wave pattern (Movies S2-S3). These simulated radial patterns closely resemble the observed 

LifeAct-RFP intensity dynamics in the experiments (Fig. 3C).  

To understand the mechanism for the formation and propagation of radial waves, we take a 

closer look at the dynamics of individual podosomes located at different distances from the center 

during the wave propagation (Fig. 3D).  

Phase 1: The podosomes at the center with large heights (above the steady-state core height, 

denoted with a) depolymerize, release G-actin, and increase the local G-actin concentration. 

Then, G-actin diffuses outward, altering the G-actin concentration near podosome 𝑏 located 

away from the center, thus disrupting the previous balance between actin consumption and 

release. The podosome b starts growing in turn. 

Phase 2: As the height of podosome 𝑎 reduces and reaches its minimum value, podosome b 

reaches its maximum height and begins to depolymerize, sending G-actin further outwards 

to activate the oscillation of podosome 𝑐. The radial wave pattern forms and propagate.  

Overall, the oscillations of individual podosomes constantly change the local actin concentration, 

and the uneven spatial distribution of actin concentration drives diffusion in the podosome cluster, 

leading to the wave patterns in podosome core heights. As this phenomenon involves coordination 

of actin diffusion, mechanical forces, and biochemical signaling, we have coined the term chemo-

mechanical diffusion waves to describe the collective dynamics of podosome clusters. 
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Fig 3. Mechanism of radial wave formation in podosome clusters. (A-B) The simulated heights in the 

podosome cluster using (A) a discrete model of podosomes and (B) a continuum model showing radial 

wave patterns. Each circle in panel (A) represents an individual podosome with the size and color 

representing its height. Different colors in panel (B) represent the podosome heights. (C) DCs transfected 

with LifeAct-RFP showing the propagation of radial waves. Colors denote the fluorescence-labeled 

podosomes at different times (Figure adapted from our previous study 10). The insets in (A-C) show the 

radial wave patterns at different times. Scale bar 10 μm. (D) The schematic showing the mechanism for 

the propagation of radial waves. The black arrows in left panels indicate the flow of G-actin. 

 

Theory quantitatively predicts the periods and wavelengths of chemo-mechanical waves  

Most chemo-mechanical diffusion waves observed in experiments show some degree of 

randomness in the wave patterns. To simulate the random waves (Movie S1), we assume a random 

distributed podosome heights in the beginning. Both the discrete and continuum approaches 

capture the propagation of random waves in the core heights of podosome clusters (Fig. 4A, 4D, 
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S3, and Movies S2-S3). Plots of the dynamics of podosome core heights from the discrete model 

show that the dynamics of neighboring podosomes are strongly correlated, while the dynamics of 

distant podosomes are generally uncorrelated (Fig. 4B). This prediction is further supported by our 

experiments based on LifeAct-RFP intensity traces of neighboring and distant podosome pairs in 

the cluster (Fig. 4C). Furthermore, by using the kymograph analysis (which displays a series of 

images of the indicated rectangular area in Fig.4D-E over time), we found that the simulated peaks 

of podosome heights travel within the cluster, forming random wave patterns (Fig. 4D). The 

simulated patterns span regions with a typical length scale of ~3 um and persist with a lifetime of 

~5 min, in agreement with the Life-Act fluorescence patterns in our experiments (Fig. 4E). Similar 

to the radial waves, these random wave patterns originate from the individual podosome 

oscillations and actin diffusion. By applying a small perturbation (~𝑒𝑖𝑞𝑟+𝑖𝜔𝑡, refer to Models and 

Methods), we obtain the angular wavenumber of the chemo-mechanical diffusion waves:  

𝑞 = √−
𝑖𝜔 + 𝜔𝑝

𝐷𝑎
 .                                                                (4) 

Here 𝜔 = 2𝜋/𝑇 is the radial frequency of podosome oscillations and 𝜔𝑝 = 𝛽𝜇𝑉𝑑/𝑉𝑝𝑚𝑠 represents 

the effective exchange rate between the core F-actin and free G-actin. The real part of the wave 

number yields the wavelength 𝜆 = 2𝜋 ℛ𝑒(𝑞)⁄ , which can be approximated as a diffusion length 

scale 𝜆~√𝐷𝑎𝑇 for a small exchange rate (𝜔𝑝 ≪ 𝜔). The imaginary part characterizes the damping 

effect within the system (refer to SI Note 5). 

Next, to quantitatively compare our simulations with experiments, we extract the wave 

periods and wavelengths from our podosome simulations and LifeAct-RFP intensity dynamics. 

Using Fast Fourier Transformations (FFT) to process the experimentally measured LifeAct-RFP 

intensity fluctuations of individual podosomes, we extract the oscillation periods of all podosomes 

in a cluster (Fig. S4, refer to Models and Methods). We find that the average oscillation period  

extracted from experiments is between five and eight minutes (~400 s), in line with our simulation 

results (Fig. 4F) and our analytically predicted period for individual podosome oscillation 𝑇 ≈

2𝜋√𝜏𝑚𝜏𝑝 . To extract the wavelength from the simulations and experiments, we calculate the 

correlation coefficient, which defines the correlation of intensity dynamics between two 

podosomes (refer to Models and Methods). We find the correlation coefficients extracted from 
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both the experiments and the simulations decay with the distance between the podosome pair (Fig. 

4G), indicating that podosome dynamics become gradually uncorrelated as the distance increases. 

From these correlation coefficient plots, we obtain the characteristic length scale for chemo-

mechanical diffusion waves, which agrees with our model predicted wavelength scale 𝜆~3 𝜇𝑚.  

 
Fig 4. Model quantitively predicts the wavelengths and periods of random waves. (A) Simulated 

heights in the podosome cluster using the discrete approach showing random wave patterns. Each circle 

represents an individual podosome with its size and color representing height. (B-C) Plots of (B) 

simulated podosome heights and (C) LifeAct-RFP intensity over time for (left panel) two representative 

neighboring and (right panel) distant podosome pairs. The representative podosome pairs are marked in 

the movie snapshots in the top panels. Data are normalized by (B) mean height or (C) mean RFP intensity. 

(D) Simulated heights of a podosome cluster using the continuum approach with the kymograph of the 

indicated rectangular area. The color legend is the same as the legend in (A). (E) A representative 

LifeAct-RFP transfected DC with the kymograph of the indicated rectangular area. Scale bar 10 μm. (F) 
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The oscillation periods of individual podosomes extracted by fast Fourier transformation for (left panel) 

simulations and (right panel) experimental results. (G) (Left panel) Average correlation coefficient of 

simulated core heights and (right panel) experimentally measured actin intensity fluctuations as a 

function of podosome pair distance (over 104 podosome pairs of 11 DCs for experiments, over 104 

podosome pairs for the simulated podosome cluster). Error bars indicate standard deviation (∗∗∗∗p < 

0.0001, T-test). 

 

Oscillations of individual podosomes mediate the propagation of chemo-mechanical waves 

Our model predicts that individual podosome oscillations cause spatial variation in G-actin 

density, which in turn drives chemo-mechanical diffusion waves. We next consider how wave 

propagation is impacted when oscillations of individual podosomes are inhibited. First, in our 

coarse-grained model, we disrupt the individual podosome oscillations by inhibiting myosin 

contractility or actin polymerization (as we have shown in Fig. 2C-D). We find that the inhibition 

of either contractility or polymerization disrupts the chemo-mechanical diffusion waves (Fig. 5A 

and S5A-B); this is because the G-actin concentration becomes spatially homogenous in steady 

state once individual podosome oscillations are inhibited and therefore cannot consume or release 

G-actin (Fig. 5A). To further quantify the changes of chemo-mechanical diffusion waves, we 

characterize the wave propagation speed using the phase velocity 𝑣𝑐 = 𝜆/𝑇 as a function of the 

oscillation period 𝑇  and the effective actin exchange rate 𝜔𝑝  (Fig. 5C, refer to Models and 

Methods). As a larger oscillation period 𝑇 corresponds to less pronounced oscillations (𝑇 → ∞ 

means non-oscillatory growth), our model predicts that the wave propagation speed 𝑣𝑐 decreases 

after the inhibition of individual podosome oscillations (arrows in Fig. 5C).  

To validate our predictions on the impact of inhibiting oscillations on the wave speed, we 

next examined the changes in the wave speeds of DCs after treatment with blebbistatin, 

cytochalasin D, and Y27632 (which have been shown to reduce the podosome oscillations in Fig. 

2D). We applied a recently developed technique, sliding time window spatiotemporal image 

correlation spectroscopy (twSTICS)10, to measure the velocity (magnitude and direction) of 

flowing fluorescent F-actin imaged within the cell (refer to Models and Methods). The measured 

velocity magnitude can be used to characterize the wave speed of podosome chemo-mechanical 

diffusion waves (Fig. 5D and Movie S4). By using the twSTICS to process the time series of DCs 

transfected with LifeAct-RFP, we quantified the wave speed for the control and cytochalasin D, 

blebbistatin, or Y27632 treatments on DCs (Fig. 5E and S5C-S5E). Importantly, our experiments 
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show that the magnitudes of F-actin velocities are significantly reduced after cytochalasin D, 

blebbistatin, or Y27632 treatments (Fig. 5D-5E, and S5E). These observations are in agreement 

with our theoretical predictions (Fig. 5C). Together, these results indicate that the inhibition of 

podosome oscillations disrupts the chemo-mechanical diffusion waves, which also confirms the 

predictions of our model.  

 

Fig 5. Model predicts the inhibition of pharmacological treatments and the influence of substrate 

stiffness on wave propagation. (A) (Left panels) Schematic and (right panels) simulations showing that 

inhibition of podosome oscillations disrupt chemo-mechanical diffusion waves. (B) The simulated 

podosome heights in a cluster plotted with time for (top panels) soft and (bottom panels) stiff substrates. 

The black arrows in the cluster indicate the magnitudes and directions of G-actin flow. (C) Wave 

propagation velocity 𝑣𝑐  plotted versus the oscillation period 𝑇  and diffusion constant 𝐷𝑎 . The arrow 

indicates the influence of pharmacological treatments that abrogate oscillations. (D) Representative DC 

(top panels) before and (right panels) after adding cytochalasin D. DCs are transfected with LifeAct-RFP 

using confocal microscopy with 15 s frame intervals. Time series subjected to twSTICS analysis are 

plotted as vector maps. The arrows indicate flow directions, and both the size and color denote flow 

magnitudes. Note that the arrows with white color indicate the magnitudes exceed 0.3 𝜇𝑚/𝑚𝑖𝑛.  (E) The 

velocity magnitudes for control (Ctrl, blue), cytochalasin D (Cyto, red), Blebbistatin (Bleb, yellow), and 

Y27632 (Ytreat, purple) treatments. (F) The velocity magnitudes for stiff and soft substrates12. For (D) 

and (F), statistically significant differences are indicated (∗p < 0.05, ∗∗p < 0.01, ANOVA with Benjamini-

Hochberg procedure). 
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Podosome clusters probe substrate stiffness by modulating the exchange rate between F-

actin and G-actin 

Next, to understand mechanosensing of podosome clusters, we investigate how podosome 

clusters respond to substrates with varied stiffnesses. For individual podosomes, our simulations 

show that higher substrate stiffness increases the steady-state protrusive force 𝐹𝑝𝑠 = 𝐹𝑝0𝑘𝑠/(𝑘𝑠 +

𝑘𝑐)(1 − 𝑉𝑑/𝑉𝑝𝑚𝑠), while reduces the substrate displacements 𝑙1𝑠 = 𝐹𝑝𝑠/𝑘𝑠  (Fig. S6A), in line 

with the experimental measurements7,12. Microscopically, this increased protrusive force on stiffer 

substrates is due to the stronger and denser F-actin networks in the podosome core3,8. This 

mechano-sensitive structural difference affects the cluster dynamics because denser core actin (i.e., 

larger core area 𝐴 or planar density 𝜌) on stiffer substrates requires more G-actin to assemble and 

releases more G-actin on disassembly (Fig. 5B). Since 𝜇 ∝ 𝐴𝜌 , the parameter 𝜇  should be 

proportional to substrate stiffness (𝜇 ∝ 𝑘𝑠), such that the effective exchange rate between F-actin 

and G-actin increases with substrate stiffness, i.e., 𝜔𝑝 = 𝛽𝜇𝑉𝑑/𝑉𝑝𝑚𝑠 ∝ 𝑘𝑠. Based on the analytical 

approximation for the propagation velocity 𝑣𝑐 (Eq. 10 in Models and Methods), we can see that a 

smaller exchange rate 𝜔𝑝 reduces the chemo-mechanical wave propagation speed 𝑣𝑐  (Fig. 5C). 

Reducing the sensitivity parameter 𝜇 in either our continuum or discrete model leads to a lower 

propensity for wave-like dynamics in the podosome cluster (Fig. 5F). This is because a smaller 

actin exchange rate 𝜔𝑝 causes less variance (or fluctuation) in the spatial distribution of actin 

concentration, reducing the gradient of actin concentration and eventually decreasing the wave 

propagation speed 𝑣𝑐 (via Eq. 10).  

To validate the above predictions, we examined podosome cluster dynamics by seeding DCs 

on polydimethylsiloxane (PDMS) substrates with different stiffness. Using the twSTICS analysis, 

we found that the wave speeds are reduced on soft substrates (Fig. 5F). To further confirm that the 

slow wave speeds are due to small actin exchange rates rather than changes in the podosome 

oscillation periods, we extracted the oscillation periods of individual podosomes and found that 

the oscillation periods for soft and stiff substrates are indeed not significantly changed (Fig. S6B). 

However, the correlation coefficient decays much faster with pair distance for podosome clusters 

on soft substrates, indicating a smaller chemo-mechanical diffusion wavelength for soft substrates 

(Fig. S6C). Taken together, these experimental findings confirm our predictions that stiffer 

substrates can enhance the propagation of chemo-mechanical diffusion waves. Therefore, 
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podosome clusters can serve as a mechanosensing platform by modulating the exchange rate 

between core F-actin and free G-actin of individual podosomes. 

 

Discussion and Conclusions 
In this study, by developing a chemo-mechanical model and validating the predictions with 

experiments, we have elucidated the mechanisms of individual podosome oscillations and the 

wave-like dynamics of podosome clusters. Following a bottom-up approach, we first showed that 

two competing force generation processes of polymerization-associated protrusion at the core and 

myosin dynamics in the ring occur at similar rates, causing the vertical oscillations of individual 

podosomes. Next, our model reveals that the oscillatory growth of individual podosomes leads to 

release or consumption of G-actin locally, which in turn causes diffusion of G-actin and drives the 

wave-like coordination among the podosomes in a cluster. It is the first theoretical model, to our 

knowledge, that systematically illustrates how the vertical dynamics of individual podosomes are 

synchronized to form wave-like dynamics in podosome clusters of DCs and how the podosomes 

in a cluster can collectively probe mechanical cues from surroundings. 

For individual podosomes, the two force-generating processes—actin polymerization for 

core protrusive forces and myosin dynamics for ring contractile forces—are balanced in a dynamic 

manner. Our model shows that the core height, ring components, and protrusion forces of 

podosomes all oscillate with time, in agreement with experimental results presented in this and in 

previous studies7,9,10. Our analysis reveals that the oscillatory growth of podosomes is determined 

by the timescale governing the core protrusion process 𝜏𝑝 and timescale for myosin turnover 𝜏𝑚. 

Podosomes spontaneously oscillate when these timescales are comparable, and the oscillation 

period can be estimated as 2𝜋√𝜏𝑚𝜏𝑝~400 𝑠. In addition to the oscillatory protrusion pattern, 

podosomes can exhibit monotonic growth when these timescales are not comparable, which has 

been validated by pharmacological treatments targeting polymerization and myosin activity. In 

addition, the Rho-ROCK pathway,  a  critical mechano-sensitive mediator closely associated with 

vertical oscillations of podosomes, has not been considered in previous work analyzing the 

dynamics of individual podosomes 6,7,22. Here, our model predicts that the weak mechano-sensitive 

feedback 𝛤  due to this pathway inhibits podosome oscillations and this was validated by the 

experiments that inhibit this pathway (Y27632 treatment). The impacts of different 
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pharmacological treatment on podosome growth patterns have been summarized in a phase 

diagram (Fig. 2C). 

The oscillatory behaviors in lengths and key components, such as actin filaments and 

adaptors, have also been found in other protrusion types, such as invadopodia21,23,24 and 

filopodia25,26. Different from invadopodia and filopodia, podosomes possess a complex conical 

structure in which ventral actin filaments branch from the core F-actin and connect with ring 

adhesion. Although these complex structural components are found in individual podosomes, the 

dynamics of the ring components and core actin are highly synchronized and both dynamics can 

be mediated by myosin contractility. Therefore, the actin polymerization and myosin contractility 

remain the two most dominant processes governing the podosome dynamics. Furthermore, our 

previous model on invadopodia dynamics21 and other models on filopodia25 have also shown that 

their oscillatory growths are caused by interplay between actin polymerization process and myosin 

dynamics. Taken together, these studies suggest that the ubiquitous nature of oscillations in such 

nonlinear cellular protrusion systems can originate from the competing force generating processes 

generating compressive (actin polymerization) and tensile forces (myosin contractility) in actin 

networks.  

Our chemo-mechanical model shows that G-actin diffusion can synchronize the vertical 

oscillations of individual podosomes in a cluster to form chemo-mechanical diffusion waves. 

Using discrete and continuum approaches, we simulate both the radial and random waves of the 

core F-actin observed in experiments. By evaluating the correlations between podosome dynamics 

in both our simulations and experiments, we found that individual podosome dynamics becomes 

gradually uncorrelated as their distances become larger than the characteristic wavelength, 

𝜆~3 𝜇𝑚. Our model also shows that the wave propagation speed 𝜆/𝑇 is regulated by individual 

podosome oscillation period, 𝑇 and core-actin exchange rate, 𝜔𝑝. This prediction has been further 

validated by our experiments with pharmacological treatments to inhibit the oscillations and by 

varying substrate stiffness to change the core-actin exchange rate. It is also worth noting that we 

chose not to include the effects of dorsal filaments that connect with adjacent podosomes in our 

model, because the dorsal filaments mainly apply horizontal forces on the podosome core; these 

horizontal forces are balanced at the core, and hence, do not affect podosome dynamics. 

Overall, by integrating the functions and processes of key molecular components (i.e., 

myosin, adaptors, G-actin, F-actin) in DCs, our model demonstrates how the interplay of these 
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components triggers spontaneous oscillations in individual podosomes and how these spontaneous 

oscillations lead to wave-like patterns in clusters through diffusion. DCs can capture antigens, 

migrate to lymphoid tissues, and initiate the primary immune responses, a critical process in wound 

healing and inflammation27,28. Owing to the antigen-presenting and migratory capacities of DCs, 

DCs that present tumor antigens have become an essential target of efforts to develop therapeutic 

immunity against cancer29,30. As podosomes play a critical role in transmigration of DCs, our 

chemo-mechanical model can be readily adapted to understand the roles of podosome dynamics 

in mechanosensing and migration of DCs. Future theorical developments and computational 

models may build upon our chemo-mechanical model by incorporating matrix degradation and 

other features of the microenvironment (e.g., matrix nonlinear elasticity, matrix heterogeneity, and 

topographical cues), leading to a comprehensive understanding of podosome dynamics in the 

context of wound healing and cancer immunotherapy.  

 

Models and Methods 

1. Model Formulation 

The equations in the Results govern the spatiotemporal dynamics of a podosome cluster can 

be expressed as: 

(
1

𝑘𝑓
+

1

𝑘𝑠
)

𝑑𝐹𝑝

𝑑𝑡
−

𝑐𝑜𝑠(𝜃)

𝑘𝑓

𝑑𝐹𝑚

𝑑𝑡
= (𝑉𝑝0 + 𝑐𝑎𝛽)(1 −

𝐹𝑝

𝐹𝑠𝑝0
) − 𝑉𝑑,               (5) 

 𝜏𝑚

𝑑𝐹𝑚

𝑑𝑡
+ (1 −

𝛾

𝑘𝑓
) 𝐹𝑚 = 𝐹0 + (𝛼 −

𝛾

𝑘𝑓
)

𝐹𝑝

𝑐𝑜𝑠(𝜃)
,                                 (6) 

𝜕𝑐𝑎

𝜕𝑡
= 𝐷𝑎𝛻2𝑐𝑎 − 𝜇 ∙ ((𝑉𝑝0 + 𝑐𝑎𝛽)(1 −

𝐹𝑝

𝐹𝑠𝑝0
) − 𝑉𝑑).                              (7) 

There are three variables: the protrusive force 𝐹𝑝(𝑥, 𝑦, 𝑡), the active myosin force 𝐹𝑚(𝑥, 𝑦, 𝑡) 

and the G-actin concentration 𝑐𝑎(𝑥, 𝑦, 𝑡) that describe polymerization-associated protrusion, 

signaling-associated myosin recruitment, and reaction-diffusion of G-actin, respectively. 

When the maximum polymerization speed 𝑉𝑝0 + 𝑐𝑎𝛽 is constant, Eqs.4-5 reduce to the model 

for individual podosome oscillations (i.e., Eqs. 1-2 without Gaussian noise). To solve Eqs. (5-

7), we applied both discrete and continuum approaches using MATLAB and COMSOL 
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packages. All the parameters used in the simulations are summarized in Table S1, and more 

details on the simulations can be found in SI Note 3. 

2. Linear stability analysis 

To analytically obtain the wave periods and wavelength, we performed a linear stability 

analysis on our chemo-mechanical model. In steady state (i.e., when the time derivatives in 

Eqs. 5-7 vanish), we can obtain the steady-state protrusive force 𝐹𝑝𝑠 = 𝐹𝑠𝑝0(1 − 𝑉𝑑 𝑉𝑝𝑚𝑠⁄ ), 

myosin force 𝐹𝑚𝑠 =
𝑘𝑓

𝑘𝑓−𝛾
(𝐹0 + (𝛼 −

𝛾

𝑘𝑓
)

𝐹𝑝𝑠

𝑐𝑜𝑠(𝜃)
)and actin concentration 𝑐𝑎𝑠 , where 𝑉𝑝𝑚𝑠 =

𝑉𝑝0 + 𝑐𝑎𝑠𝛽 denotes the maximum polymerization speed in steady-state. Next, we applied a 

small perturbations, 𝛿𝐹𝑝𝑠, 𝛿𝐹𝑚𝑠~ 𝑒𝑖𝜔𝑡 to the steady-state forces, (𝐹𝑝𝑠, 𝐹𝑚𝑠) in Eqs. 5-6, where 

the steady-state actin concentration 𝑐𝑎𝑠  and maximum polymerization speed 𝑉𝑝𝑚𝑠  are 

assumed not to vary with time. Thus, we can write the eigenvalues that characterize the 

dynamics of the perturbed system: 

𝜔1,2 =
𝛤 − 1 − 𝜏𝑚/𝜏𝑝 ± √(𝛤 − 1 − 𝜏𝑚/𝜏𝑝)

2
− 4𝜏𝑚/𝜏𝑝

2𝜏𝑚
.                       (8) 

Here 𝜏𝑝 =
𝐹𝑠𝑝0

𝑉𝑝𝑚𝑠
(

1

𝑘𝑓
+

1

𝑘𝑠
 )(1 −

𝛾

𝑘𝑓
)  is the timescale that characterizes polymerization-

associated core protrusion, 𝜏𝑚 is the timescale for myosin turnover, and 𝛤 =
𝛼𝑘𝑓−𝛾

 𝑘𝑓−𝛾

𝑘𝑠

𝑘𝑠+𝑘𝑓
 is 

the parameter group for signaling-associated contraction of ventral actin filaments. The 

eigenvalues in Eq. 8 allow us to determine the dynamics of individual podosomes: Podosomes 

spontaneously oscillate only when the eigenvalues’ imaginary part ℐ𝑚(𝜔1,2) ≠ 0 , i.e., 

(𝛤 − 1 − 𝜏𝑚/𝜏𝑝)
2

< 4𝜏𝑚/𝜏𝑝 . For oscillations with constant amplitudes, the real part 

ℛ𝑒(𝜔1,2) = 0, i.e.,  𝜏𝑚/𝜏𝑝 =  𝛤 − 1, and the oscillation periods can be estimated as 𝑇 =

2𝜋/ℐ𝑚  (𝜔1,2 ) ≈ 2𝜋√𝜏𝑚𝜏𝑝. The system becomes unstable when the real part ℛ𝑒(𝜔1,2) > 0, 

i.e., 𝛤 > 1 + 𝜏𝑚/𝜏𝑝. 

Next, to obtain the wavelength for collective wave dynamics, we apply a small variation 𝛿𝐹𝑝𝑠, 

𝛿𝐹𝑚𝑠, and 𝛿𝑐𝑎𝑠 to the reaction-diffusion Eq. 7 when it is in steady state (𝐹𝑝𝑠, 𝐹𝑚𝑠, 𝑐𝑎𝑠):  

𝑑𝛿𝑐𝑎𝑠

𝑑𝑡
= 𝐷𝑎∇2𝛿𝑐𝑎𝑠 −  𝜔𝑝𝛿𝑐𝑎𝑠 + 𝜇𝑉𝑝𝑚𝑠

𝛿𝐹𝑝𝑠

𝐹𝑠𝑝0
,                                    (9) 
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where 𝜔𝑝 = 𝛽𝜇(1 − 𝐹𝑝𝑠 𝐹𝑠𝑝0⁄ ) = 𝛽𝜇𝑉𝑑 𝑉𝑝𝑚𝑠⁄   is a force-mediated exchange rate between 

core F-actin and free G-actin, characterizing the increase of polymerization speed per nano-

meter decrease in core height (core F-actin disassembly releases G-actin, elevating local G-

actin density and hence polymerization speed). The Eq.9 is a diffusion wave equation31 with 

the oscillatory driving force term 𝜇𝑉𝑝𝑚𝑠
𝛿𝐹𝑝𝑠

𝐹𝑠𝑝0
. By assuming the complementary solution for Eq. 

9 (i.e., setting driving force term as zero) in the form 𝛿𝑐𝑎𝑠~ 𝑒𝑖𝜔𝑡+𝑖𝑞𝑥, we can get that the 

relation between the angular wave number 𝑞 and angular frequency 𝜔, i.e., 𝑞 = √−
𝑖𝜔+𝜔𝑝

𝐷𝑎
. 

Therefore, the wavelength can be written as: 𝜆 =
2𝜋

|ℛ𝑒(𝑞)|
= 2𝜋 (

𝐷𝑎
2

𝜔𝑝
2+𝜔2

)

1

4 1

𝑐𝑜𝑠(𝜃/2)
. Here the 

phase angle is 𝜃 = 𝜋 + 𝑡𝑎𝑛−1(𝜔/𝜔𝑝) and 𝜔 is assumed to be real. Furthermore, we can 

calculate the phase velocity 𝑣𝑐 for the chemo-mechanical diffusion waves as: 

𝑣𝑐 =
𝜆

𝑇
≈ √𝐷𝑎𝜔 (

𝜔2

𝜔𝑝
2 + 𝜔2

)

1
4 1

𝑐𝑜𝑠(𝜃/2)
.                                    (10) 

The above eigenvalues Eq.8 and the 𝑞 − 𝜔 relation can be also gained by applying the small 

perturbation to Eqs. 5-7 simultaneously, refer to SI Note 5.  

3. Preparation of human DCs 

DCs were generated from peripheral blood mononuclear cells as described previously32,33. 

Monocytes were derived either from buffy coats or from a leukapheresis product. Plastic-

adherent monocytes were cultured in RPMI 1640 medium (Life Technologies) supplemented 

with fetal bovine serum (FBS, Greiner Bio-one), 1 mM Ultra-glutamine (BioWhittaker), 

antibiotics (100 U ml−1 penicillin, 100 μg ml−1 streptomycin and 0.25 μg ml−1 amphotericin 

B, Gibco), IL-4 (500 U ml−1) and GM-CSF (800 U ml−1) in a humidified, 5% CO2-

containing atmosphere. 

4. DC transfection 

Transient transfections were carried out with the Neon Transfection System (Life 

Technologies), as previously reported10. Briefly, DCs were washed with PBS and resuspended 

in 115 μl Resuspension Buffer per 0.5 × 106 cells. Subsequently, cells were mixed with 6 μg 

DNA per 106 cells per transfection and electroporated. Next, cells were quickly transferred to 

WillCo-dishes (WillCo Wells B.V.) with pre-warmed medium without antibiotics or serum 
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and allowed to recover for 3 h at 37°C. For investigating the effect of substrate stiffness, cells 

were seeded on dishes spincoated with PDMS (Sylgard 184, Dow Chemicals; base-curing 

ratio 1:20 = stiff, ~800kPa; 1:78 = soft, ~1 kPa)12. Finally, the medium was replaced by a 

medium supplemented with 10% (v/v) FCS and antibiotics for up to 24 h. Prior to live-cell 

imaging, cells were washed with PBS and imaging was performed in RPMI without Phenol 

red. All live cell imaging was performed at 37°C. 

5. Image analysis 

All image analysis was performed using Fiji34 and the data was subsequently processed using 

Matlab (MathWorks). Prior to analysis, movies were registered, allowing translation only, 

using the StackReg plugin35 and bleach correction was performed using the “Histogram 

Matching” option. For amplitude ratio analysis, podosome centers were detected in the first 

frame of the image series with a slightly adapted ImageJ algorithm that was developed 

previously36. Briefly, before median filter processing, we first performed an unsharp mask 

filter (radius: 4.5 pixels, weight: 0.8) and this sequence was repeated twice after which a 

background subtraction was performed. Podosome centers were subsequently determined 

using the ImageJ maxima finder (prominence: 1000). Fluorescence intensity was measured in 

a circular ROI with a radius (~0.5 μm) over the course of the movie.  

6. Extracting oscillation amplitudes, periods, and correlation coefficient 

To extract the oscillation amplitude and frequency, the measured fluorescence intensity 

dynamics were converted from the time domain to frequency domain using Fast Fourier 

transformation (FFT). The largest four peaks in the spectrum were chosen to calculate the 

amplitudes and frequencies of the podosome dynamics (Fig. S4). The amplitude ratio was 

calculated as the ratio of the averaged amplitudes and the mean intensity. Next, to estimate 

the spatial correlation of two podosomes in a cluster, Pearson correlation coefficients were 

calculated for the time series of fluorescently tagged LifeAct over a 25 min time window. By 

denoting the LifeAct intensity dynamics of two podosomes as vectors 𝐴 and 𝐵 of length 𝑁, 

the correlation coefficient is written as: 

𝜌(𝐴, 𝐵) =
1

𝑁 − 1
∑(

𝐴𝑖 − 𝜇𝐴

𝜎𝐴
)(

𝐵𝑖 − 𝜇𝐵

𝜎𝐵
)

𝑁

𝑖=1

, 

where 𝜇𝐴 and 𝜎𝐴 are the mean and standard deviation of 𝐴, respectively, and 𝜇𝐵 and 𝜎𝐵 are 

the mean and standard deviation of 𝐵, respectively. The correlation has a value between -1 
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and 1, which correspond to in phase and out-of-phase correlation, respectively. The corrcoef 

function in Matlab (MathWorks) is used to calculate the correlation coefficient. 

7. Time window STICS analysis: 

We performed Spatio-temporal Image Correlation Spectroscopy (STICS)37 with a short time 

window iterated in single frame shifts on a CLSM and Airyscan time series of fluorescently 

tagged Lifeact, acquired with a 15 s time lag between frames. First, we applied a Fourier 

immobile filter in time to each pixel stack in the entire image series to remove the lowest 

frequency (e.g. static) components37. Next, we divided each image into 16x16 pixels ROIs 

(2.24 μm x 2.24 μm for the CLSM and 0.64 μm x 0.64 μm for the Airyscan) and shifted 

adjacent ROIs four pixels in the horizontal and vertical directions to map the entire field of 

view with oversampling in space. We then divided the time series into overlapping 10 frames 

sized TOIs (2.5 min) and shifted adjacent TOIs one frame for each STICS analysis to cover 

the entire image series with oversampling in time. We then calculated space-time correlation 

functions for each ROI/TOI and fit for time lags up to τ = 8 to measure vectors (magnitude 

and direction) of the flow from the translation of the correlation peak. Due to the spatial and 

temporal oversampling (75% common overlap in space between adjacent ROIs and 90% 

common overlap in time between sequential TOIs) we expect neighboring vectors to correlate 

in magnitude and direction for real flows. Further details about the detection and elimination 

of noise vectors caused by random fits to spurious background peaks and the twSTICS method 

in general have been previously described10. The movies were collected from at least 2 

experiments for each condition. 

8. Statistical analysis:  

Statistical analyses were performed using Matlab (MathWorks), and data were compared 

using the one-way ANOVA with Benjamini-Hochberg Procedure or Student test as indicated 

in figure legends. The error bars in Fig. 4G, S4D, and S6 represent standard deviation (SD), 

and the sample sizes and p values are given in figure legends. 

9. Data and code availability:  

Experimental datasets and codes are available upon request from the corresponding author. 
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Document S1: Figures S1-S9, Table S1, and Notes S1-S4 

Movie S1: Podosome cluster in a representative DC with Lifeact-RFP and vinculin-GFP 

transfected showing oscillations of individual podosomes and random waves in podosome cluster. 

Movie S2: Simulated podosome cluster with the discrete approach showing the propagation of 

radial and random waves 

Movie S3: Simulated podosome cluster with the continuum approach showing the propagation of 

radial and random waves 

Movie S4: Representative same DC before and after adding cytochalasin D. DCs are transfected 

with LifeAct-RFP using confocal microscopy with 15 s frame intervals.  
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