
PerSVade: Personalized Structural Variation detection in your species of interest

AUTHORS AND AFFILIATIONS

Miquel Àngel Schikora-Tamarit1,2, Toni Gabaldón1,2,3,4,*

1) Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, 1-3

08034 Barcelona, Spain.

2) Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and

Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain

3) Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

4) Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.

*Author for correspondence: toni.gabaldon@bsc.es

ABSTRACT

Structural variants (SVs) like translocations, deletions, and other rearrangements underlie genetic and

phenotypic variation. SVs are often overlooked due to difficult detection from short-read sequencing.

Most algorithms yield low recall on humans, but the performance in other organisms is unclear. Similarly,

despite remarkable differences across species’ genomes, most approaches use parameters optimized for

humans. To overcome this and enable species-tailored approaches, we developed perSVade

(personalized Structural Variation Detection), a pipeline that identifies SVs in a way that is optimized for

any input sample. Starting from short reads, perSVade uses simulations on the reference genome to

choose the best SV calling parameters. The output includes the optimally-called SVs and the accuracy,

useful to assess the confidence in the results. In addition, perSVade can call small variants and

copy-number variations. In summary, perSVade automatically identifies several types of genomic

variation from short reads using sample-optimized parameters. We validated that perSVade increases

the SV calling accuracy on simulated variants for six diverse eukaryotes, and on datasets of validated

human variants. Importantly, we found no universal set of “optimal” parameters, which underscores the

need for species-specific parameter optimization. PerSVade will improve our understanding about the

role of SVs in non-human organisms.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

INTRODUCTION

Structural variants (SVs) are large changes (typically >50 bp) in the DNA between individuals that alter

genome size (duplications and deletions) or generate rearrangements (inversions, translocations and

interspersed insertions) (1, 2). In eukaryotes, SVs can drive clinically-relevant phenotypes including

cancer (3–5), neurological diseases (6, 7) or antifungal drug resistance (8, 9). In addition, SVs may

generate significant intraspecific genetic variation across many taxa like humans (10–12), songbirds (13)

or rice plants (14). Despite their role on human health and natural diversity, most genomic studies

overlook SVs due to technical difficulties in calling SVs from short reads (15). This means that the role of

SVs remains largely unexplored across eukaryotes.

Inferring SVs from short reads is challenging because it relies mostly on indirect evidence coming from de

novo assembly alignment, changes in read depth or the presence of discordantly paired / split reads in

read mapping analysis (16–21). Long-read based SV calling may avoid some of these limitations, but

short read-based SV calling remains a cost-effective strategy to find SVs in large cohorts (14, 15, 22).

Recent benchmarking studies compared the performance of different tools in human genomes and

found that SV calling accuracy is highly dependent on the methods and filtering strategy used (15, 23,

24). Such studies are useful to define ‘best practices’ (optimal methods and filtering strategies) for SV

calling in human samples. However, few studies have investigated the accuracy of these tools on

non-human genomes. It is unclear whether the human-derived ‘best practices’ for SV calling can be

reliably used in other species. We hypothesize that this may not be the case for genomes with different

contents of repetitive or transposable elements, which constrain the short read-based SV calling

accuracy (24). In summary, current tools for short-read based SV calling are often unprepared for

non-human genomes, which hinders the study of SVs in most organisms.

To overcome this limitation, we developed the personalized Structural Variation detection pipeline, or

perSVade (pronounced “persuade”), which is designed to adapt a state-of-the-art SV calling pipeline to

any genome/species of interest. PerSVade detects breakpoints (two joined regions that exist in the

sample of interest and not in the reference genome) from short paired-end reads and summarizes them

into complex SVs (deletions, inversions, tandem duplications, translocations and interspersed insertions).

The pipeline provides automated benchmarking and parameter selection for these methods in any

genome or sequencing run, which is useful for species without such recommended parameters.

PerSVade provides an automated report of the SV calling accuracy on these simulations, which serves to

estimate the confidence of the results on real samples. Beyond SV detection, perSVade can be used to

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://paperpile.com/c/qACe9r/e2aq+7KPI
https://paperpile.com/c/qACe9r/egAk+W39k+Rjfr
https://paperpile.com/c/qACe9r/qQ4Y+HanM
https://paperpile.com/c/qACe9r/CbXa+4wgA
https://paperpile.com/c/qACe9r/FKvj+wO7r+7ok7
https://paperpile.com/c/qACe9r/OgDi
https://paperpile.com/c/qACe9r/Zha6
https://paperpile.com/c/qACe9r/dzZy
https://paperpile.com/c/qACe9r/mruL+Zwyz+YRDi+YF5Q+OACq+MNAm
https://paperpile.com/c/qACe9r/Zha6+qVYp+dzZy
https://paperpile.com/c/qACe9r/5XxH+8Ce2+dzZy
https://paperpile.com/c/qACe9r/5XxH+8Ce2+dzZy
https://paperpile.com/c/qACe9r/8Ce2
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

find small variants (Single Nucleotide Polymorphisms (SNPs) and insertions/deletions (IN/DELs)) and

read depth-based Copy Number Variation (CNV), all implemented within a flexible and modular

framework.

The following sections describe perSVade and its SV calling performance on various datasets of both

simulated and real genomes with SVs.

MATERIALS AND METHODS

PerSVade pipeline

PerSVade has several modules that can be executed independently (each with a single command) and/or

combined to obtain different types of variant calls and functional annotations. The following sections

describe how each of these modules work, and Figure 1 shows how they can be combined.

Module ‘trim_reads_and_QC’

This module runs trimmomatic (25) (v0.38) with default parameters for the input reads followed by

fastqc (https://www.bioinformatics.babraham.ac.uk/projects/fastqc, v0.11.9) on the trimmed reads.

These trimmed reads may be used for downstream analysis after checking that they are reliable

according to the output of fastqc.

Module ‘align_reads’

This module runs bwa mem (http://bio-bwa.sourceforge.net/bwa.shtml, v0.7.17) to align the short

reads, generating a sorted .bam file (using samtools (26) (v1.9)) with marked duplicates (through GATK

MarkDuplicatesSpark

(https://gatk.broadinstitute.org/hc/en-us/articles/360036358972-MarkDuplicatesSpark, v4.1.2.0)), that

is the core input of several downstream modules (‘call_SVs’, ‘optimize_parameters’, ‘call_CNVs’,

‘call_small_variants’ and ‘get_cov_genes’).

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://paperpile.com/c/qACe9r/kLDS
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://bio-bwa.sourceforge.net/bwa.shtml
https://paperpile.com/c/qACe9r/cPQS
https://gatk.broadinstitute.org/hc/en-us/articles/360036358972-MarkDuplicatesSpark
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

Module ‘call_SVs’

This module uses gridss (21, 27) to infer a list of breakpoints (two regions of the genome -two

breakends- that are joined in the sample of interest and not in the reference genome) from discordant

read pairs, split reads and de novo assembly signatures. The breakpoints are summarized into SVs with

clove (28) (v 0.7). Importantly, this module (and others) runs clove without the default coverage filter to

classify deletion-like (DEL-like) and tandem duplication-like (TAN-like) breakpoints into actual deletions

and tandem duplications. Instead, perSVade ‘call_SVs’ calculates the relative coverage of the regions

spanned by such breakpoints (using mosdepth (29)). This information is used to define the final set of

deletions (DEL-like breakpoints with a coverage below a “max_rel_coverage_to_consider_del” threshold)

and tandem duplications (TAN-like breakpoints with a coverage above a

“min_rel_coverage_to_consider_dup” threshold). This setting allows a separate thresholding for the

classification of DEL and TAN-like breakpoints, which is a novel feature of perSVade as compared to the

current implementation of clove. Note that this module requires as an input a set of parameters to filter

the gridss and clove outputs, which may be inferred using the module ‘optimize_parameters’ (described

below).

The final output of this module is a set of files with the called variants, which belong to these types:

- Simple SVs: deletions, inversions and tandem duplications (duplication of a region which gets

inserted next to the affected region). This module outputs one .tab file for each of these SV

types.

- Translocations: whole-arm balanced translocations between two chromosomes, which can be

inverted or not. There is one .tab file for translocations.

- Insertions: a region of the genome is copied or cut and inserted into another region. Note that

these are not de novo insertions (i.e. of DNA not present in the reference), which are actually not

called by perSVade. There is one .tab file for insertions.

- Unclassified SVs: One .tab file reports all the variants that are called by clove and cannot be

assigned to any of the above SV types. These include clove’s unclassified breakpoints (which

could be part of unresolved/unknown complex variants) and complex inverted SVs (which are

non-standard SVs). These types of SVs are not included in the simulations performed by

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://paperpile.com/c/qACe9r/MNAm+axEw
https://paperpile.com/c/qACe9r/rtD7
https://paperpile.com/c/qACe9r/EJkx
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

‘optimized parameters’ (see below), so that their accuracy is unknown. This is why we group

them together into a single file.

Module ‘optimize_parameters’

To find optimal parameters for running ‘call_SVs’ in a given input dataset, this module generates two

simulated genomes with up to 50 SVs of each of five types (insertions, translocations, deletions,

inversion and tandem duplications) with RSVsim (30) (v1.28) and custom python (v3.6) scripts (which use

biopython (31) (v1.73)). For each genome, the module simulates reads with wgsim

(https://github.com/lh3/wgsim, v1.0) and seqtk (https://arc.vt.edu/userguide/seqtk/, v1.3) with a read

length, insert size and coverage matching that of the input dataset. Note that the read simulation is

performed according to a user-defined zygosity and ploidy (through the argument

‘--simulation_ploidies’) to resemble various organisms. For example, if ‘--simulation_ploidies

diploid_hetero’ is specified, this module simulates heterozygous SVs by merging reads from both the

reference genome and the simulated genome with SVs in a 1:1 manner. PerSVade ‘optimize_parameters’

then tries several combinations (>13,000,000,000 by default, although this can be user-defined) of

parameters to run gridss and clove and filter their outputs. The detailed explanation about the used

filters can be found in Additional Materials and Methods. One of these possible filters includes

removing SVs that overlap repetitive elements, which may be inferred with the module ‘infer_repeats’

(see below). This module selects the combination of filters that yield the highest F-value (the harmonic

mean between precision and recall) for each simulated genome and SV type (see Additional Materials

and Methods for more information on how accuracy is calculated). These filters are optimised for each

simulation, and thus may not be accurate on independent sets of SVs (due to overfitting). In order to

reduce this effect, perSVade ‘optimize_parameters’ selects a final set of “best parameters” that work

well for all simulations and SV types. This set of best parameters may be used in the ‘call_SVs’ module.

The accuracy (F-value, precision, recall) of these parameters on each simulation and SV type is reported

in a tabular file, which serves to evaluate the expected calling accuracy. All plots are generated using

python (v3.6) and the libraries seaborn (https://seaborn.pydata.org/, v0.9.0) and matplotlib

(https://matplotlib.org/, v3.3.0). In addition, the python packages scipy (32) (v1.4.1), scikit-learn (33)

(v0.21.3), psutil (https://github.com/giampaolo/psutil, v5.7.2) and pandas (https://pandas.pydata.org/,

v0.24.2) are used for scripting and various statistical calculations. On another line, pigz

(https://zlib.net/pigz/, v2.4) and gztool (https://github.com/circulosmeos/gztool, v0.11.5) are used for

fast compression steps. Finally, perSVade ‘optimize_parameters’ uses picard

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://paperpile.com/c/qACe9r/1vvl
https://paperpile.com/c/qACe9r/8zr5
https://github.com/lh3/wgsim
https://arc.vt.edu/userguide/seqtk/
https://seaborn.pydata.org/
https://matplotlib.org/
https://paperpile.com/c/qACe9r/bhlU
https://paperpile.com/c/qACe9r/UN4T
https://github.com/giampaolo/psutil
https://pandas.pydata.org/
https://zlib.net/pigz/
https://github.com/circulosmeos/gztool
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

(http://broadinstitute.github.io/picard/, v2.18.26) to construct a sequence dictionary for the provided

reference genome.

By default, the simulated events are placed randomly across the genome. However, real SVs often

appear around repetitive elements or regions of the genome with high similarity (e.g.: transposable

elements insertions) (24, 34–36). This means that random simulations may not be realistic, potentially

leading to overestimated calling accuracy and a parameter selection unfit for real SVs (24). To circumvent

this, perSVade ‘optimize_parameters’ can generate more realistic simulations occurring around some

user-defined regions (i.e. with previously known SVs or homologous regions) provided with the

--regions_SVsimulations argument. Importantly, perSVade provides an automatic way to infer such

regions through the modules ‘find_knownSVs_regions’ and ‘find_homologous_regions’ (described

below) In addition, note that Figure S1 includes a detailed graphical representation of how this module

works.

Module ‘find_knownSVs_regions’

This module finds regions with known SVs using a provided list of sequencing datasets (with the option

--close_shortReads_table) from species close to the reference genome. These datasets are processed

with perSVade’s modules ‘trim_reads_and_QC’, ‘align_reads’ and ‘call_SVs’ (using default parameters) to

find SVs. This module then outputs a .bedpe file with the +-100bp regions around the breakends from

these SVs. This .bedpe file can be input to the module ‘optimize_parameters’ through the

--regions_SVsimulations argument in order to perform ‘known’ realistic simulations.

Module ‘find_homologous_regions’

This module infers homologous regions by defining genomic windows (from the reference genome) of

500 bp as a query for a blastn (37) against the same reference genome. Hits with an e-value <10-5 that

cover >50% of the query regions are defined as pairs of homologous regions, which are written as a

.bedpe file. This .bedpe file can be input to the module ‘optimize_parameters’ through the

--regions_SVsimulations argument in order to perform ‘homologous’ realistic simulations.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

http://broadinstitute.github.io/picard/
https://paperpile.com/c/qACe9r/K5pD+nLQC+2FzY+8Ce2
https://paperpile.com/c/qACe9r/8Ce2
https://paperpile.com/c/qACe9r/L1NK
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

Module ‘call_CNVs’

Copy Number Variants (CNVs) are a type of SVs in which the genomic content varies (deletions or

duplications). The ‘call_SVs’ module (see previous section) identifies some CNVs (insertions, tandem

duplications, deletions and complex inverted SVs) but it can miss others (i.e.: whole-chromosome

duplications or regions with unknown types of rearrangements yielding CNVs (8, 38)). PerSVade uses this

‘call_CNVs’ module to call CNVs from read-depth alterations. For example, regions with 0x or 2x

read-depth as compared to the mean of the genome can be called deletions or duplications,

respectively. A straightforward implementation of this concept to find CNVs is challenging because many

genomic features drive variability in read depth independently of CNV (39, 40). In order to solve this,

perSVade ‘call_CNVs’ calculates the relative coverage for windows of the genome (using bedtools

(41)mosdepth (29) (v0.2.6)) and corrects the effect of the GC content, mappability (calculated with

genmap (42) (v1.3.0)) and distance to the telomere (using cylowess for nonparametric regression

(https://github.com/livingsocial/cylowess) as in (40)). Note that cylowess uses the library cython (43)

(v0.29.21). This corrected coverage is used by CONY (44) (v1.0), AneuFinder (45) (v1.18.0) and/or

HMMcopy (46) (v1.32.0) to call CNVs across the genome. Note that we modified the R code of CONY to

be compatible with the input corrected coverage. The corrected code (used in the pipeline) is available in

https://github.com/Gabaldonlab/perSVade/blob/master/scripts/CONY_package_debugged.R. PerSVade

‘call_CNVs’ generates consensus CNV calls from the three programs taking always the most conservative

copy number for each bin of the genome. For example, if the used programs disagree on the copy

number of a region the closest to 1 will be taken as the best estimate.

Module ‘integrate_SV_CNV_calls’

This module generates a vcf file showing how SVs (called by the modules ‘call_SVs’ and/or ‘call_CNVs’)

alter specific genomic regions. It also removes redundant calls between the CNVs identified with

‘call_SVs’and those derived from ‘call_CNVs’ (using bedmap from the bedops tool (47) (v2.4.39)). This is

useful for further functional annotation. Each SV can be split across multiple rows when it affects more

than one region of the genome. All rows related to the same SV are identified by the field variantID in

INFO. On top of this, each row has a unique identifier indicated by the field ID. Some SVs generate de

novo-inserted sequences around the breakends, and each of these is represented in a single row. Note

that each of the rows may indicate a region under CNV (with the SVTYPE in INFO as DEL, DUP or TDUP), a

region with some rearrangement (with the SVTYPE in INFO as BND) or a region with a de novo insertion

(with the SVTYPE in INFO as insertionBND). See

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://paperpile.com/c/qACe9r/CbXa+XDaX
https://paperpile.com/c/qACe9r/q4cq+vCYQ
https://paperpile.com/c/qACe9r/zRrU
https://paperpile.com/c/qACe9r/EJkx
https://paperpile.com/c/qACe9r/OC4D
https://github.com/livingsocial/cylowess
https://paperpile.com/c/qACe9r/vCYQ
https://paperpile.com/c/qACe9r/gZRR
https://paperpile.com/c/qACe9r/WArI
https://paperpile.com/c/qACe9r/ycaU
https://paperpile.com/c/qACe9r/6gEI
https://github.com/Gabaldonlab/perSVade/blob/master/scripts/CONY_package_debugged.R
https://paperpile.com/c/qACe9r/deX7G
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

https://github.com/Gabaldonlab/perSVade/wiki/8.-FAQs#what-is-in-sv_and_cnv_variant_callingvcf for

more information about the format of this .vcf file. We designed this vcf to include only these three

types of regions because they can be interpreted by the Ensembl Variant Effect Predictor (48) for

functional annotation.

Module ‘annotate_SVs’

This module runs the Ensembl Variant Effect Predictor (48) (v100.2) on the vcf output of the module

‘integrate_SV_CNV_calls’ to get the functional annotation of each SV. This requires a .gff file from the

user.

Module ‘call_small_variants’

This module performs small variant (SNPs and small IN/DELs) calling with either freebayes (49) (v1.3.1),

GATK HaplotypeCaller (50) (v4.1.2.0) and/or bcftools call (https://github.com/samtools/bcftools, v1.9)

and integrates the results into .tab and .vcf files. Additional Materials and Methods provides further

information on how this calling is performed.

Module ‘annotate_small_vars’

This module runs the Ensembl Variant Effect Predictor (48) (v100.2) on the vcf output of the module

‘call_small_variants’ to obtain the functional annotation of each variant. This requires a .gff file from the

user.

Module ‘get_cov_genes’

This module runs mosdepth (29) (v0.2.6) to obtain the coverage for each gene, which requires a .gff file

from the user.

Module ‘infer_repeats’

This module annotates repetitive elements in a genome, which can be used for the modules 'call_SVs',

'find_knownSVs_regions', 'integrate_SV_CNV_calls', 'optimize_parameters' and 'call_small_variants'.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://github.com/Gabaldonlab/perSVade/wiki/8.-FAQs#what-is-in-sv_and_cnv_variant_callingvcf
https://paperpile.com/c/qACe9r/cROC
https://paperpile.com/c/qACe9r/cROC
https://paperpile.com/c/qACe9r/j1Sk
https://paperpile.com/c/qACe9r/xe8p
https://github.com/samtools/bcftools
https://paperpile.com/c/qACe9r/cROC
https://paperpile.com/c/qACe9r/EJkx
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

These repeats are inferred with RepeatModeler (51) (v2.0.1) and RepeatMasker (52) (v4.0.9). The user

can input these repeats to several modules (with --repeats_file), which will have the following effects:

- If repeats are provided, 'optimize_parameters' will assess whether removing SV calls overlapping

repeats increases the overall accuracy. If so, the resulting optimized parameters will include a

'filter_overlappingRepeats : True'. If you use these optimized parameters in 'call_SVs', any

breakpoint overlapping repeats will be removed.

- If repeats are provided, 'call_SVs' may filter out SVs that overlap repeats if the SV filtering

parameters include a 'filter_overlappingRepeats : True'.

- If repeats are provided, 'find_known_SVs' will pass them to the 'call_SVs' module.

- If repeats are provided, 'integrate_SV_CNV_calls' will add a field in the INFO which indicates

whether the SVs overlap repeats.

- If repeats are provided, 'call_small_variants' will add a field in the tabular variant calling file

which indicates whether the SVs overlap repeats.

Alternatively, the user can specify ‘--repeats_file skip’ to avoid the consideration of repeats in all these

modules.

Testing SV calling with perSVade on simulated structural variants

To test perSVade’s performance on different species we ran it on paired-end WGS datasets for six

eukaryotes (Candida glabrata, Candida albicans, Cryptococcus neoformans, Arabidopsis thaliana,

Drosophila melanogaster and Homo sapiens). To obtain a high number of SVs we gathered three samples

for each species with enough genetic divergence to the reference genome. For this, we first used an

automatic pipeline to find these samples running the script

https://github.com/Gabaldonlab/perSVade/blob/master/scripts/perSVade.py with the options

--close_shortReads_table auto --n_close_samples 3 --nruns_per_sample 1 --target_taxID

<species_taxID>. This used entrez-direct (https://www.ncbi.nlm.nih.gov/books/NBK179288/, v13.3), SRA

Tools (https://github.com/ncbi/sra-tools, v2.10.9) and ete3 (53) (v3.1.2) to query the SRA database (54)

and find three WGS datasets of close taxIDs (to each <species_taxID> according to the NCBI taxonomy

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://paperpile.com/c/qACe9r/DiSY
https://paperpile.com/c/qACe9r/i70b
https://github.com/Gabaldonlab/perSVade/blob/master/scripts/perSVade.py
https://www.ncbi.nlm.nih.gov/books/NBK179288/
https://github.com/ncbi/sra-tools
https://paperpile.com/c/qACe9r/KXkh
https://paperpile.com/c/qACe9r/i12l
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

species tree (55)) with a coverage >30x and >40% of mapped reads to the reference genome. We could

find three such datasets for C. albicans, C. neoformans, A. thaliana and D. melanogaster, which included

samples from the same species or genera as the target species, with >65% of the reads mapping to the

reference genome. We randomly downsampled the A. thaliana and D. melanogaster runs to 30x

coverage (using samtools (26) (v1.9)) for faster computation (using the option

--max_coverage_sra_reads 30). For C. glabrata we used datasets generated in our lab from three

divergent strains (BG2, CST34 and M12, from (9)). All these datasets are listed in Table S1. Finally, we

tested perSVade on three H. sapiens datasets previously used for benchmarking SV callers (23, 24).

These included NA12878 (a Genome in a Bottle (GIAB) cell line related to the Ceph family (56, 57)),

HG002 (another GIAB project with reads available at

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG00

2_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60X.1.bam)

and CHM1/CHM13 (two haploid cell lines sequenced independently (58), for which we merged the raw

reads to generate synthetic diploid data). The reference genomes were taken from the Candida Genome

Database (59) (version s02-m07-r35 for C. glabrata and ‘haplotype A’ from version A22-s07-m01-r110 for

C. albicans), GenBank (60) (accession GCA_000149245.3 for C. neoformans, GCA_000001735.2 for A.

thaliana and GCA_000001215.4 for D. melanogaster) and UCSC (61) (the latest version of genome hg38

at 06/04/2021 for H. sapiens, keeping only chromosomes 1-22, X,Y and the mitochondrial DNA). In

addition, we performed quality control of the reads with fastqc

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc, v0.11.9) and trimming with trimmomatic

(25) (v0.38).

We ran the SV calling pipeline of perSVade (using the modules ‘align_reads’, ‘call_SVs’ and

‘integrate_SV_CNV_calls’) on all these datasets using either ‘default’ or optimized parameters (based on

‘random’, ‘known’ or ‘homologous’ simulations using the modules ‘optimize_parameters’,

‘find_homologous_regions’ and ‘find_knownSVs_regions’). Note that we used the module

‘infer_repeats’ to find repetitive elements in each genome. These were provided to

‘optimize_parameters’ to assess whether filtering out repeats improved SV calling accuracy. In addition,

we simulated diploid heterozygous SVs for the diploid genomes (C. albicans, A. thaliana, D. melanogaster

and H. sapiens) and haploid SVs for the haploid genomes (C. glabrata, C. neoformans). We used

computational nodes in an LSF cluster (https://www.ibm.com/support/pages/what-lsf-cluster) with 16

cores and either 32 Gb (for C. glabrata, C. albicans, C. neoformans), 64 Gb (for A. thaliana and D.

melanogaster) and 96 Gb (for H. sapiens) of RAM for the testing. We first ran the read alignment step

(module ‘align_reads’) for all samples, and then used the resulting .bam files as inputs for the other

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://paperpile.com/c/qACe9r/CFrj
https://paperpile.com/c/qACe9r/cPQS
https://paperpile.com/c/qACe9r/4wgA
https://paperpile.com/c/qACe9r/8Ce2+5XxH
https://paperpile.com/c/qACe9r/srN4+bobJ
http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60X.1.bam
http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60X.1.bam
https://paperpile.com/c/qACe9r/tvr2
https://paperpile.com/c/qACe9r/DALp
https://paperpile.com/c/qACe9r/Y17b
https://paperpile.com/c/qACe9r/4xJm
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://paperpile.com/c/qACe9r/kLDS
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

perSVade modules. We calculated the resource consumption (running time and maximum RAM used) for

each of these perSVade runs, thus ignoring the resources related to read alignment. Of note, perSVade

was run with different parameters for the human datasets to avoid excessive resource consumption and

match our computational infrastructure. First, we skipped the marking of duplicate reads on the .bam

files (default behavior) with perSVade’s --skip_marking_duplicates option on the module ‘align_reads’.

Second, we ran the simulations on a subset of the genome (only chromosomes 2, 7, 9, X, Y and

mitochondrial). Third, we skipped the ‘homologous’ simulations in human samples because we could not

finish the inference of pairs of homologous regions (see previous section) due to excessive memory

consumption. By running this inference on a few chromosomes we realised that there are millions of

such regions, generating excessively large files. Finally, we tested the accuracy of all the optimized

parameters (for each sample / simulation) on the other samples / simulations using the script

https://github.com/Gabaldonlab/perSVade/blob/master/testing/get_accuracy_parameters_on_sorted_

bam.py. Additional Materials and Methods provides further information on how accuracy is calculated.

Testing perSVade on real SVs

To validate the usage of perSVade on real data we focused on public datasets with available short-reads

and independently-defined sets of known SVs. We could find such SVs in the human samples (also used

in the testing mentioned above), for which SV callsets of deletions or inversions exist (as done in (24)).

We defined as ‘true SVs’ the deletions of NA12878 (defined in (57), available at

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/P

ersonalis_1000_Genomes_deduplicated_deletions.bed), the high-confidence deletions of HG002

(available at

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG0

02_SVs_Tier1_v0.6.vcf.gz) and the union of all deletions and inversions found in either CHM1 or CHM13

lines (defined by (58), available at

http://eichlerlab.gs.washington.edu/publications/Huddleston2016/structural_variants/).

We then tested the accuracy of the ‘training’ parameters optimized for each sample and simulation of

the six eukaryotes mentioned above (in the section ‘Testing SV calling with perSVade on simulated

structural variants’) on these human samples using the script

https://github.com/Gabaldonlab/perSVade/blob/master/testing/get_accuracy_parameters_on_sorted_

bam.py. In addition, we removed SVs overlapping simple repeats or low complexity regions (as inferred

by the module ‘infer_repeats’) from this analysis. Note that each of these ‘true SV’ datasets were

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://github.com/Gabaldonlab/perSVade/blob/master/testing/get_accuracy_parameters_on_sorted_bam.py
https://github.com/Gabaldonlab/perSVade/blob/master/testing/get_accuracy_parameters_on_sorted_bam.py
https://paperpile.com/c/qACe9r/8Ce2
https://paperpile.com/c/qACe9r/bobJ
http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
https://paperpile.com/c/qACe9r/tvr2
http://eichlerlab.gs.washington.edu/publications/Huddleston2016/structural_variants/
https://github.com/Gabaldonlab/perSVade/blob/master/testing/get_accuracy_parameters_on_sorted_bam.py
https://github.com/Gabaldonlab/perSVade/blob/master/testing/get_accuracy_parameters_on_sorted_bam.py
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

defined on different reference genomes: the NA12878 and HG002 callsets were based on hg19 and the

CHM1/CHM13 was relative to hg38. This means that we could not directly use the optimized training

parameters from the human samples from the previous section, since they were all based on hg38. We

thus ran perSVade’s SV calling and parameter optimization modules on NA12878 and HG002 using the

hg19 reference, and used the resulting optimum parameters as ‘training’ for these two samples. For this,

we obtained the latest version of hg19 and hg38 genomes at 06/04/2021 from UCSC (61), keeping only

chromosomes 1-22, X,Y and the mitochondrial DNA.

RESULTS

PerSVade: a pipeline to call and interpret structural variants in your species of interest

PerSVade identifies SVs from a paired-end WGS dataset and a reference genome as sole inputs. It

identifies breakpoints from the aligned reads with gridss (21), and summarizes them into actual SVs

(insertions, translocations, deletions, inversion and tandem duplications) with clove (28). We followed

the recent recommendation of using a single, high-performing algorithm for breakpoint calling instead of

using multiple software (24). We chose gridss because of its high accuracy in several benchmarking

studies (23, 24). In addition, our pipeline generates a functional annotation of the variants, which is

useful to evaluate the altered genomic regions and aid downstream analyses. In summary, perSVade is a

pipeline to find and interpret SVs from most eukaryotic sequencing datasets (Figure 1).

A key feature of perSVade is the parameter optimization step (implemented in ‘optimize_parameters’

module and shown in Figure S1). There are no specific recommendations for filtering the outputs of

gridss and clove in most species, and it is unclear whether the parameters validated on model organisms

are universal. Similarly, the performance of these algorithms on different sequencing formats (i.e.

varying read lengths, coverage or insert size) is not easy to predict. To solve this automatically, perSVade

‘optimize_parameters’ generates simulated genomes (based on the reference genome and input

dataset) with SVs and choses the most accurate filters (with the highest F-value) for these simulations. To

account for different mechanisms of SV formation, the simulations can be either 1) randomly placed

across the genome (“random” simulations), 2) around regions with previously known SVs (“known”

simulations) or 3) around regions with homologous sequences (“homologous” simulations). We consider

that “known” and “homologous” simulations are more realistic than the “random” ones. See Materials

and Methods for further details. Regardless of the simulation type, the optimised filters can be used for

the SV calling on real data, potentially yielding the highest possible performance. The accuracy of the

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://paperpile.com/c/qACe9r/4xJm
https://paperpile.com/c/qACe9r/MNAm
https://paperpile.com/c/qACe9r/rtD7
https://paperpile.com/c/qACe9r/8Ce2
https://paperpile.com/c/qACe9r/8Ce2+5XxH
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

optimised filters on different simulations is reported as a tabular file, which is useful to define the

expected calling accuracy. We hypothesize that this accuracy may vary across species and/or sequencing

formats, and perSVade can infer it on any input sample. All in all, perSVade automatically finds the best

filters and reports the expected calling accuracy for each input sample.

We validated the usability of perSVade by running it on available sequences for six phylogenetically

diverse eukaryotes with different genome sizes (Candida glabrata (12 Mb), Candida albicans (14 Mb),

Cryptococcus neoformans (19 Mb), Arabidopsis thaliana (120 Mb), Drosophila melanogaster (144 Mb)

and Homo sapiens (3163 Mb)), with three WGS runs per species (yielding datasets with 6,75·106 -

1,59·109 reads, see Materials and Methods). We ran the pipeline using parameter optimization with

“random”, “known” or “homologous” simulations. In addition, we ran perSVade with default parameters

as a baseline, useful to evaluate the impact of parameter optimization (the core and most novel feature

of perSVade) on calling accuracy and resource consumption. We found that the computational burden

(running time and memory used) was highly variable among datasets and correlated with genome and

dataset sizes. As expected, parameter optimization increased resource consumption in all cases. This

burden was particularly high for the human datasets, which may hinder the usage of perSVde on such

large genomes (Figure S2). However, we consider that such choices should be left to the user based on

these results. Taken together, our analysis indicates that perSVade can be used for SV calling in a wide

range of eukaryotes and sequencing datasets.

PerSVade’s parameter optimization improves calling accuracy in simulated datasets

In order to clarify the impact of parameter optimization on calling accuracy we measured the

performance of perSVade’s SV calling on these samples and simulations. We found that the F-value after

parameter optimization on ‘random’ and ‘known’ simulations was high (between 0.75 - 1.0) in most

samples and SV types (with one exception in Drosophila melanogaster that yielded an F-value ~ 0.5). The

F-value on ‘homologous’ simulations was often lower (depending on the species), suggesting that SVs

happening on regions with pairwise homology may be more difficult to resolve. As expected, the

accuracy on ‘random’ SVs was higher than on more realistic simulations (‘known’ and ‘homologous’),

suggesting that it may overestimate real data accuracy. In general, the F-value was higher than the

‘default’ setting in most species (except in C. neoformans), and the improvement was dramatic in some

SV types (i.e. the F-value went from <0.1 to >0.95 in C. glabrata’s deletions or insertions) (Figure 2). In

addition, we found that parameter optimization increases recall rather than precision, which is >0.95 in

most simulations and SV types (Figure S3). Taken together, our results suggest that parameter

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

optimization yields maximum performance by improving the recall of SVs as compared to default

parameters.

We next explored whether different runs of perSVade (i.e. in different species or simulation types) yield

similar parameters, which may clarify how necessary this optimization is. We hypothesized that each

sample and simulation type combination may require specific parameters that would not necessarily

work for other samples. To test this we first compared the chosen parameters across different runs,

which appeared to be sample-specific (Figure S4). This suggests that there is not a universal recipe (i.e.

filtering parameters) for SV calling with perSVade. However, another (null) hypothesis could be that

different parameter sets have similar outcomes, without changing the SV calling accuracy. This question

was highly important to us. If perSVade’s optimization converges to equivalent parameter sets in

different samples we would not need the optimization on every sample (i.e. we could re-define one of

these parameters as default). In order to sort this out, we evaluated how different parameter sets (either

‘default’ ones or those that are defined as ‘optimum’ for a given sample) work on simulated genomes

related to other samples. The results of this analysis are shown in Figure 3 and Figure S5. As

hypothesized, not all the parameter sets yield accurate results on all samples, with large differences

between species (Figure 3A). However, we found that parameters optimized for one sample are mostly

accurate on samples of the same species, regardless of the simulation type (Figure 3B). Of note, the

parameters yielded by ‘random’ simulations were accurate on ‘homologous’ and ‘real’ simulations

(Figure 3). This indicates that running perSVade on ‘random’ simulations (the cheapest setting in terms

of resources) yields accurate parameters for more realistic simulations and possibly real SVs. On another

line, we found that the different parameters changed mostly the SV calling recall, and not the precision

(Figure S5). In summary, our results suggest that parameter optimization is necessary for maximum

performance in each species and dataset.

PerSVade’s parameter optimization improves the calling accuracy in datasets with defined sets of real

SVs

The performance of SV calling on simulations may not be equivalent on real data, as SVs often appear

around repetitive or low-complexity regions which hamper their detection (24, 34–36). It is thus possible

that we overestimated the real accuracy in our simulations. We partially addressed this with our analysis

based on ‘realistic’ simulations (‘known’ and ‘homologous’), where the inferred accuracy was lower

(Figure 2) and potentially closer to the real one. To further validate the usage of perSVade for real SV

calling we tested it on datasets with known SVs, which were available for the human samples tested

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://paperpile.com/c/qACe9r/K5pD+nLQC+2FzY+8Ce2
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

above (i.e. Figure 3). We ran perSVade (using different simulation types) on the same three datasets,

which had previously-defined deletions and inversions (see Materials and Methods for details).

We used these data to assess the accuracy of perSVade on real datasets, using different sets of

parameters (optimal for each simulation and sample from the six species tested above, shown in Figure

3). As expected, we found a lower F-value on real datasets (Figure 4) as compared to the simulated

genomes (Figure 2, 3), with high precision and lower recall (Figure 4B). In addition, parameter

optimization improved the F-value modulating both precision and recall (Figure 4B). However, the other

results described in the simulations’ analysis (related to the performance of the pipeline and the

universality of the parameters) are qualitatively equivalent in these real datasets (Figure 4). Taken

together, our analysis indicates that perSVade improves SV calling in real datasets (similarly to simulated

genomes).

DISCUSSION

Despite large variation of genomic features across taxa, SV detection approaches in non-model

organisms tend to rely on tools and parameters developed for other species (generally human). We

hypothesized that this “one size fits all” approach is suboptimal. To test this idea and overcome the

problem, we developed perSVade, a flexible pipeline that automatizes the calling and filtering of

structural variants (SV) across eukaryotes. PerSVade is a modular method to automatically adapt a

state-of-the-art SV calling pipeline to any species of interest. PerSVade uses simulations to choose the

optimal filters for each sample and report the calling accuracy, which can inform about the reliability of

the results. This will allow users to be aware of the accuracy in their datasets (i.e. perSVade may be

inaccurate in some datasets due to low coverage, short read lengths or excessive repeats in the genome)

and make informed choices.

We validated the broad usability of perSVade by testing it on simulations and real datasets for a wide

range of eukaryotes (with genomes of 12-3,000 Mb and datasets including 107-109 reads). We found that

there is a significant computational burden related to parameter optimization, which may hinder its

usage on large genomes. This means that perSVade may be particularly cost-effective for small genomes

(i.e. <200 Mb), although the chosen settings will depend on the available resources.

This testing also revealed that, as we hypothesized, parameter optimization improves the calling

accuracy on both simulations and datasets with real, previously-defined SVs. We found that the

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

optimization mostly improves the recall rather than precision (which is generally high regardless of the

used parameters). However, there are some exceptions (mostly in the testing on real SVs), suggesting

that optimization can be necessary for reaching both high recall and precision in some samples. In

addition, perSVade’s optimization yielded unique parameter sets for each sample, which were often

inaccurate on other datasets. This means that there is no universal set of parameters that work well for

all samples, which justifies the need for parameter optimization and a tool like perSVade to automate

such a task. Conversely, we found some trends that can be useful to skip parameter optimization in some

cases. For instance, parameter sets were often accurate across datasets of the same species. In addition,

parameters resulting from ‘random’ simulations performed well in more realistic (‘known’ and

‘homologous’) simulations as well as in real SV datasets of the same species, indicating that they can be

used for maximum performance. Based on these findings, we propose the following recommendations

for a cost-effective usage of perSVade:

- For SV calling on many datasets of one species with similar properties (similar coverage, read

length and insert size), run perSVade using ‘random’ simulations on one sample, and use the

optimized parameters for the other samples (skipping optimization). The reported calling

accuracy may be overestimated since the simulations are not realistic, but the chosen parameters

are expected to be optimal.

- For approximating the real SV calling accuracy, run perSVade on realistic simulations

(‘homologous’ or ‘known’), which may report an accuracy that is closer to the real one.

We note that perSVade is not a fundamentally new algorithm for SV detection but rather a pipeline

implementing existing algorithms. This is why we did not compare it with other such methods (like

manta (20) or delly (62)). The novelty of our pipeline lies in the automatic parameter selection feature,

which is unique (to the best of our knowledge) for short read-based SV calling. We thus centered our

testing on the accuracy of different parameters on SV calling. In fact, some recent approaches specifically

developed for human genomes (22, 63) may outcompete perSVade in human samples. However, such

methods rely on previously-defined sets of known SVs, which are not available in most taxa. We thus

consider that our pipeline will be mostly useful in species without such specific methods available. For

example, perSVade was used in a recent study to find SVs associated with antifungal drug resistance in

the non-model yeast Candida glabrata (9), which successfully validated all (8/8) the predicted variants

using PCR.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://paperpile.com/c/qACe9r/OACq
https://paperpile.com/c/qACe9r/rYL2
https://paperpile.com/c/qACe9r/it94+qVYp
https://paperpile.com/c/qACe9r/4wgA
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

Finally, perSVade also includes modules for CNV identification and SNP/INDEL calling, as a way to

automate the finding of other broadly used genomic variants. In addition, it includes variant annotation

features to ease the functional interpretation of these variants for downstream analyses. In summary,

perSVade is a swiss-knife-like framework to identify many types of variants with a few bash commands.

We consider that this tool will be useful to understand the role SVs in different phenotypes and

organisms, particularly those with no specific recommendations.

DATA AVAILABILITY

PerSVade is available at https://github.com/Gabaldonlab/perSVade and can be installed using either

conda environments or through a docker image containing the pipeline, available at

https://hub.docker.com/r/mikischikora/persvade. The github repository contains detailed examples on

how to install and run perSVade using conda, docker or singularity. We have tested perSVade on several

Linux and Mac architectures, and the docker image may be run in any machine in a reproducible way. All

the results shown in this paper were generated using the script

https://github.com/Gabaldonlab/perSVade/blob/master/scripts/perSVade.py from version 1.0, which is

a wrapper to execute several modules with a single command. Since perSVade is an actively used (and

maintained) pipeline, we have created a few new releases since version 1.0, which include an improved

documentation, more unit tests and the implementation of an efficient debugging of inputs. Note that

these changes do not affect the functionality of the modules as implemented in version 1.0. Hence, we

recommend the usage of the latest version, which is the one with the best documentation and usability.

All the data used for testing perSVade was obtained from the SRA database or public ftp servers, and is

listed in Table S1 and Materials and Methods. All the code necessary to reproduce the results and plots

shown in this paper is in https://github.com/Gabaldonlab/perSVade/tree/master/testing.

FUNDING

TG group acknowledges support from the Spanish Ministry of Science and Innovation for grant

PGC2018-099921-B-I00, cofounded by European Regional Development Fund (ERDF); from the Catalan

Research Agency (AGAUR) SGR423; from the European Union’s Horizon 2020 research and innovation

programme (ERC-2016-724173); from the Gordon and Betty Moore Foundation (Grant GBMF9742) and

from the Instituto de Salud Carlos III (INB Grant PT17/0009/0023 - ISCIII-SGEFI/ERDF). MAST received a

Predoctoral Fellowship from “Caixa” Foundation (LCF/BQ/DR19/11740023).

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://github.com/Gabaldonlab/perSVade
https://hub.docker.com/r/mikischikora/persvade
https://github.com/Gabaldonlab/perSVade/blob/master/scripts/perSVade.py
https://github.com/Gabaldonlab/perSVade/tree/master/testing
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

ACKNOWLEDGEMENTS

The authors thank Cinta Pegueroles and Marina Lleal for the useful discussions key in the building of

perSVade. In addition, we want to thank Hrant Hovhannisyan, Valentina del Olmo, Diego Fuentes, Anna

Vlasova, Maria Artigues, Matteo Schiavinato and Marina Marcet for beta-testing the pipeline and

providing us with useful feedback.

AUTHOR CONTRIBUTIONS

MAST wrote the code and performed all bioinformatic analysis. MAST and TG conceived the study,

interpreted the results, and wrote the manuscript. TG supervised the project and provided resources.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

FIGURES

Figure 1. Schematic representation of the modular workflow of PerSVade. This figure shows the

modules of perSVade (each represented in a different box and executable with a single command),

which may be combined following the drawn arrows. The italic text describes the algorithms used at

each step. The pipeline identifies either structural variants (SVs) (module ‘call_SVs’), coverage-derived

copy number variants (CNVs) (module ‘call_CNVs’), small variants (module ‘call_small_variants’) and/or

changes in the coverage per gene (module ‘get_cov_genes’) from aligned short paired-end reads

(obtained with the module ‘align_reads’). The different types of SVs output by ‘call_SVs’ are drawn at the

bottom for clarity. In addition, the module ‘trim_treads_and_QC’ can be used to trim the reads and

perform quality control with FASTQC before read alignment. On another note, several modules

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

('call_SVs', 'find_knownSVs_regions', 'integrate_SV_CNV_calls', 'optimize_parameters' and

'call_small_variants') use an annotation of genomic repeats that can be obtained with the module

‘infer_repeats’ (bottom left). The most novel aspect of perSVade is the automatic parameter

optimization for SV calling adapted to the input (implemented in the module ‘optimize_parameters’).

This is achieved through simulations of SVs on the reference genome, which can be randomly placed

(‘random’), around regions with previously known SVs (‘known’) or on regions with pairwise homology

(‘homologous’). The modules 'find_knownSVs_regions' and ‘find_homologous_regions’ can be used to

infer these ‘known’ and ‘homologous’ regions, respectively. In addition, the variants found with ‘call_SVs’

and ‘call_CNVs’ can be combined with the module ‘integrate_SV_CNV_calls’. Finally, the modules

‘annotate_SVs’ and ‘annotate_small_vars’ can be used to obtain a functional annotation of the variants.

See Materials and Methods for more details. In addition, note that Figure S1 includes a more detailed

representation of how ‘optimize_parameters’ works.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

Figure 2. PerSVade’s parameter optimization improves the SV calling accuracy on simulations. We ran

perSVade’s SV calling on three samples / species for six eukaryotes (see Materials and Methods) using

either ‘random’, ‘known’ or ‘homologous’ simulations. These plots show the F-value of either default

(grey) or optimized (red) parameters (for each sample and simulation type) on these simulations. The x

axis represents the type of SV (deletions (del), tandem duplications (tan), inversions (inv), insertions

(ins), translocations (tra) and the average of all SVs (all)). Note that Figure S3 shows the corresponding

precision and recall, from which the F-value is calculated.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

Figure 3. There is no universal recipe for SV calling across all species. (A) In order to assess whether

perSVade’s parameter optimization is necessary for a given combination of sample and simulation

(mentioned in Figure 2) we measured the SV calling accuracy of each optimized parameter set on the

other combinations. Each row indicates a different “training” parameter set optimized for each sample

and simulation type in all species. In addition, the first row refers to the default parameters. Each column

represents a simulation from a given sample / simulation type to be “tested”. The heatmap shows the

F-value of each parameter set on each tested simulation (hereafter referred to as ‘testing instance’).

Note that the species are ordered alike in rows and columns. In addition, note that each sample (from a

given species and simulation type) yielded one set of training parameters and two simulated genomes

tested here, which explains why there are two columns for each row. The colored boxes indicate testing

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

instances where the training and testing species are equal. The asterisks refer to instances where both

the sample and type of simulation are equal in the training and testing (equivalent to the ‘optimized’

parameters from Figure 2). Note that Figure S5 shows the corresponding precision and recall, from

which the F-value is calculated. (B) We summarized the data shown in (A) to compare how similar types

of training parameters performed on each species (in the rows) and type of simulations (in the columns).

Each point corresponds to a testing instance, matching one cell from the heatmap in (A). The ‘default’

and ‘same sample’ reflect testing instances where the training parameters were either un-optimized or

optimized specifically for each sample, respectively. The ‘different spp’ group includes instances where

the training parameters were from different species. The ‘same spp’ group shows testing instances with

both training parameters and tested simulations from a different sample of the same species. The ‘same

simulation’ reflects instances with the same training and testing sample, but different simulation types.

For clarity, the right box shows how the training parameters are grouped for a set of ‘homologous’

simulations based on one example C. glabrata sample (which corresponds to the first two columns in

(A)).

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

Figure 4. PerSVade’s parameter optimization improves the SV calling accuracy on datasets with known

real SVs. (A) To test perSVade’s performance on real SVs we measured how the parameters optimized for

several simulations in different species (see Figure 3) work on three human samples (CHM, HG002 and

NA12878) with defined sets of real SVs. Each row indicates one of these different “training” parameters

optimized for each sample and simulation type. In addition, the first row refers to the default

parameters. Each column represents a sample with defined real SVs to be “tested”. The heatmap shows

the F-value of each parameter set on each tested real sample (hereafter referred to as ‘testing instance’).

In addition , we divide the testing instances into different groups (‘default’, ‘different spp’, ‘same spp’ and

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

‘same sample’), which are relevant to understand the (B) panel. The ‘different spp’ group refers to

instances where the training and testing species were different. The ‘~’ (same spp) refers to instances

where the training and testing samples were different, but from the same species. Finally, the ‘*’ (same

sample) refers to instances where the training and testing samples were the same. (B) We summarized

the data shown in (A) to compare how similar types of training parameters performed on each testing

sample (each represented by a different color). Each row corresponds to a different accuracy measure.

Each point corresponds to a testing instance (matching one cell from the heatmap in (A) in the bottom

‘F-value’ plots). The ‘default’ and ‘same sample’ reflect testing instances where the training parameters

were either un-optimized or optimized specifically for each sample, respectively. The ‘different spp’

group includes instances where the training parameters were from a different, non-human, species. The

‘same spp’ group shows testing instances with both training parameters and tested simulations from

different samples of the same species. In addition, each column represents testing instances where the

training parameters were based on ‘random’ or ‘known’ simulations, respectively. Note that the different

groups of ‘training parameters’ are equivalent to those shown in (A).

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

1. M. Baker, Structural variation: the genome’s hidden architecture. Nat. Methods. 9, 133–137 (2012).

2. L. Feuk, A. R. Carson, S. W. Scherer, Structural variation in the human genome. Nat. Rev. Genet. 7,
85–97 (2006).

3. D. W. Garsed, O. J. Marshall, V. D. A. Corbin, A. Hsu, L. Di Stefano, J. Schröder, J. Li, Z.-P. Feng, B. W.
Kim, M. Kowarsky, B. Lansdell, R. Brookwell, O. Myklebost, L. Meza-Zepeda, A. J. Holloway, F.
Pedeutour, K. H. A. Choo, M. A. Damore, A. J. Deans, A. T. Papenfuss, D. M. Thomas, The
architecture and evolution of cancer neochromosomes. Cancer Cell. 26, 653–667 (2014).

4. P. J. Stephens, C. D. Greenman, B. Fu, F. Yang, G. R. Bignell, L. J. Mudie, E. D. Pleasance, K. W. Lau, D.
Beare, L. A. Stebbings, S. McLaren, M. L. Lin, D. J. McBride, I. Varela, S. Nik-Zainal, C. Leroy, M. Jia, A.
Menzies, A. P. Butler, J. W. Teague, M. A. Quail, J. Burton, H. Swerdlow, N. P. Carter, L. A. Morsberger,
C. Iacobuzio-Donahue, G. A. Follows, A. R. Green, A. M. Flanagan, M. R. Stratton, P. A. Futreal, P. J.
Campbell, Massive genomic rearrangement acquired in a single catastrophic event during cancer
development. Cell. 144 (2011), doi:10.1016/j.cell.2010.11.055.

5. W.-J. Wang, L.-Y. Li, J.-W. Cui, Chromosome structural variation in tumorigenesis: mechanisms of
formation and carcinogenesis. Epigenetics Chromatin. 13, 1–17 (2020).

6. P. Ibáñez, S. Lesage, S. Janin, E. Lohmann, F. Durif, A. Destée, A. M. Bonnet, C. Brefel-Courbon, S.
Heath, D. Zelenika, Y. Agid, A. Dürr, A. Brice, Alpha-synuclein gene rearrangements in dominantly
inherited parkinsonism: frequency, phenotype, and mechanisms. Arch. Neurol. 66 (2009),
doi:10.1001/archneurol.2008.555.

7. L. A. Weiss, Y. Shen, J. M. Korn, D. E. Arking, D. T. Miller, R. Fossdal, E. Saemundsen, H. Stefansson,
M. A. R. Ferreira, T. Green, O. S. Platt, D. M. Ruderfer, C. A. Walsh, D. Altshuler, A. Chakravarti, R. E.
Tanzi, K. Stefansson, S. L. Santangelo, J. F. Gusella, P. Sklar, B.-L. Wu, M. J. Daly, Autism Consortium,
Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med.
358, 667–675 (2008).

8. R. T. Todd, A. Selmecki, Expandable and reversible copy number amplification drives rapid
adaptation to antifungal drugs. Elife. 9 (2020), doi:10.7554/eLife.58349.

9. E. Ksiezopolska, M. À. Schikora-Tamarit, R. Beyer, J. C. Nunez-Rodriguez, C. Schüller, T. Gabaldón,
Narrow mutational signatures drive acquisition of multidrug resistance in the fungal pathogen
Candida glabrata. Curr. Biol. (2021), doi:10.1016/j.cub.2021.09.084.

10. P. H. Sudmant, T. Rausch, E. J. Gardner, R. E. Handsaker, A. Abyzov, J. Huddleston, Y. Zhang, K. Ye, G.
Jun, M. H.-Y. Fritz, M. K. Konkel, A. Malhotra, A. M. Stütz, X. Shi, F. P. Casale, J. Chen, F. Hormozdiari,
G. Dayama, K. Chen, M. Malig, M. J. P. Chaisson, K. Walter, S. Meiers, S. Kashin, E. Garrison, A.
Auton, H. Y. K. Lam, X. J. Mu, C. Alkan, D. Antaki, T. Bae, E. Cerveira, P. Chines, Z. Chong, L. Clarke, E.
Dal, L. Ding, S. Emery, X. Fan, M. Gujral, F. Kahveci, J. M. Kidd, Y. Kong, E.-W. Lameijer, S. McCarthy, P.
Flicek, R. A. Gibbs, G. Marth, C. E. Mason, A. Menelaou, D. M. Muzny, B. J. Nelson, A. Noor, N. F.
Parrish, M. Pendleton, A. Quitadamo, B. Raeder, E. E. Schadt, M. Romanovitch, A. Schlattl, R. Sebra,
A. A. Shabalin, A. Untergasser, J. A. Walker, M. Wang, F. Yu, C. Zhang, J. Zhang, X. Zheng-Bradley, W.
Zhou, T. Zichner, J. Sebat, M. A. Batzer, S. A. McCarroll, 1000 Genomes Project Consortium, R. E.
Mills, M. B. Gerstein, A. Bashir, O. Stegle, S. E. Devine, C. Lee, E. E. Eichler, J. O. Korbel, An integrated
map of structural variation in 2,504 human genomes. Nature. 526, 75–81 (2015).

11. M. Y. Dennis, E. E. Eichler, Human adaptation and evolution by segmental duplication. Curr. Opin.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

http://paperpile.com/b/qACe9r/e2aq
http://paperpile.com/b/qACe9r/7KPI
http://paperpile.com/b/qACe9r/7KPI
http://paperpile.com/b/qACe9r/egAk
http://paperpile.com/b/qACe9r/egAk
http://paperpile.com/b/qACe9r/egAk
http://paperpile.com/b/qACe9r/egAk
http://paperpile.com/b/qACe9r/W39k
http://paperpile.com/b/qACe9r/W39k
http://paperpile.com/b/qACe9r/W39k
http://paperpile.com/b/qACe9r/W39k
http://paperpile.com/b/qACe9r/W39k
http://paperpile.com/b/qACe9r/W39k
http://dx.doi.org/10.1016/j.cell.2010.11.055
http://paperpile.com/b/qACe9r/W39k
http://paperpile.com/b/qACe9r/Rjfr
http://paperpile.com/b/qACe9r/Rjfr
http://paperpile.com/b/qACe9r/qQ4Y
http://paperpile.com/b/qACe9r/qQ4Y
http://paperpile.com/b/qACe9r/qQ4Y
http://paperpile.com/b/qACe9r/qQ4Y
http://dx.doi.org/10.1001/archneurol.2008.555
http://paperpile.com/b/qACe9r/qQ4Y
http://paperpile.com/b/qACe9r/HanM
http://paperpile.com/b/qACe9r/HanM
http://paperpile.com/b/qACe9r/HanM
http://paperpile.com/b/qACe9r/HanM
http://paperpile.com/b/qACe9r/HanM
http://paperpile.com/b/qACe9r/CbXa
http://paperpile.com/b/qACe9r/CbXa
http://dx.doi.org/10.7554/eLife.58349
http://paperpile.com/b/qACe9r/CbXa
http://paperpile.com/b/qACe9r/4wgA
http://paperpile.com/b/qACe9r/4wgA
http://paperpile.com/b/qACe9r/4wgA
http://dx.doi.org/10.1016/j.cub.2021.09.084
http://paperpile.com/b/qACe9r/4wgA
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/FKvj
http://paperpile.com/b/qACe9r/wO7r
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

Genet. Dev. 41, 44–52 (2016).

12. P. Stankiewicz, J. R. Lupski, Structural variation in the human genome and its role in disease. Annu.
Rev. Med. 61 (2010), doi:10.1146/annurev-med-100708-204735.

13. M. H. Weissensteiner, I. Bunikis, A. Catalán, K.-J. Francoijs, U. Knief, W. Heim, V. Peona, S. D. Pophaly,
F. J. Sedlazeck, A. Suh, V. M. Warmuth, J. B. W. Wolf, Discovery and population genomics of
structural variation in a songbird genus. Nat. Commun. 11, 1–11 (2020).

14. R. R. Fuentes, D. Chebotarov, J. Duitama, S. Smith, J. F. De la Hoz, M. Mohiyuddin, R. A. Wing, K. L.
McNally, T. Tatarinova, A. Grigoriev, R. Mauleon, N. Alexandrov, Structural variants in 3000 rice
genomes. Genome Res. 29, 870–880 (2019).

15. M. Mahmoud, N. Gobet, D. I. Cruz-Dávalos, N. Mounier, C. Dessimoz, F. J. Sedlazeck, Structural
variant calling: the long and the short of it. Genome Biol. 20, 1–14 (2019).

16. C. Bartenhagen, M. Dugas, Robust and exact structural variation detection with paired-end and
soft-clipped alignments: SoftSV compared with eight algorithms. Brief. Bioinform. 17, 51–62 (2016).

17. X. Fan, T. E. Abbott, D. Larson, K. Chen, BreakDancer: Identification of Genomic Structural Variation
from Paired-End Read Mapping. Curr. Protoc. Bioinformatics. 45, 15.6.1–11 (2014).

18. B. Zeitouni, V. Boeva, I. Janoueix-Lerosey, S. Loeillet, P. Legoix-né, A. Nicolas, O. Delattre, E. Barillot,
SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair
sequencing data. Bioinformatics. 26, 1895–1896 (2010).

19. R. M. Layer, C. Chiang, A. R. Quinlan, I. M. Hall, LUMPY: a probabilistic framework for structural
variant discovery. Genome Biol. 15, R84 (2014).

20. X. Chen, O. Schulz-Trieglaff, R. Shaw, B. Barnes, F. Schlesinger, M. Källberg, A. J. Cox, S. Kruglyak, C. T.
Saunders, Manta: rapid detection of structural variants and indels for germline and cancer
sequencing applications. Bioinformatics. 32, 1220–1222 (2016).

21. D. L. Cameron, J. Schröder, J. S. Penington, H. Do, GRIDSS: sensitive and specific genomic
rearrangement detection using positional de Bruijn graph assembly. Genome Research (2017)
(available at https://genome.cshlp.org/content/27/12/2050.short).

22. J. Valls-Margarit, I. Galván-Femenía, D. Matías-Sánchez, N. Blay, M. Puiggròs, A. Carreras, C. Salvoro,
B. Cortés, R. Amela, X. Farre, J. Lerga-Jaso, M. Puig, J. F. Sánchez-Herrero, V. Moreno, M. Perucho, L.
Sumoy, L. Armengol, O. Delaneau, M. Cáceres, R. de Cid, D. Torrents, GCAT|Panel, a comprehensive
structural variant haplotype map of the Iberian population from high-coverage whole-genome
sequencing. bioRxiv (2021), p. 2021.07.20.453041.

23. S. Kosugi, Y. Momozawa, X. Liu, C. Terao, M. Kubo, Y. Kamatani, Comprehensive evaluation of
structural variation detection algorithms for whole genome sequencing. Genome Biol. 20, 117
(2019).

24. D. L. Cameron, L. Di Stefano, A. T. Papenfuss, Comprehensive evaluation and characterisation of
short read general-purpose structural variant calling software. Nat. Commun. 10, 1–11 (2019).

25. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data.
Bioinformatics. 30, 2114–2120 (2014).

26. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, 1000

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

http://paperpile.com/b/qACe9r/wO7r
http://paperpile.com/b/qACe9r/7ok7
http://paperpile.com/b/qACe9r/7ok7
http://dx.doi.org/10.1146/annurev-med-100708-204735
http://paperpile.com/b/qACe9r/7ok7
http://paperpile.com/b/qACe9r/OgDi
http://paperpile.com/b/qACe9r/OgDi
http://paperpile.com/b/qACe9r/OgDi
http://paperpile.com/b/qACe9r/Zha6
http://paperpile.com/b/qACe9r/Zha6
http://paperpile.com/b/qACe9r/Zha6
http://paperpile.com/b/qACe9r/dzZy
http://paperpile.com/b/qACe9r/dzZy
http://paperpile.com/b/qACe9r/mruL
http://paperpile.com/b/qACe9r/mruL
http://paperpile.com/b/qACe9r/Zwyz
http://paperpile.com/b/qACe9r/Zwyz
http://paperpile.com/b/qACe9r/YRDi
http://paperpile.com/b/qACe9r/YRDi
http://paperpile.com/b/qACe9r/YRDi
http://paperpile.com/b/qACe9r/YF5Q
http://paperpile.com/b/qACe9r/YF5Q
http://paperpile.com/b/qACe9r/OACq
http://paperpile.com/b/qACe9r/OACq
http://paperpile.com/b/qACe9r/OACq
http://paperpile.com/b/qACe9r/MNAm
http://paperpile.com/b/qACe9r/MNAm
http://paperpile.com/b/qACe9r/MNAm
https://genome.cshlp.org/content/27/12/2050.short
http://paperpile.com/b/qACe9r/MNAm
http://paperpile.com/b/qACe9r/qVYp
http://paperpile.com/b/qACe9r/qVYp
http://paperpile.com/b/qACe9r/qVYp
http://paperpile.com/b/qACe9r/qVYp
http://paperpile.com/b/qACe9r/qVYp
http://paperpile.com/b/qACe9r/5XxH
http://paperpile.com/b/qACe9r/5XxH
http://paperpile.com/b/qACe9r/5XxH
http://paperpile.com/b/qACe9r/8Ce2
http://paperpile.com/b/qACe9r/8Ce2
http://paperpile.com/b/qACe9r/kLDS
http://paperpile.com/b/qACe9r/kLDS
http://paperpile.com/b/qACe9r/cPQS
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

Genome Project Data Processing Subgroup, The Sequence Alignment/Map format and SAMtools.
Bioinformatics. 25, 2078 (2009).

27. D. L. Cameron, J. Baber, C. Shale, J. E. Valle-Inclan, N. Besselink, A. van Hoeck, R. Janssen, E. Cuppen,
P. Priestley, A. T. Papenfuss, GRIDSS2: comprehensive characterisation of somatic structural
variation using single breakend variants and structural variant phasing. Genome Biol. 22, 1–25
(2021).

28. J. Schröder, A. Wirawan, B. Schmidt, A. T. Papenfuss, CLOVE: classification of genomic fusions into
structural variation events. BMC Bioinformatics (2017) (available at
https://link.springer.com/article/10.1186/s12859-017-1760-3).

29. B. S. Pedersen, A. R. Quinlan, Mosdepth: quick coverage calculation for genomes and exomes.
Bioinformatics. 34, 867–868 (2018).

30. C. Bartenhagen, M. Dugas, RSVSim: an R/Bioconductor package for the simulation of structural
variations. Bioinformatics. 29, 1679–1681 (2013).

31. P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg, T. Hamelryck, F.
Kauff, B. Wilczynski, M. J. L. de Hoon, Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics. 25, 1422–1423 (2009).

32. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P.
Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D.
Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat. Methods. 17, 261–272 (2020).

33. Website, (available at https://arxiv.org/abs/1309.0238).

34. R. E. Mills, K. Walter, C. Stewart, R. E. Handsaker, K. Chen, C. Alkan, A. Abyzov, S. C. Yoon, K. Ye, R. K.
Cheetham, A. Chinwalla, D. F. Conrad, Y. Fu, F. Grubert, I. Hajirasouliha, F. Hormozdiari, L. M.
Iakoucheva, Z. Iqbal, S. Kang, J. M. Kidd, M. K. Konkel, J. Korn, E. Khurana, D. Kural, H. Y. K. Lam, J.
Leng, R. Li, Y. Li, C.-Y. Lin, R. Luo, X. J. Mu, J. Nemesh, H. E. Peckham, T. Rausch, A. Scally, X. Shi, M. P.
Stromberg, A. M. Stütz, A. E. Urban, J. A. Walker, J. Wu, Y. Zhang, Z. D. Zhang, M. A. Batzer, L. Ding,
G. T. Marth, G. McVean, J. Sebat, M. Snyder, J. Wang, K. Ye, E. E. Eichler, M. B. Gerstein, M. E. Hurles,
C. Lee, S. A. McCarroll, J. O. Korbel, 1000 Genomes Project, Mapping copy number variation by
population-scale genome sequencing. Nature. 470, 59–65 (2011).

35. A. W. Pang, O. Migita, J. R. Macdonald, L. Feuk, S. W. Scherer, Mechanisms of formation of structural
variation in a fully sequenced human genome. Hum. Mutat. 34 (2013), doi:10.1002/humu.22240.

36. S. L. S. Todd J. Treangen, Repetitive DNA and next-generation sequencing: computational challenges
and solutions. Nat. Rev. Genet. 13, 36.

37. C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T. L. Madden, BLAST+:
architecture and applications. BMC Bioinformatics. 10, 1–9 (2009).

38. S. Newman, K. E. Hermetz, B. Weckselblatt, M. Katharine Rudd, Next-Generation Sequencing of
Duplication CNVs Reveals that Most Are Tandem and Some Create Fusion Genes at Breakpoints.
Am. J. Hum. Genet. 96, 208 (2015).

39. Y. Benjamini, T. P. Speed, Summarizing and correcting the GC content bias in high-throughput

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

http://paperpile.com/b/qACe9r/cPQS
http://paperpile.com/b/qACe9r/cPQS
http://paperpile.com/b/qACe9r/axEw
http://paperpile.com/b/qACe9r/axEw
http://paperpile.com/b/qACe9r/axEw
http://paperpile.com/b/qACe9r/axEw
http://paperpile.com/b/qACe9r/rtD7
http://paperpile.com/b/qACe9r/rtD7
https://link.springer.com/article/10.1186/s12859-017-1760-3
http://paperpile.com/b/qACe9r/rtD7
http://paperpile.com/b/qACe9r/EJkx
http://paperpile.com/b/qACe9r/EJkx
http://paperpile.com/b/qACe9r/1vvl
http://paperpile.com/b/qACe9r/1vvl
http://paperpile.com/b/qACe9r/8zr5
http://paperpile.com/b/qACe9r/8zr5
http://paperpile.com/b/qACe9r/8zr5
http://paperpile.com/b/qACe9r/bhlU
http://paperpile.com/b/qACe9r/bhlU
http://paperpile.com/b/qACe9r/bhlU
http://paperpile.com/b/qACe9r/bhlU
http://paperpile.com/b/qACe9r/bhlU
http://paperpile.com/b/qACe9r/bhlU
http://paperpile.com/b/qACe9r/UN4T
https://arxiv.org/abs/1309.0238
http://paperpile.com/b/qACe9r/UN4T
http://paperpile.com/b/qACe9r/K5pD
http://paperpile.com/b/qACe9r/K5pD
http://paperpile.com/b/qACe9r/K5pD
http://paperpile.com/b/qACe9r/K5pD
http://paperpile.com/b/qACe9r/K5pD
http://paperpile.com/b/qACe9r/K5pD
http://paperpile.com/b/qACe9r/K5pD
http://paperpile.com/b/qACe9r/K5pD
http://paperpile.com/b/qACe9r/nLQC
http://paperpile.com/b/qACe9r/nLQC
http://dx.doi.org/10.1002/humu.22240
http://paperpile.com/b/qACe9r/nLQC
http://paperpile.com/b/qACe9r/2FzY
http://paperpile.com/b/qACe9r/2FzY
http://paperpile.com/b/qACe9r/L1NK
http://paperpile.com/b/qACe9r/L1NK
http://paperpile.com/b/qACe9r/XDaX
http://paperpile.com/b/qACe9r/XDaX
http://paperpile.com/b/qACe9r/XDaX
http://paperpile.com/b/qACe9r/q4cq
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

sequencing. Nucleic Acids Res. 40, e72–e72 (2012).

40. D. A. Abbey, J. Funt, M. N. Lurie-Weinberger, D. A. Thompson, A. Regev, C. L. Myers, J. Berman,
YMAP: a pipeline for visualization of copy number variation and loss of heterozygosity in eukaryotic
pathogens. Genome Med. 6, 1–16 (2014).

41. I. M. H. Aaron R. Quinlan, BEDTools: a flexible suite of utilities for comparing genomic features.
Bioinformatics. 26, 841 (2010).

42. C. Pockrandt, M. Alzamel, C. S. Iliopoulos, K. Reinert, GenMap: ultra-fast computation of genome
mappability. Bioinformatics. 36, 3687–3692 (2020).

43. Cython: The Best of Both Worlds, (available at https://ieeexplore.ieee.org/document/5582062).

44. Y.-C. Wei, G.-H. Huang, CONY: A Bayesian procedure for detecting copy number variations from
sequencing read depths. Sci. Rep. 10, 1–14 (2020).

45. B. Bakker, A. Taudt, M. E. Belderbos, D. Porubsky, D. C. J. Spierings, T. V. de Jong, N. Halsema, H. G.
Kazemier, K. Hoekstra-Wakker, A. Bradley, E. S. J. M. de Bont, A. van den Berg, V. Guryev, P. M.
Lansdorp, M. Colomé-Tatché, F. Foijer, Single-cell sequencing reveals karyotype heterogeneity in
murine and human malignancies. Genome Biol. 17, 1–15 (2016).

46. S. P. Shah, X. Xuan, R. J. DeLeeuw, M. Khojasteh, W. L. Lam, R. Ng, K. P. Murphy, Integrating copy
number polymorphisms into array CGH analysis using a robust HMM. Bioinformatics. 22 (2006),
doi:10.1093/bioinformatics/btl238.

47. S. Neph, M. S. Kuehn, A. P. Reynolds, E. Haugen, R. E. Thurman, A. K. Johnson, E. Rynes, M. T.
Maurano, J. Vierstra, S. Thomas, R. Sandstrom, R. Humbert, J. A. Stamatoyannopoulos, BEDOPS:
high-performance genomic feature operations. Bioinformatics. 28, 1919–1920 (2012).

48. W. McLaren, L. Gil, S. E. Hunt, H. S. Riat, G. R. S. Ritchie, A. Thormann, P. Flicek, F. Cunningham, The
Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

49. E. Garrison, G. Marth, Haplotype-based variant detection from short-read sequencing (2012),
(available at http://arxiv.org/abs/1207.3907).

50. R. Poplin, V. Ruano-Rubio, M. A. DePristo, T. J. Fennell, M. O. Carneiro, G. A. Van der Auwera, D. E.
Kling, L. D. Gauthier, A. Levy-Moonshine, D. Roazen, K. Shakir, J. Thibault, S. Chandran, C. Whelan,
M. Lek, S. Gabriel, M. J. Daly, B. Neale, D. G. MacArthur, E. Banks, Scaling accurate genetic variant
discovery to tens of thousands of samples. bioRxiv (2018), p. 201178.

51. J. M. Flynn, R. Hubley, C. Goubert, J. Rosen, A. G. Clark, C. Feschotte, A. F. Smit, RepeatModeler2 for
automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. U. S. A. 117,
9451–9457 (2020).

52. N. Chen, Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc.
Bioinformatics. Chapter 4 (2004), doi:10.1002/0471250953.bi0410s05.

53. J. Huerta-Cepas, F. Serra, P. Bork, ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic
Data. Mol. Biol. Evol. 33, 1635 (2016).

54. R. Leinonen, H. Sugawara, M. Shumway, The Sequence Read Archive. Nucleic Acids Res. 39, D19
(2011).

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

http://paperpile.com/b/qACe9r/q4cq
http://paperpile.com/b/qACe9r/vCYQ
http://paperpile.com/b/qACe9r/vCYQ
http://paperpile.com/b/qACe9r/vCYQ
http://paperpile.com/b/qACe9r/zRrU
http://paperpile.com/b/qACe9r/zRrU
http://paperpile.com/b/qACe9r/OC4D
http://paperpile.com/b/qACe9r/OC4D
http://paperpile.com/b/qACe9r/gZRR
https://ieeexplore.ieee.org/document/5582062
http://paperpile.com/b/qACe9r/gZRR
http://paperpile.com/b/qACe9r/WArI
http://paperpile.com/b/qACe9r/WArI
http://paperpile.com/b/qACe9r/ycaU
http://paperpile.com/b/qACe9r/ycaU
http://paperpile.com/b/qACe9r/ycaU
http://paperpile.com/b/qACe9r/ycaU
http://paperpile.com/b/qACe9r/6gEI
http://paperpile.com/b/qACe9r/6gEI
http://paperpile.com/b/qACe9r/6gEI
http://dx.doi.org/10.1093/bioinformatics/btl238
http://paperpile.com/b/qACe9r/6gEI
http://paperpile.com/b/qACe9r/deX7G
http://paperpile.com/b/qACe9r/deX7G
http://paperpile.com/b/qACe9r/deX7G
http://paperpile.com/b/qACe9r/cROC
http://paperpile.com/b/qACe9r/cROC
http://paperpile.com/b/qACe9r/j1Sk
http://paperpile.com/b/qACe9r/j1Sk
http://arxiv.org/abs/1207.3907
http://paperpile.com/b/qACe9r/j1Sk
http://paperpile.com/b/qACe9r/xe8p
http://paperpile.com/b/qACe9r/xe8p
http://paperpile.com/b/qACe9r/xe8p
http://paperpile.com/b/qACe9r/xe8p
http://paperpile.com/b/qACe9r/DiSY
http://paperpile.com/b/qACe9r/DiSY
http://paperpile.com/b/qACe9r/DiSY
http://paperpile.com/b/qACe9r/i70b
http://paperpile.com/b/qACe9r/i70b
http://dx.doi.org/10.1002/0471250953.bi0410s05
http://paperpile.com/b/qACe9r/i70b
http://paperpile.com/b/qACe9r/KXkh
http://paperpile.com/b/qACe9r/KXkh
http://paperpile.com/b/qACe9r/i12l
http://paperpile.com/b/qACe9r/i12l
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

55. C. L. Schoch, S. Ciufo, M. Domrachev, C. L. Hotton, S. Kannan, R. Khovanskaya, D. Leipe, R. Mcveigh,
K. O’Neill, B. Robbertse, S. Sharma, V. Soussov, J. P. Sullivan, L. Sun, S. Turner, I. Karsch-Mizrachi,
NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database . 2020 (2020),
doi:10.1093/database/baaa062.

56. M. A. Eberle, E. Fritzilas, P. Krusche, M. Källberg, B. L. Moore, M. A. Bekritsky, Z. Iqbal, H. Y. Chuang,
S. J. Humphray, A. L. Halpern, S. Kruglyak, E. H. Margulies, G. McVean, D. R. Bentley, A reference
data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a
three-generation 17-member pedigree. Genome Res. 27 (2017), doi:10.1101/gr.210500.116.

57. H. Parikh, M. Mohiyuddin, H. Y. K. Lam, H. Iyer, D. Chen, M. Pratt, G. Bartha, N. Spies, W. Losert, J.
M. Zook, M. Salit, svclassify: a method to establish benchmark structural variant calls. BMC
Genomics. 17, 1–16 (2016).

58. J. Huddleston, M. J. P. Chaisson, K. M. Steinberg, W. Warren, K. Hoekzema, D. Gordon, T. A.
Graves-Lindsay, K. M. Munson, Z. N. Kronenberg, L. Vives, P. Peluso, M. Boitano, C. S. Chin, J.
Korlach, R. K. Wilson, E. E. Eichler, Discovery and genotyping of structural variation from long-read
haploid genome sequence data. Genome Res. 27 (2017), doi:10.1101/gr.214007.116.

59. M. S. Skrzypek, J. Binkley, G. Binkley, S. R. Miyasato, M. Simison, G. Sherlock, The Candida Genome
Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high
throughput sequencing data. Nucleic Acids Res. 45, D592 (2017).

60. E. W. Sayers, M. Cavanaugh, K. Clark, J. Ostell, K. D. Pruitt, I. Karsch-Mizrachi, GenBank. Nucleic Acids
Res. 48, D84–D86 (2019).

61. Initial sequencing and analysis of the human genome. Nature. 409, 860–921 (2001).

62. T. Rausch, T. Zichner, A. Schlattl, A. M. Stütz, V. Benes, J. O. Korbel, DELLY: structural variant
discovery by integrated paired-end and split-read analysis. Bioinformatics. 28 (2012),
doi:10.1093/bioinformatics/bts378.

63. Y. Liu, Y. Huang, G. Wang, Y. Wang, A deep learning approach for filtering structural variants in short
read sequencing data. Brief. Bioinform. 22 (2020), doi:10.1093/bib/bbaa370.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.11.23.469703doi: bioRxiv preprint

http://paperpile.com/b/qACe9r/CFrj
http://paperpile.com/b/qACe9r/CFrj
http://paperpile.com/b/qACe9r/CFrj
http://paperpile.com/b/qACe9r/CFrj
http://dx.doi.org/10.1093/database/baaa062
http://paperpile.com/b/qACe9r/CFrj
http://paperpile.com/b/qACe9r/srN4
http://paperpile.com/b/qACe9r/srN4
http://paperpile.com/b/qACe9r/srN4
http://paperpile.com/b/qACe9r/srN4
http://dx.doi.org/10.1101/gr.210500.116
http://paperpile.com/b/qACe9r/srN4
http://paperpile.com/b/qACe9r/bobJ
http://paperpile.com/b/qACe9r/bobJ
http://paperpile.com/b/qACe9r/bobJ
http://paperpile.com/b/qACe9r/tvr2
http://paperpile.com/b/qACe9r/tvr2
http://paperpile.com/b/qACe9r/tvr2
http://paperpile.com/b/qACe9r/tvr2
http://dx.doi.org/10.1101/gr.214007.116
http://paperpile.com/b/qACe9r/tvr2
http://paperpile.com/b/qACe9r/DALp
http://paperpile.com/b/qACe9r/DALp
http://paperpile.com/b/qACe9r/DALp
http://paperpile.com/b/qACe9r/Y17b
http://paperpile.com/b/qACe9r/Y17b
http://paperpile.com/b/qACe9r/4xJm
http://paperpile.com/b/qACe9r/rYL2
http://paperpile.com/b/qACe9r/rYL2
http://paperpile.com/b/qACe9r/rYL2
http://dx.doi.org/10.1093/bioinformatics/bts378
http://paperpile.com/b/qACe9r/rYL2
http://paperpile.com/b/qACe9r/it94
http://paperpile.com/b/qACe9r/it94
http://dx.doi.org/10.1093/bib/bbaa370
http://paperpile.com/b/qACe9r/it94
https://doi.org/10.1101/2021.11.23.469703
http://creativecommons.org/licenses/by-nc/4.0/

