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Abstract

Understanding the biological basis of social and collective behaviors in animals is
a key goal of the life sciences, and may yield important insights for engineering
intelligent multi-agent systems. A critical step in interrogating the mechanisms
underlying social behaviors is a precise readout of the 3D pose of interacting
animals. While approaches for multi-animal pose estimation are beginning to
emerge, they remain challenging to compare due to the lack of standardized training
and benchmark datasets. Here we introduce the PAIR-R24M (Paired Acquisition
of Interacting oRganisms - Rat) dataset for multi-animal 3D pose estimation, which
contains 24.3 million frames of RGB video and 3D ground-truth motion capture of
dyadic interactions in laboratory rats. PAIR-R24M contains data from 18 distinct
pairs of rats and 24 different viewpoints. We annotated the data with 11 behavioral
labels and 3 interaction categories to facilitate benchmarking in rare but challenging
behaviors. To establish a baseline for markerless multi-animal 3D pose estimation,
we developed a multi-animal extension of DANNCE, a recently published network
for 3D pose estimation in freely behaving laboratory animals. As the first large
multi-animal 3D pose estimation dataset, PAIR-R24M will help advance 3D animal
tracking approaches and aid in elucidating the neural basis of social behaviors.
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1 Introduction

Social behaviors are core components of an animal’s behavioral repertoire. Understanding their
neural, biological, and evolutionary basis has long been a focus of the life sciences [1, 2] and may
inform treatments for psychiatric diseases, such as autism spectrum disorder and schizophrenia,
where social interactions are impaired [3, 4].

Precisely phenotyping social behaviors and identifying their neural basis requires reliable and
quantitative measures of social behavior in animal models [5]. Currently, studies largely rely
on scoring performance in highly structured assays, for instance the tube test, 3 chamber test,
or resident-intruder test [6]. While these provide interpretable readouts, they are ethologically
limited and compress complex behavioral processes into scalar variables of questionable biological
significance [7]. In contrast, assays in unrestrained animals that use computer vision and behavioral
classification offer the ability to profile a richer range of social behaviors between animals, but are
more challenging to quantify and interpret [8–12].

To improve behavioral quantification, convolutional neural networks for automated detection of an
animal’s 2D pose [13–15], and more recently 3D pose [16–18], have been developed. However,
in comparison to single animal tracking, methods for multi-animal postural tracking, especially in
3D, are only beginning to emerge. Existing 2D pose recognition techniques employ a mixture of
‘top-down’ multi-animal tracking, in which pose is reconstructed within identified bounding boxes of
multiple animals (e.g [8, 14]) and ‘bottom up’ architectures that first detect all body landmarks and
then assign them to animals [19–21]. Both top-down and bottom-up multi-animal tracking approaches
are promising, but need substantial amounts of training data to accurately track animal pose in the
face of challenging occlusions generated by socially interacting animals.

Development of new data-efficient and occlusion-robust multi-animal tracking approaches requires
standardized pose estimation datasets and benchmarks, which do not exist in 3D. To address this,
we introduce PAIR-R24M, a novel dataset relating multi-view color video and ground-truth 3D
kinematics in behaving rats. We collected over 24 million frames of 30 Hz color video across 24
camera views in 18 different pairs of rats interacting in a behavioral arena. In each frame, a motion
capture system provides the 3D positions of 12 body landmarks on each individually identified animal,
describing the movement of its head, trunk, shoulders, and hips. Each frame is associated with a
behavioral label, denoting which of 11 behavioral categories and 3 inter-animal interaction categories
it matches best. These labels can be used to balance datasets during training, rigorously assess pose
estimation performance over a wide variety of poses, provide labels for action recognition approaches,
and perform detailed analyses of behavioral patterns.

2 Related Work

2.1 Datasets for single and multi-animal 3D pose

There exists a small collection of publicly available 3D animal pose benchmark datasets. The Acino
dataset contains 7,588 frames of hand-labeled 3D poses (20 keypoints) from cheetahs, capturing
mostly running behaviors [22]. The Open Monkey Studio dataset contains 195,228 hand-labeled
frames (13 keypoints) of macaques in a large, enriched enclosure across 62 camera views [16]. Two
other approaches use motion capture systems to provide expanded 3D ground-truth datasets. RGBD-
Dog includes 3D keypoint data (63-82 keypoints from motion capture) and depth maps along with
8-10 RGB video views in canines, although is limited to 5 behaviors [23]. Rat 7M contains nearly 7
million frames and 3D keypoints across a wide range of rat poses, providing a powerful substrate for
training and testing algorithms in rodents, the most common model organisms in biomedicine [18].
While valuable, each of the datasets is limited to individual animals.

Thus far, multi-animal datasets exist only for 2D. Graving et al. released videos and 2D annotations
for large groups of locusts and zebras filmed from a single top-down view [14], providing valuable
datasets for benchmarking 2D collective behavior tracking algorithms. Pereira et al. published a set
of labeled fruit fly courtship data [20]. Lauer et al. released annotated multi-animal datasets from
mice, mouse pups, marmoset, and zebrafish [21]. By far the most extensive multi-animal 2D dataset
is CalMS21, which was released as part of the Multi-Agent Behavior Challenge 2021 and consists of
6 million frames of unlabeled and over 1 million frames of tracked poses and behavioral annotations
of pairs of interacting mice [24].
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In the more mature field of 3D human pose estimation, many multi-human 3D datasets are available,
which vary broadly in the number of behaviors tracked, number of cameras used, means of marker
tracking, and environmental context. The CMU Panoptic dataset provides 480 camera views during
a wide range of social behaviors in a laboratory environment, with 3D poses obtained via pose
estimation [25]. The Campus, Shelf (manually annotated) and MuPoTS-3D (derived from pose
estimation) datasets offer 3D poses and multi-view video in real-world scenes [26, 27], while 3DPW
offers monocular footage with 3D pose labels derived from inertial measurement units [28]. The
MuCo-3DHP dataset [27] is a large, multi-human 3D dataset generated by splicing together individual
subjects, and their ground-truth markerless annotations, from the expansive MPI-INF-3DHP dataset
[29]. Other benchmark datasets exist in specific domains, such as stores [30] and operating rooms [31].
Others use synthetically rendered humans [32–36] or body surfaces [37]. Together these datasets have
fueled a productive era of 3D pose tracking, but their domain is drastically different from laboratory
animals. Developing the type of 3D animal tracking algorithms required to accelerate progress in
neuroscience, biomedicine, and ecology will require in-domain datasets that permit relevant training
and benchmarking over a diversity of body plans and behaviors.

2.2 Algorithms and benchmarks for animal 3D Pose Estimation

To our knowledge there is only one example of multi-animal 3D pose estimation in the literature
[16], likely due to the lack of large training and benchmark datasets in this domain. There are
several existing algorithms for 3D pose in individual animals. DANNCE [18] and Freipose [17]
use volumetric representations of multi-view inputs to combine image features across cameras and
enable 3D supervision, similar to the current state-of-the-art for multi-view human pose [38]. 3D
DeepLabCut [22, 39] uses triangulation of 2D detections across multiple views, which GIMBAL [40]
and Anipose [41] further refine using spatiotemporal constraints. Open Monkey Studio uses a
triangulation-based method but with a larger set of cameras, and in addition to using spatiotemporal
constraints, makes use of reprojections into unlabeled views to increased their labeled training
pool [16]. DeepFly3D uses triangulation, bundle adjustment, and pictorial structures to provide robust
3D pose estimation in tethered flies [42]. For monocular 3D pose estimation, "lifting" approaches
using a fully connected network to infer 3D pose from 2D estimates [43,44] have been extended from
work in humans [45] to tethered flies and lab mammals. In addition to lifting, Bolaños et al. [43] use
synthetic data to improve 3D pose detection in restrained mice. As of yet, none of these methods have
been extended to multi-animal 3D pose estimation. In this study we extend the DANNCE volumetric
approach because it has demonstrated superior performance on rodents compared to multi-view
triangulation, and also because multi-view triangulation would be further complicated by errors in
multi-animal identity tracking.

2.3 Multi-animal action recognition

We follow the lead of human 3D pose datasets and group our data into standardized behavioral
categories to aid the training and benchmarking of pose-estimation and action-recognition algorithms.
However, unlike traditional 3D pose datasets acquired using human actors given explicit instructions,
here we needed to infer behavioral categories from movement by extending 3D action recognition
methods to the multi-animal setting. Multi-animal action recognition has remained challenging due to
a lack of ground-truth and, relatedly, a lack of intuition about the definitions and structure of animal
behavior, especially in social contexts. Existing methods for multi-animal action recognition employ
supervised learning using human-labeled behavior categories such as mounting or attacking, classified
using a variety of features describing behavior: pixels [46], the set of 2D body landmarks visible
from a single top-down views [8, 24], hand-designed features of 2D body landmarks [47] (sometimes
supplemented with depth imaging information [48]), shapes fit to 2D or 3D body contours [9, 49], or
quantities derived from movement trajectories, such as velocity and heading direction [50]. Other
methods use unsupervised learning techniques, again on a range of behavioral features: pixels [51],
2D pose features [12] or both [30]. While no approach has performed unsupervised analysis of
multiple animals using 3D pose, Marshall et al. [52] designed an approach for identifying behaviors
in single animals based on 3D pose features. Here we extend this approach to multiple animals, and
create inter-individual features to define new interaction behavioral categories. This straightforward,
yet effective, unsupervised action recognition approach allows us to segment and balance the PAIR-
R24M dataset and introduce a foundational algorithm applicable to new multi-subject 3D pose data
across species.
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3 Dataset and Benchmark

3.1 The PAIR-R24M dataset

To collect the PAIR-R24M dataset we used CAPTURE, a technique that uses body piercing to
chronically attach retro-reflective markers to small animals, allowing their pose to be reconstructed
using motion capture [52]. We attached 12 markers to the dorsal surface of each animal at identical
locations to label their head, trunk, hips, and shoulders. We additionally added 1-2 markers to the
head and trunk of animals to differentiate individuals. If interacting animals bore identical marker
sets, we masked a marker on the head using whiteout to disambiguate them.

We used a 12 camera motion capture array to record the position of the markers at 300 Hz with
sub-mm precision (Fig. 1A). We used commercial Cortex (Motion Analysis) software, which utilizes
pairwise distances between markers and a parametric body model, to assign marker identities to each
animal. We concurrently recorded animals at 30 Hz using 6 RGB video cameras. We calibrated the
video cameras into the same world coordinate system as the motion capture array to automatically
label video frames by projecting the 3D marker positions.

We then performed simultaneous CAPTURE and video recordings for 18 pairs of animals (n=7
subjects bearing markers, n=2 markerless subjects), for 1 hour each (108,000 timepoints). To increase
viewpoint diversity, we moved each of the video cameras to 4 different locations across recordings
(Fig. 1B). On a subset of camera views and frames in which animals were rapidly moving, we
noted discrepancies between motion capture and video due to slight errors in synchronization and
calibration (Appendix 3). While these errors could in the long term pose limits in the precision of the
dataset as a benchmark, they occur on a limited subset of frames, and similar discrepancies exist in
commonly used human 3D pose datasets [38].

We recorded from a subset of animal pairs in each recording condition, yielding a total of 26 hours
of data of paired animals bearing markers. We also recorded 14 hours of data from animals bearing
markers when paired with animals not bearing markers, to add additional markerless video frames
to the dataset. These single-markerset recordings also allowed us to assess the fidelity of animal
identity assignment in the dataset. Head segment lengths, which were constant within subjects but
differed slightly between subjects due to small changes in head marker placement during headcap
construction, were stable across individual animals when compared over single- and double-markerset
paired recordings (Appendix 4). Additionally, we recorded from each subject alone for 30 minutes
to facilitate the construction of single animal tracking models, and recorded from individual and
paired animals not bearing markers. Single animal and paired markerless video recordings are not
included in the present dataset but may be added at a later data to facilitate transfer and benchmarking
of semi-supervised tracking approaches.

Occasionally, self-, animal-animal, or environmental occlusions prevented 3D marker tracking by the
motion capture system. As most of these periods were temporally succinct, we imputed missing data
using linear interpolation within an egocentrically aligned reference frame anchored on the animal’s
center of mass and rotated to place the front of the animal’s spine along the y-axis. The center of
mass and orientation of the animals were estimated from the remaining markers if spine markers
were absent. We also sometimes observed other errors where the motion capture system incorrectly
assigned marker position. We addressed incorrect assignment by flagging potential errors using a
4σ threshold on z-scores of inter-marker distance, although we note these frames still appeared to
possess accurate behavioral categorization. Our official 24M dataset size is calculated after excluding
any frame with at least one flagged marker. In the released dataset, we provide all recorded frames,
together with z-scores for each marker, permitting researchers to use partially tracked frames if
desired.

3.2 Action recognition

The performance of human and animal pose tracking algorithms can vary widely depending on the
behaviors animals perform — for instance highly-occlusive rodent grooming behaviors are often
challenging to reconstruct — making it important to assess the performance of tracking algorithms
in an action-specific manner. There remains no standard taxonomy of rodent behaviors [53], and
there is often disagreement among human observers about what defines a behavior and when they
begin and end (e.g [24, 54]). We therefore used an unsupervised approach to identify behaviors by
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Figure 1: (A) Schematic of the recording arena with two interacting rats surrounded by motion
capture and video cameras. Inset: location of the recording markers used on the animal’s body. White
markers indicate markers that were tracked in a subset of animals to distinguish between animal
pairs, but are not used for further analysis. (B) Location of the video camera positions relative to
the recording arena across all experiments. Each camera was moved to 4 different locations during
acquisition of the dataset, but there were additional minor shifts in position across recordings (42
total positions across all cameras). (C) Analysis pipeline schematic for applying behavioral labels
given 12-point skeletons obtained from motion capture recordings. (D) Ethograms for individual
and interaction behavioral categories for a sample 1-hour movie. Expanded region corresponds to a
two-minute behavioral bout. Example Movies.
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Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 9 Subj. 10 All

Pairs 6 6 6 6 6 2 2 18
CL50 156 110 90 134 240 178 128 138
CL95 2642 1200 1300 1281 2433 1676 1283 2593
IB1 (Close) 1.42M 1.19M 1.32M 1.23M 872k 307k 307k 3.32M
IB2 (Explore) 797k 763k 823k 752k 448k 164k 164k 1.96M
IB3 (Chase) 29.6k 32.4k 33.4k 42.1k 24.2k 21.8k 21.8k 103k
B1 (Idle) 2.69M 1.95M 1.84M 1.80M 2.52M 377k 1.01M 12.2M
B2 (SmallMovement) 897k 707k 484k 488k 394k 224k 105k 3.30M
B3 (HeadTilt) 399k 260k 268k 223k 428k 166k 183k 1.93M
B4 (Groom) 458k 606k 319k 302k 290k 210k 120k 2.31M
B5 (Sniff) 1.32M 1.71M 1.01M 1.25M 1.50M 421k 372k 7.59M
B6 (Investigate) 535k 438k 246k 319k 155k 169k 60.4k 1.92M
B7 (RearUp) 896k 736k 787k 638k 253k 236k 119k 3.66M
B8 (RearDown) 223k 215k 200k 228k 126k 153k 90.6k 1.24M
B9 (CrouchExplore) 230k 67.5k 206k 122k 34.6k 65.5k 28.4k 755k
B10 (Amble) 101k 101k 90.5k 109k 111k 61.8k 54.4k 628k
B11 (Locomotion) 235k 214k 202k 222k 180k 288k 138k 1.48M
Total Frames 7.98M 7.00M 5.65M 5.71M 5.99M 2.37M 2.28M 24.3M

Table 1: Recording summary statistics for all animal subjects. Pairs is the total number of unique
animal pairs recorded for each subject. (CL50) 50th percentile of contiguous clip length (in frames)
after excluding frames with at least one poorly tracked marker in both animals; (CL95) 95th percentile
of contiguous clip length (in frames); (IBx) frames for interaction behaviors; (Bx) frames for
individual behaviors. The "All" column tallies over unique items (e.g. Subj. 2 + Subj. 1 IB only
counted once).

first clustering pose dynamics in a reduced dimensional behavioral feature space, and then manually
inspecting samples from each cluster to assign cluster names post hoc, following previously published
approaches [52, 55]. To cluster the animals’ behavior, we first performed principal component
analysis on the all-to-all marker distances across all frames. We applied a Morlet wavelet transform
to the top 10 principal components at 25 dyadically spaced frequencies from 0.5-20 Hz. These
features, along with the z-heights and local smoothed velocities of each marker, composed a feature
vector. To balance the clustering, we applied tSNE separately to each recording and sampled 1,000
frames distributed evenly across the behavioral embedding of each reduced dataset [12]. We then
concatenated the sampled frames from each dataset and embedded them with tSNE, resulting in a
comprehensive, balanced embedding space of all animal behavior in the dataset. We then re-embedded
wavelet values from each movie using convex optimization, as described in [55], transformed the
map into a density distribution after smoothing it with a Gaussian kernel, and applied a watershed
transform to divide the data into discrete clusters.

The number of behavioral clusters identified in the embedding space can be varied by changing the
density kernel used to create the space. We provide two resolutions of behavioral labeling in the
dataset. First, a set of 11 coarse behavioral categories that can be used to balance the dataset and
benchmark algorithms across different behaviors. Second, a set of 84 fine behavioral categories that
can be used for a more detailed analysis of the animal’s behavior.

The coarse behavioral categories reflected common classes of rodent behavior, including rearing,
locomotion, and investigation (Fig. 2), each of which results from a manual clustering of fine-grained
clusters. Within these fine behavioral categories across the full dataset, behaviors varied in frequency
by several orders of magnitude, from 6,000 to 6,000,000 time-points (Fine Behavior 62 – a side-
to-side head sweep vs. Fine Behavior 35 – a high-frequency sniff). This class imbalance highlights
the importance of obtaining large datasets to train and benchmark behavioral tracking algorithms,
especially if algorithm performance on rare behaviors is desired.

To further isolate different classes of inter-animal interactions, we further divided periods in which
animals’ centroids were within one body length of one another (200 mm) into three different interac-
tion behavioral categories: synchronized locomotion ("Chase"), stationary exploration ("Explore";
when both animals were in any coarse behavioral category among HeadTilt, Groom, Sniff, Investi-
gate, Rears, and CrouchExplore), or other times when animals were adjacent ("Close"). Because
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inter-animal interactions contain numerous occlusions, they represent a challenging use case for
multi-animal tracking algorithms. The over 5.3 million frames of animal interactions we provide here
provide an ample diversity of frames to train and benchmark new pose tracking algorithms in social
settings.

Figure 2: Example reprojections of ground-truth motion capture onto single camera views, shown
for specific behavioral categories (pink and white labels corresponding to each rat skeleton) and
interaction behavior categories (IB). Trailing points illustrate past 1-second trajectories for each
marker. Example Movies.

The video frames, 3D pose estimates, and behavioral annotations are continuous in time, with only
moderate interruptions in pose estimates due to flagged tracking errors. The median length of
continuously tracked snippets is 138 frames ( 4.5 s), with a long tail such that 5% of all continuous
snippets are greater than 86 s in length (Table 1). This will be useful both for benchmarking video-
based pose tracking algorithms that use local temporal information [56], as well as building statistical
models of single and multi-animal behavior [57, 58]. As an example of their use for analyzing
the mathematical structure of behavior, we can visualize the ethograms of each animal’s behavior,
which show that animals transition over many individual and interacting behaviors during a recording
session (Fig. 1D).

3.3 DANNCE benchmark

To establish baseline benchmarks for pose estimation to which future algorithms should be compared,
we used a multi-animal extension of DANNCE [18], the current state-of-the-art for rat 3D pose
estimation. Because DANNCE’s standard mechanism is to encapsulate a subject in a 3D volumetric
bounding box via geometric sampling of multi-view image content, multi-animal inference was
performed simply by running each animal’s 3D volume through the network independently (see
Appendix 5 for details). When animals are separated in space, such that their 3D volumes are
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non-overlapping, this approach trivially reduces to the single animal case. When animals are nearby
and overlapping, however, DANNCE must overcome significant animal-animal occlusion and infer
correct landmark-subject associations. Our dataset provides a large library of interacting behavior
examples that DANNCE, and other approaches, can use to learn social-specific poses and complex,
multi-animal image features.

Figure 3: Example DANNCE predictions, reprojected onto a single camera view, for specific inter-
action behavioral categories. Example predictions are on validation recordings, with the validation
animal (Subject 5) in red. Each frame is labeled with the interaction behavior category. The white
arrow in the "Mislabel" panel points to an error in head identity prediction. Example Movies.

MPJPEH MPJPET MPJPE PJPE50 PCK@0.5 PCK@0.75 mPCK

DANNCE.L2* 6.44 9.02 8.37 7.63 0.68 0.89 0.88
DANNCE.L2 4.87 7.93 7.17 6.44 0.79 0.94 0.93
DANNCE.L1* 4.28 7.13 6.41 5.77 0.83 0.96 0.95
DANNCE.L1 4.22 7.35 6.57 5.87 0.83 0.96 0.95

Table 2: DANNCE 3D multi-animal pose estimation benchmarks. In DANNCE.X , X indicates the
type of loss function used for training. (*) was trained from a random initialization of weights, and the
others from a network pre-trained on Rat 7M [18]. (PJPE50) 50th percentile of the per joint prediction
error (in mm), i.e. the Euclidean distance between predicted and ground-truth markers. (MPJPE)
mean PJPE, also broken down by head (MPJPEH ) and trunk (MPJPET ). (PCK@0.5) percent correct
keypoints using a distance threshold of 50% of the distance between two head markers. (PCK@0.75)
PCK using a threshold of 75% of the distance. (mPCK) mean PCK over 11 equally spaced thresholds.

We trained DANNCE for 30 epochs, using 420k images (70k poses) per epoch, and varied the
pretraining conditions and type of loss function to measure the influence of these parameters on
performance. Our results on withheld validation subject 5 are presented in Table 2. When using
DANNCE’s previously published L2 loss function, DANNCE performance improved with pretraining
on Rat 7M. However, training with an L1 loss, with or without pretraining, ultimately minimized
the mean per joint prediction error (MPJPE) across all markers (additionally broken down by head,
MPJPEH , and trunk, MPJPET ) and maximized percent correct keypoints (PCK) at all distance thresh-
olds (@ fractions of the distance between two head markers – 19.4 mm). Across behaviors, DANNCE
tracked Investigate with the smallest and CrouchExplore with the the largest error, respectively,
although error was within 10% across most behavioral categories (Appendix Table 3). DANNCE
performed similarly well on all close social interaction behaviors (Appendix Table 4). Qualitatively,
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DANNCE generally made remarkably consistent landmark predictions even in periods of spatial
overlap between animals, but it did sometimes briefly assign head landmarks to the wrong animal
during specific close interaction poses (Fig. 3).

4 Limitations

Our dataset will already be a valuable resource for social behavioral tracking, but there are several
present limitations that could be addressed in future work. First, due to frequent occlusions in the
multi-animal settings, there are periods without accurate landmark tracking that we dropped from
the dataset. Future datasets could incorporate a larger number of cameras to reduce the number of
missing data periods. Second, the ground-truth motion capture data comes from a reduced 12-marker
set that does not capture points on the distal limbs, and this could contribute to a loss of precision in
behavioral identification. One potential solution for limb tracking is to train using a combination of the
20-marker Rat7M, which includes multiple limb markers, and PAIR-R24M datasets. Limb keypoints
could also be added to the dataset using a combination of manual labeling, e.g. through crowdsourced
annotation, and inference, similar to datasets like CMU Panoptic [25]. However, annotating keypoints
in animals is generally more challenging for non-primate species, where identification of body parts
requires more domain knowledge, making the use of crowd-sourced annotation platforms challenging.

5 Discussion

The PAIR-R24M dataset is the largest and most diverse benchmark dataset for the rapidly growing
field of multi-animal behavioral measurement and analysis. We make the dataset available for
researchers interested in training new multi-animal tracking and action recognition algorithms, and
for researchers interested in mining the data for new quantitative insights on the nature of social
behavior. Specifically, we expect that this dataset will help to address the problems of multi-animal
3D pose estimation and instance segmentation.

In our dataset we solve instance segmentation by identifying individuals using known differences in
their respective marker sets. These ground-truth animal identities will assist in the development and
evaluation of deep learning algorithms that identify individuals through either top-down inference,
such as convolutional networks for identity detection or center-of-mass tracking (e.g. [20, 59, 60]), or
bottom-up inference such as 3D extensions of part affinity fields [61].

The PAIR-R24M dataset should also help develop new approaches for multi-animal 3D pose estima-
tion. Here, we performed pose estimation using a state-of-the-art volumetric animal pose tracking
approach. While our approach was generally effective, it made mistakes on some types of close
interaction, a relevant concern considering that most interesting social behaviors are characterized
by profound animal-animal overlap and contorted poses. Our results may be improved by newer
architectures that employ semi-supervised learning or temporal convolutions [56] in addition to
previously discussed bottom-up methods. Additionally, while highly performant, the use of volumet-
ric convolution is computationally expensive, limiting inference speeds. PAIR-R24M will aid the
development and evaluation of new, fast and performant multi-view 3D pose estimation algorithms.

While the PAIR-R24M dataset is an important step in the collection and dissemination of benchmarks
for animal pose estimation, it can be extended in many ways. While we used motion capture as a
high-throughput means of collecting training data, labels for animal hands, feet, and other appendages
will be necessary for training algorithms that predict more complete descriptions of animal movement.
These labels could come from human annotators [18], and crowd-sourcing efforts have begun to
assemble such detailed annotations for animals in 2D (e.g. [62]; although see Section 4). Datasets
extending beyond keypoints to capture an animal’s full 3D body surface, as is now possible in human
subjects, will also be valuable. While 3D scans have been used to assemble parametric body models
of animals in specific poses [63], the databases that are available are still small compared to those
available in humans [36,64] and do not contain data from freely moving subjects. While cross-domain
adaptation approaches [43,62,65] may facilitate some progress in 3D surface estimation, ground-truth
databases are needed to appropriately benchmark and train these techniques. Finally, future datasets
from other species, environments, and social contexts will help to build algorithms that are flexible
across a rich array of tasks and contexts, with the ultimate goal of enabling methodologies for full
reconstruction of animal kinematics in complex, occlusive environments, with as few as one camera.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 4

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please
see the supplemental impact statement (Appendix 2).

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Please see
Appendix 5.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Yes, this information is included in the Results and in Appendix 5.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We did not run experiments multiple times, but we
reported multiple measures of the statistical distributions of error metrics in Table 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] This information is reported in
Appendix 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]

(b) Did you mention the license of the assets? [N/A] Yes, the CC BY 4.0 license is included
in the datasheet (Appendix 1) and in our repositories.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Yes, the dataset is available at figshare as detailed in the Datasheet (Appendix 1).

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A] We collected the data ourselves from animals, following
protocols for animal care approved by the Harvard University IACUC (Appendix 2).

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The data come from animals and thus have no
personally identifiable information of offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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Appendix 1 | Dataset Nutrition Label

PAIR-R24M Datasheet
Dataset PAIR-R24M
Number of Frames 24 Million
Number of Annotated Animals 7
Number of Unannotated Animals 2

Metadata

Filename README.txt
Format .mp4, .csv, .json
URL https://figshare.com/articles/dataset/PAIRS_dataset/14754374
DOI https://doi.org/10.6084/m9.figshare.14754374.v2
Keywords Animal Behavior, Pose Estimation, Social Behavior
Rows Timepoints
Columns 3D keypoint positions, behavior labels
Missing Data Stored as NaN
License CC BY 4.0
First Released June 7 2021

Variables | markerDataset

center_of_mass Center of mass of the animal
aligned_position Marker positions aligned to center of mass
absolute_position Marker positions in global arena coordinates
goodFrame Frames without missing markers
behavior Behavior of the animal
interactionCategory Interaction category of the animal pair

Variables | Calibration

rotationMatrix Rotation Matrix of Camera
translationMatrix Translation Matrix of Camera
intrinsicMatric Intrinsic Matrix of Camera
radialDistortion Rotational Distortion Coefficient
tangentialDistortion Translational Distortion Coefficient

Figure 4: PAIR-R24M nutrition label, constructed using the template from Bandy et al. [66]. Note
that the exact DOI may change as the dataset is updated.
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Appendix 2 | Impact and Animal Care Statement

Preclinical screening of animal models is a crucial step in the drug discovery pipeline, and developing
improved social assays thus represents an important step to alleviating human disease burden. Careful
measurements and associated analysis frameworks to understand the natural behavior of animals
in 3D should facilitate new approaches for animal phenotyping and contribute to the development
of new theraputics, especially in the cases of neuropsychiatric diseases that affect social behaviors,
such as Autism Spectrum Disorders, Williams syndrome, and schizophrenia. All experiments were
performed at Harvard’s AAALAC-accredited animal facility. The care and experimental manipulation
of all animals were reviewed and approved by the Harvard University Faculty of Arts and Sciences
Institutional Animal Care and Use Committee. All surgical procedures were designed to limit pain
and discomfort. More details on the experimental procedures are given in [52].
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Appendix 3 | Discrepancies in Motion Capture and Video Tracking

Figure 5: (A) 2D histograms of the discrepancy in the position of the three markers on an animal’s
head between hand labels and motion capture. Heatmaps depict the differences in pixels between the
projections of the motion capture data into 2D and the human hand-labeled points as a function of the
x- and y- position of the headcap markers in the arena, for a single camera view. (B) Histogram of
the discrepancy in pixels across all cameras in all views. Errors range from 0.04 to 50.1 pixels (px),
with a mean error of 7.1 px (or around 2.7 mm). The exact pixel size of the retroreflective marker
(5 mm in diameter) depends on the camera view and is indicated by the shaded red bar. (C) Three
example frames (top) showing the 10th percentile (left; error = 1.3 px), 50th percentile (center; error
= 4.8 px), and 90th percentile (right; error = 15.7 px) discrepancy from camera 5 in (A). The white
arrows in the zoomed in images (bottom) highlight the marker representing the respective percentile.
(D) An example of synchronization error (left) and calibration error (right) with arrows pointing to a
head marker and a body marker for comparison. In the frame with synchronization error, the head
markers show larger error than the body markers, likely due to the animal moving its head quickly
and the RGB video lagging behind. In the frame with calibration error, the head and body marker
errors are more uniform, making an issue with calibration parameters more likely.

In a subset of video frames and camera views, we observed a discrepancy between the marker
positions, as tracked using motion capture, and the apparent marker positions in the video frames.
Such a discrepancy could be caused by either noise camera calibration, or temporally localized
variability in RGB video camera synchronization with motion capture. To quantify the magnitude and
extent of these discrepancies, we hand labeled the position of the markers on the head in 2078 video
frames and compared them with the projections of points tracked using motion capture. Differences
varied across cameras and positions of the animal in the arena (Fig. 5A). On average, differences (7
px mean, 5 px median) were well below both the marker size (9-14 px) and measured precision of
hand-labelers (12 px [52]; Fig. 5B-C). Nevertheless, on 10% of frames these differences were greater
than the marker diameter, although they rarely exceeded two marker diameters (∼ 1% of frames).
Motion capture discrepancies appeared notably smaller for markers on the body, which are less
sensitive to slight variability in synchronization (Fig. 5D). Discrepancies are nearly unavoidable in
large datasets [38], and can in principle add robustness to 3D markerless pose detection models [18].
Nevertheless, these deviations may present a noise ceiling for 3D pose tracking, and could be removed,
if desired, when running benchmarks [38].
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Appendix 4 | Constant Head Segment Lengths Suggest Accurate Animal
Identity Tracking

Figure 6: Normalized histograms of head segment lengths for Subjects 1-5, measured from all
recorded motion capture data and broken down by recording type: paired recordings in which only
one subject had markers (red lines) and paired recordings in which both subjects had markers (blue
lines). For each subject, histograms for each of the three head segments are plotted together on one
graph.

Motion capture measurements are so precise that they enable fingerprinting of each subject via
quantification of small subject-specific differences in head segment lengths; these differences arise
from variability in marker placement during headcap construction. We established reference head
segment lengths for each subject by examining their distributions in marker + markerless recordings,
where identity swapping is impossible. In marker + marker recordings, swaps in animal identity
should manifest as frames with head segment lengths deviating from each animal’s reference. We see
little support for such swaps in the data.
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Appendix 5 | DANNCE Training and Evaluation

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

DANNCE.L2* 7.82 8.24 8.10 8.08 8.84 8.24 8.25 8.23 10.16 8.12 8.21
DANNCE.L2 7.08 6.53 6.96 7.21 7.31 6.67 7.64 7.45 9.82 7.27 7.08
DANNCE.L1* 6.28 6.03 6.21 6.40 6.58 5.87 6.78 6.49 9.78 6.38 6.34
DANNCE.L1 6.46 6.19 6.26 6.56 6.77 6.12 6.97 6.74 9.39 6.32 6.34

Table 3: MPJPE in validation subject 5, broken down by individual behavioral category.

IB1 IB2 IB3

DANNCE.L2* 8.68 9.30 8.57
DANNCE.L2 7.44 8.24 7.26
DANNCE.L1* 6.61 7.22 6.56
DANNCE.L1 6.74 7.58 6.47

Table 4: MPJPE in validation subject 5, broken down by interaction behavioral category.

Multi-animal DANNCE (https://github.com/spoonsso/dannce/) training and evaluation was performed
in Python 3.7 using tensorflow (for the network) and pytorch (for parallel 3D volume generation). For
efficiency, we trained multi-animal DANNCE using 4 NVIDIA V100 16 GB GPUs on the Harvard
Odyssey compute cluster. We used training frames and ground-truth poses from 4 unique animal
pairs, distributed over 7 1-hour recordings at 30 Hz. To form the training set, 10,000 time points
(60,000 frames) were sampled randomly without replacement from the time points in each recording
having a complete motion capture marker set without imputation, resulting in 70,000 training samples
total. We chose at the outset to train each DANNCE network for 30 epochs using a batch size of 4,
and at the end of training we evaluated the performance of each network on the full validation dataset
just once (results in Table 2, 3, 4). For the benchmarks presented here, we used all samples from a
1-hour recording of subject 3 and 5, evaluated over withheld validation subject 5 only, that had a
complete motion capture marker set without imputation (43,285 samples; 259,710 frames). For each
animal, we anchored its image volume to the 3D position of its "SpineM" marker in each frame.

For the benchmarks, we varied the loss function used for DANNCE training, using either mean
squared error (L2) or mean absolute error (L1). We also tested training DANNCE from a random
weight initialization, or from previously published weights found by training over images of single
animals behaving in the Rat 7M dataset (https://github.com/spoonsso/dannce/) [18]. In all cases, we
used DANNCE in the "AVG" architecture configuration (a 3D U-Net with a soft-argmax output layer)
and trained using the Adam optimizer with lr = 0.001 and default parameters. We list the full set of
DANNCE training parameters used in Table 5. Full architecture details and parameter definitions can
be found on the dannce github.

To quantify DANNCE performance, we calculated standard 3D pose estimation error metrics, using a
Procruste’s alignment to ground-truth before calculations (translation and rotation only; no scaling).
MPJPE was calculated as the mean Euclidean error across all markers after alignment. PJPE50 is the
median error across all markers. PCK metrics reflect accuracy over all markers after binarizing all
predictions using the indicated threshold distances, expressed as fractions of the distance between
two Head markers (19.4 mm). For the mPCK metric, we calculated PCK for each threshold in [0.5,
0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1] and took the mean.
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Parameter Value

nvox 64
n_channels_in 3
n_views 6
n_channels_out 20
new_last_kernel_size [3 3 3]
batch_size 4
epochs 30
loss ‘mask_nan_keep_loss’,‘mask_nan_l1_loss’
lr ‘1e-3’
net ‘unet3d_big_expectedvalue’
n_layers_locked 0
num_train_per_exp 10000
vmin -120
vmax 120
interp ‘nearest’
rotate 1
expval 1
channel_combo ‘None’
n_rand_views 6
predict_mode ‘torch’
data_split_seed 11516
depth 0
augment_continuous_rotation 0
mono 0
augment_hue 0
drop_landmark ‘None’
raw_im_h 1048
raw_im_w 1328
mirror 0
n_instances 1
write_npy ‘None’

Table 5: Values of DANNCE training parameters.
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