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ABSTRACT

Deep learning is now a powerful tool in microscopy data analysis, and is routinely used for image1

processing applications such as segmentation and denoising. However, it has rarely been used to2

directly learn mechanistic models of a biological system, owing to the complexity of the internal3

representations. Here, we develop an end-to-end machine learning model capable of learning the rules4

of a complex biological phenomenon, cell competition, directly from a large corpus of time-lapse5

microscopy data. Cell competition is a quality control mechanism that eliminates unfit cells from6

a tissue and during which cell fate is thought to be determined by the local cellular neighborhood7

over time. To investigate this, we developed a new approach (τ -VAE) by coupling a variational8

autoencoder to a temporal convolution network to predict the fate of each cell in an epithelium.9

Using the τ -VAE’s latent representation of the local tissue organization and the flow of information10

in the network, we decode the physical parameters responsible for correct prediction of fate in11

cell competition. Remarkably, the model autonomously learns that cell density is the single most12

important factor in predicting cell fate – a conclusion that has taken over a decade of traditional13

experimental research to reach. Finally, to test the learned internal representation, we challenge the14

network with experiments performed in the presence of drugs that block signalling pathways involved15

in competition. We present a novel discriminator network that, using the predictions of the τ -VAE,16

can identify conditions which deviate from the normal behaviour, paving the way for automated,17

mechanism-aware drug screening.18

Introduction19

Cell competition is a phenomenon that results in the elimination of less fit cells from a tissue – a critical process in20

development, homeostasis and disease [1]. The viability of loser cells depends strongly on context: when they are21

cultured alone, they thrive, but when in a mixed population, they are eliminated by cells with greater fitness (Fig 1a). In22

development, competition acts as a quality control mechanism and also participates in pattern formation [2]. In cancer,23

competition has been hypothesised to underlie the heterogeneity in cell types present in tumours and promote the24

emergence of the most aggressive cells [3]. However, the rules that determine individual cell fate are poorly understood.25

A number of mechanisms of cell competition have been identified to date involving either biochemical competition (for26
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example through competition for pro-survival growth factors) or mechanical competition (for example a fast growing27

clone compresses cells in a slow growing clone, which results in cell extrusion for the now denser slow growing clone)28

[1, 4, 5]. While competition was initially thought to take place only at the interface between cell lineages, the discovery29

of mechanical competition revealed that this is not necessarily the case and that extrusion may take place several cell30

diameters away from this interface [4]. Over a decade of experimental research has suggested that local cell density31

is a key determinant of cell fate in mechanical competition [6, 4, 7, 8, 9]. However, the vast majority of studies have32

examined mechanisms of competition at the population level, owing to the difficulty of quantitatively describing the33

time evolution of an entire system of cells. As such, our understanding of the cell-scale topological and physical34

parameters that determine fate in competition remains incomplete.35

In this study, we sought to examine a new scientific paradigm – using Artificial Intelligence (AI) to uncover the36

determinants of cell fate directly from a large corpus of time-lapse microscopy data. Specifically, we sought to explore37

the possibility of learning an interpretable and predictive model of competition using a minimally-supervised and38

unbiased approach.39

Recent studies have shown that machine learning (ML) is adept at uncovering complex patterns in microscopy data. In40

conventional feature engineering approaches, prior knowledge is incorporated into a model by choosing features that41

represent the system, for example, by measuring image properties or adding relevant fluorescent cell signalling reporters.42

This has recently been used, with ML-enabled dimensionality reduction, to study transitions in human pluripotent43

stem cell populations [10]. However, choosing appropriate measurements becomes increasingly difficult with more44

complex features such as describing the local topology of tissues comprising multiple cell types and varying degrees45

of epithelialisation. One promising method is the use of unsupervised deep learning methods, such as variational46

autoencoders (VAE, [11]). A VAE learns a probabilistic approximation of the underlying distribution of data, meaning47

that the latent representation can be used as descriptive features of the system. Several recent studies have utilised48

autoencoders to encode complex cell shapes and other visual features in an interpretable manner [12, 13, 14, 15].49

However, these studies have typically been performed on sparse, isolated cells and usually as single observations in50

time. Other models have attempted to explicitly incorporate time. For example, a recurrent neural network was used to51

predict lineage choices in hematopoietic stem cells [16]. However, this architecture does not lend itself to introspection52

and therefore does not directly provide any interpretable insight into the biology.53

Here, we sought to learn a model of cell behaviour directly from time-lapse image data. We expand upon the use54

VAEs to encode cell shape and incorporate local tissue topology as well temporal features, to learn an explainable55

model of a complex, physiologically important biological phenomenon, cell competition. Finally, we introduce a novel56

discriminator network, that uses this learned model to identify drugs that affect the underlying mechanism of cell57

competition.58

Results and Discussion59

Data acquisition and training data60

We used a well-described model of cell competition consisting of co-cultures of mammalian MDCK wild-type61

(MDCKWT) and a variant expressing an shRNA targeting the polarity protein scribble that can be induced to become62

mechanical loser cells by addition of tetracycline (scribkd) [17]. To differentiate scribkd from their MDCKWT counter-63

parts, we expressed nuclear markers fused to different fluorescent proteins (e.g. H2B-GFP for MDCKWT, and H2B-RFP64

for scribkd). Cells were seeded in different ratios, and then, using automated time-lapse microscopy we followed the65

evolution of the competition over periods of 80 h, taking images at 4 min intervals. We collected 111 independent66

movies, totaling 7,768 hours of competition experiments (Fig 1a).67

From this dataset, we extracted single-cell trajectories, making sure that we could observe the entire lifespan of each68

cell including its fate (either mitosis or apoptosis). To do this, we segmented the time-lapse image data using a fully69

convolutional residual U-Net [18], then used a dedicated convolutional neural network (CNN) to classify each nucleus70

into one of five states (interphase, prophase, metaphase, anaphase or apoptotic) based on image features [8]. Then,71

we tracked all cells over time [19]. Next, we classified the fate of each track as either mitotic, apoptotic or unknown72

using a dedicated cell fate classification network (Fig 1b, Supplementary Information). We discarded trajectories73

with an unknown fate. We manually verified all apoptotic trajectories and a subset of mitotic trajectories to confirm that74

the fate labels could be used as ground truth for the purposes of training a model. In total we acquired 36,062 mitotic75

and 2,225 apoptotic trajectories, distributed across the two cell types (Supplementary Information). Since we do not76

know a priori what information is required to predict cell fate, we extracted glimpses [20] (Fig 1c) which capture three77

different spatial scales of the neighbourhood surrounding the cell of interest (Small, Mid and Large, corresponding to78

21×21 µm, 42×42 µm and 84×84 µm FOV respectively) but contain the same number of pixels (64× 64 px). Further,79

for the mid-scale view, we also applied masking (using segmentation masks) to artificially remove either the central80
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Figure 1: Learning a meaningful representation of cell competition to predict the fate of cells. (a) A single cell in a mixed
population has two easily observable fates, mitosis or apoptosis. The central hypothesis is that the local tissue organization over time
determines the fate. (b) Single-cell tracking is used to build a detailed training dataset of trajectories. The movies are truncated to
remove images that encode the fate of the cell. The goal of the machine learning model is to learn a representation that can predict
the fate of a cell (circled in white) given the local configuration during interphase. Images are taken at 4 minute intervals, MDCKWT

cells appear in green and scribkd in magenta. (c) Glimpse extraction and cell masking to determine the best image input for prediction.
Three different scale windows are extracted. For the mid-scale, we also perform masking, by removing either the neighbor cells or
the central cell to determine the important features for prediction. (d) A β-VAE is used to learn a low-dimensional representation of
the image data. The orange region represents the multivariate normal distribution of the image encoding. A sample is taken from this
distribution to generate the synthesized image. (e) Using a large corpus of images (∼1.2 million) we perform PCA on encodings in
latent space to explain the variability of the dataset. The encoding can then be projected using these vectors to yield the features. (f)
Pearson correlation coefficient between principal components and measurable physical parameters. White dots denote the parameter
with the highest correlation to each PC. Full matrix in the supplementary information. (g) Linear combinations of PC0 (cell type)
and PC1 (cell density) over the range [-3, 3]. (h) Interpretability of the projected β-VAE latent space, showing correlation between
PC0-3 and known physical parameters. Continuously varying the PC changes the state of the cell in an explainable manner. Above
each plot are average images with binned encodings of the respective PC value. Numbers represent the distribution of these states in
the dataset, calculated from a sample of images (n = 100, 000). Errors represent SD. (i) Schematic of the τ -VAE architecture. A
TCN network uses the β-VAE encoded projection of the trajectories to predict the fate. The TCN network has a receptive field of
128 time steps (∼8.5 h prior to the event) and seven hidden layers consisting of 64 convolutional kernels. Only five layers are shown
for simplicity. The fate prediction head has three output layers corresponding to “apoptosis”, “mitosis” and “other”. (j) Confusion
matrix for best performing model on scribkd trajectories using randomly selected trajectories (n = 300) for testing across a 10-fold
cross validation. Errors represent the SEM.

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469554doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469554


Learning the rules of cell competition without prior scientific knowledge

cell or the neighbors from the image data (Fig 1c) to test which representation was most salient. These five datasets81

could then be used to determine the best performing models and determine where the information necessary for fate82

prediction is contained.83

An explainable model for cell fate prediction from image sequences84

Having acquired a large training set, we next designed a machine learning framework to learn the features of a single85

cell and its neighbourhood over time, which act as strong predictors of cell fate. One of the design goals of this86

system was to have minimal human prior insight integrated into the model. First, we sought to learn an interpretable87

representation of the image data in an unsupervised manner. We trained a variational autoencoder (β-VAE, Methods,88

[11, 21]) to learn a compact latent representation of cell image data using 1.2 million different images of individual89

cells and their first neighbours (Fig 1d). The β-VAE learns a low dimensional representation of the image data using90

a probabilistic encoder. This low dimensional representation (bottleneck) should encode the image in a minimal91

number of parameters, in the same way that a human operator might describe the image in terms of the cell type,92

orientation of cells, local neighborhood and so forth. Next, a decoder attempts to reconstruct the real image using this93

low dimensional representation. The objective function guides the β-VAE to learn a representation of the image data94

which is expressive enough to reconstruct the original features, but where each of the latent dimensions are independent95

and interpretable. We modified the training objective to linearly increase the capacity of the bottleneck of the β-VAE96

during training. At low capacities the network is forced to prioritise matching the approximate posterior to the exact97

posterior distribution. At higher capacities, the network prioritises the quality of the reconstruction. During training the98

β-VAE first learns to represent gross level information such as cell type, before features such as cell shape and local99

topology (Supplementary Information).100

By encoding a large set of images we were able to perform Principal Component Analysis (PCA) in the latent space,101

which yields linear features that explain the variance in the entire dataset (discussed later, Fig 1e-h). We use these102

principal components (PCs) as the inputs for making predictions.103

Next, we built a prediction network that utilises the temporal sequence of images of each single-cell trajectory to output104

cell fate. Based on current biological knowledge, we reasoned that the biochemical commitment to apoptosis or division105

occurs hours before we observe the fate, so we trimmed each trajectory to remove observations that show recognizable106

morphological features of mitosis (such as DNA condensation in prometaphase and alignment of chromosomes during107

metaphase) or apoptosis (such as DNA fragmentation) (Supplementary Information). As such, the prediction network108

is forced to use only features from the time evolution of the interphase cell and its neighbours to make a prediction109

about the fate. Next, we encoded and projected each of these movies using the β-VAE (Fig 1e), and passed them to a110

temporal convolution network (TCN, [22]).111

The TCN uses causal convolutions to ensure the prediction at time t is only dependent on information from xt−r . . . xt,112

where r is the receptive field (equivalent to a window of time before an event, ∼8.5 h in this case) of the TCN113

(Supplementary Information). The output of the TCN is connected to a dedicated prediction head, a densely114

connected network with three outputs corresponding to “apoptosis”, “mitosis” and “other”. A final softmax activation115

yields the prediction of the full network. Overall, The TCN acts as a sequence classifier, taking a sequence of116

observations of a single-cell in interphase and returning a prediction for the cell fate, without ever observing the fate117

(Fig 1i). We refer to the variational encoder and projector coupled to the temporal convolution network as a τ -VAE. In118

training the τ -VAE, we supplemented the real data corresponding to mitotic and apoptotic classes, with a dynamically119

generated “synthetic” class to simulate trajectories which were neither apoptotic nor mitotic, corresponding to the “other”120

output class (Methods, Supplementary Information). In doing so, the prediction problem becomes a multiclass121

problem as opposed to a binary problem, thus ensuring that the model learns the features of both apoptotic and mitotic122

events. This is important as we do not want the model to learn only the features of mitosis, and predict apoptosis by123

exclusion, or vice versa.124

We tested the five different representations of the image data (Fig 1c) as input to the prediction network. In all125

representations the image data was limited to the same number of pixels, but comprised either different spatial scales126

or lacked information about either the central cell or the neighbors. We trained the τ -VAE network and measured127

the accuracy by comparing the predicted fate with the ground truth fate on a set of unseen test data consisting of 300128

trajectories. For each dataset, we split the data by the cell type (MDCKWT or scribkd) and calculated separate confusion129

matrices to ensure that there was no systematic bias in the predictions. To account for any potential bias in the testing130

set, we performed k-fold cross-validation (k = 10) on each model (Methods), randomly choosing a subset of training131

and testing data in each validation. Overall, the best performing networks used only the central cell region to predict the132

fate, with an average fate prediction F1-score of 0.87 ± 0.02, across both cell types as shown in the confusion plots (Fig133

1j, Supplementary Information). For reference, a TCN trained using a set of human chosen image features (those134

shown in Fig 1f) achieves a lower F1-score of 0.71, and is particularly poor at identifying apoptosis, with an accuracy135
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of 0.49. This demonstrates that the β-VAE is able to capture more salient image features, enabling a more accurate136

fate prediction, by learning them directly from the distribution of the data. We used the best performing network137

("Small View, All Cells" model, i.e. cropped to the central cell at the highest magnification) for all further analyses. We138

concluded that the τ -VAE network is able to accurately predict the cell fate based only on the interphase local tissue139

organization alone, having learnt features directly from the image data to enable this task. Next, we sought to introspect140

the model and to assign meaningful semantic labels to the learnt features.141

Interpreting the model142

The goal of the τ -VAE network is to learn an end-to-end model that requires minimal input from experts to predict143

the fate of cells in competition. The implicit hypothesis is that there is sufficient information in the observations of144

local tissue organization to enable this prediction. Having determined that our approach is able to accurately predict the145

fate of cells in a competitive system, we sought to interrogate the learnt features of the β-VAE. In contrast to other146

approaches, we do not perform feature engineering to select parameters that define the problem (such as cell density,147

number of neighbours, etc), but rather, we extract these automatically and directly from the data, based on the latent148

space of the β-VAE. We used several different approaches to interpret the model.149

Assigning physical parameters to the latent features Since the training objective of the β-VAE encourages a150

continuous, but disentangled internal representation of the image data, we sought to assign meaningful semantic labels151

to those latent variables. Analysis of the latent features revealed that some parameters show covariance – for example,152

in the dataset, there is a correlation between cell type and nuclear area, since scribkdcells tend to have larger nuclei153

than MDCKWTcells. Therefore, we performed PCA on the latent space (z ∈ R32) yielding 32 principal components154

ordered by the magnitude of the variance explained by the component. We analysed the correlation of the components155

with parameters that could be measured from the images (Fig 1g). Inspecting these components shows that the first156

two (PC0 and PC1) account for 26.9% of the variability of the data, and seem to represent cell type and cell density157

(number of cells visible in the glimpse) respectively (Fig 1f-h). Component PC2 encodes an orientation parameter158

of the central nucleus, while component PC3 encodes nuclear aspect ratio (Fig 1g-h). Higher principal components,159

such as PC25 encode parameters such as fluorescence intensity of H2B-GFP/RFP but the correlation coefficient is160

weaker. We confirm these assignments by sampling images from the dataset with various values for these components161

(Supplementary Information). Later components broadly enable the network to encode the arrangement and identity162

of cells in the local neighbourhood (Supplementary Information). Strikingly, projecting the β-VAE latent space163

enabled us to learn an explainable model of the local tissue organization of cells in a completely unsupervised manner.164

Next, we sought to investigate the role of these principal components over time in the prediction of cell fate.165

Feature ablation studies to determine the minimal information required for prediction To determine the mini-166

mal information required for cell fate prediction, we removed individual components in a systematic manner (replacing167

them with Gaussian noise at all time steps) and calculated the performance of the network after each component removal.168

Ablated networks were ranked according to their effect on the prediction accuracy. Through multiple iterations, we169

found that a single component (PC1 - nuclear area/cell density) could be used to predict cell fate with 43 ± 2% accuracy170

– significantly higher than random chance assuming an equal probability of choosing any fate (33.33%, Fig 2a). In171

the ablation approach, PC1 was the last component to be removed, suggesting the single highest contribution to the172

prediction accuracy. The ablation study reveals that the top five components (PC1, PC5, PC26, PC3, PC26) account for173

64% of the prediction accuracy, with the remaining 27 components contributing a further 36%. Importantly, when all174

inputs are replaced by noise, all fates are predicted with equal probability, suggesting no inherent bias toward any fate175

in the network. Remarkably, this suggests that, in line with our current understanding of mechanical cell competition176

stemming from nearly a decade of experimental studies [17, 7, 23, 8, 9], our model has autonomously learnt that cell177

density is a strong predictor of cell fate, directly from the data with no expert input.178

Timescales of predictions and feature saliency to visualize network attention Since the TCN is able to output a179

prediction after every additional time step, we can use the prediction head (Fig 1i) to visualize the time evolution of the180

prediction (Fig 2b-c). Across all of the data, we find that for the scribkdcells, the τ -VAE network predicts apoptosis181

early (up to 8h before an event) and mitosis late (∼2h before an event, Supplementary Information). Further, we182

can inspect the magnitude and contribution of each principal component to the prediction. In general, we found that183

PC1 (cell density) was often much larger in those trajectories undergoing apoptosis. To assess the model’s use of184

components to make predictions, we utilise the error gradients during backpropagation in the network to calculate185

the saliency (Methods, [24]). Feature saliency is a method to determine which features of the input contribute most186

significantly to the classification accuracy of the τ -VAE. We computed this in two ways (i) PC feature saliency, i.e.187

the PC input to the TCN network (Fig 2b-c) and (ii) raw pixel saliency i.e. the raw pixel input to the encoder network188

(Supplementary Information). The latter approach identifies the raw image pixels that contribute most to the eventual189
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Figure 2: An explainable internal representation of cell competition enables drug evaluation. (a) Feature ablation demonstrates
the role of each PC in the final prediction of the model. Each arrow indicates the cumulative replacement of a given PC with Gaussian
noise. Error bars represent the standard deviation of model accuracy over all ten TCN models. (b) Example apoptotic trajectory with
network predictions, and internal representation. Top row shows a sampled sequence of images from the trajectory. Second row
shows the PC feature saliency over time calculated by the TCN. Third row is the values of the top-5 principal components over time.
Final row is the prediction of cell fate over time. (c) Example mitotic trajectory with network predictions, and measured parameters,
as in panel b. (d) Survival fraction for scribkd cells in competition (MDCKWT:scribkd), BIRB796 treated (MDCKWT:scribkd + 2 µM
BIRB796) and uninduced (MDCKWT:scribkd, tet-). Values below 1 (dotted line) indicate a cell population decrease, values greater
than 1 indicate a population increase over the course of the experiment. (e) Confusion matrix of prediction accuracy for scribkd, tet-

cells (n = 161 real trajectories) showing many mitoses are incorrectly predicted as apoptoses. (f) Confusion matrix for BIRB796
treated cells (n = 198 real trajectories) showing a similar pattern to the scribkd, tet- condition. (g) A discriminator network that uses
two models to detect changes in cell behavior. Network A is the τ -VAE model of learned cell behaviour and Network B is the cell
fate classification network. A discriminator (shown as an XOR gate) determines discrepancies between the two outputs. (h) Example
outputs of per-cell predictions and discriminator output for individual timepoints of competition, uninduced and BIRB796 treated
timelapse movies, as in panel d. The top row shows the raw input image data. The middle row shows the current prediction (in this
frame of the movie) of the τ -VAE network for scribkd cells in the FOV. Blue represents mitosis, orange represents apoptosis and
white represents unknown fate or insufficient data to make a prediction at this time-point. The bottom row shows the discriminator
output for each cell in the FOV. Red indicates that the τ -VAE network did not agree with the fate classification, and blue indicates
agreement. Grey cells have no predictions associated with them. The full movies can be found in the supplementary information.
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prediction. The PC feature saliency reveals the timescales of activations within the network that are used to make190

predictions. The high gradients reveal that many of the late time steps are used in making the predictions for apoptosis191

and mitosis. Empirically, the pixel saliency reveals that nearby cells and the geometry (aspect ratio, convexity) of192

the nucleus (Supplementary Information) have significant contributions to the prediction - however, it is difficult to193

assign quantitative meaning to these observations, owing to the fact that they are in image space rather than feature194

space.195

Challenging the learned representation with biochemical perturbations196

Finally, to confirm that the network has learnt a model of mechanical cell competition, we sought to challenge the model197

with cells treated with different biochemical perturbations. For example, we performed experiments using cells that198

were uninduced (MDCKWT:scribkd, tet-) such that there was no competition. In this case, the knockdown of the polarity199

protein Scribble is not induced with tetracycline (scribkd, tet-), so the cells do not engage in mechanical competition200

with MDCKWT cells, but can still be distinguished by their H2B-RFP marker. We acquired timelapse data of the cells201

and confirmed that the scribkd, tet- cell count was consistent with a non-competitive scenario (Fig 2d, Supplementary202

Information). From this dataset, we randomly selected a set of full length trajectories with a known fate (either203

apoptosis, mitosis or neither), and, after removing the final images and discarding the trajectories where no event occurs,204

we passed them to the τ -VAE network. We found that the fate prediction accuracy of the network dropped significantly205

for the scribkd, tet- cells. Strikingly, many scribkd, tet- mitotic trajectories were incorrectly predicted to be apoptotic as can206

been seen from the confusion matrix (Fig 2e). This is an important result – the τ -VAE, using the available information207

predicts, correctly, that the scribkd, tet- cells should die under these conditions if knock-down of Scribble had been208

induced to start competition. A human would arrive at the same conclusion, given the same information. The fact that,209

under an unseen biochemical perturbation that disturbs the competition, we subsequently observe that they do not die,210

lays the foundation for a method to identify systematic deviations from normal (i.e. predictable) behavior.211

This variation in the performance of the τ -VAE when applied to cells under different biochemical perturbations212

suggested that our model is sensitive to changes in gene expression and the biochemical mechanisms of competition.213

Therefore, we sought to determine whether the methodology could be used for identifying drugs that perturb competition214

without further modification to the prediction network. Recent studies have suggested that p38 kinase inhibitors may215

interfere with mechanical cell competition by inhibiting the stress response pathways that lead to apoptosis [7]. To test216

this hypothesis, and to determine whether the network was able to discriminate these events, we acquired timelapse217

data of the cell competition (MDCKWT:scribkd) in the presence of 2 µM BIRB796, a p38 MAPK inhibitor [25]. We218

measured the loser cell count over the course of the experiments and noted that there was a higher survival fraction of219

the scribkd cells, although they still grew significantly slower than MDCKWT (Fig 2d, Supplementary Information).220

From these data, we extracted single cell trajectories and used the τ -VAE network to predict the fate of the cells as221

before. As with the uninduced dataset, the network predicted a significantly higher number of apoptoses where the true222

label was mitosis (Fig 2f).223

Given that both the p38 MAPK inhibitor and the scribkd, tet- condition interfere with the competition by limiting224

apoptosis, we would expect the scribkd cells to reach higher densities in these conditions. Indeed, when analysing the225

network’s representation, we noticed that the signatures of incorrectly predicted trajectories are more similar to the226

trajectories categorised as apoptotic under control conditions, especially with respect to the increased magnitude of227

PC1, that represents local cell density (Supplementary Information). This is consistent with the observations that the228

scribkd, tet-and BIRB796 treated scribkdcells reach higher densities, with significantly lower apoptotic rates. Overall,229

our results suggest that the τ -VAE network, trained on the MDCKWT:scribkd data, has learnt a complex and predictive230

model of cell competition, that is sensitive to local changes in the tissue organization and the signalling pathways231

participating in competition.232

A method for automated drug screening Having established that the τ -VAE network is able to represent a complex233

model of cell behavior in an explainable manner, we sought to define a general approach to utilise such a predictive234

model for image-based drug screening [26]. To do so, we introduce a novel discriminator network (Fig 2g) that235

compares the outputs of two models (Networks A & B) to determine discrepancies indicative of drug activity. The two236

networks utilise different amounts of information from each single-cell trajectory. Network A (the τ -VAE), a model of237

“normal” cellular behavior, uses only the early part of the trajectory to predict the fate of the cell. In contrast, Network B238

(the cell fate classification network, Supplementary Information) uses the entire trajectory to classify the actual fate239

of the cell. When these two models agree for a particular cell, it suggests that the fate is predictable and thus competition240

conforms to learned behavior. However, when the two models disagree, this suggests that the cell is deviating from241

normal learned behavior, presumably due to the influence of an added drug or other perturbation. We demonstrate242

the utility of the discriminator to evaluate individual cells in movies in three different conditions, MDCKWT:scribkd,243

MDCKWT:scribkd, tet- and MDCKWT:scribkd + 2 µM BIRB796. First, we determined the performance of the cell fate244
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classification network, finding it to achieve an accuracy of 0.96 in determining cell fate (n = 392) across all of the data.245

Then we used the τ -VAE to make predictions for these cells, and the discriminator to determine the agreement with the246

cell fate classification network. In control conditions, the two networks show a high level of agreement with a fraction247

of agreement a of 0.8. The results show a similar pattern to the confusion matrices in Fig 2e-f, in that the uninduced248

Scribble (a=0.22) and and BIRB796 (a=0.62) treated cells show the lowest fraction of agreement between the τ -VAE249

and the cell fate classification, indicating deviation from the normal model of behavior. Therefore, the discriminator250

network automatically identifies conditions that deviate from learned behavior. Further, this approach can be utilized to251

monitor the time evolution and spatial pattern of predictions for individual cells in their original context (Fig 2h).252

Conclusions253

Deep learning is now a powerful tool in microscopy image analysis. However, the complex internal representations of254

many deep learning models, and the difficulty of analysing time dependent features, means that they have rarely been255

used to gain mechanistic insight into biological phenomena. Here, we developed an end-to-end machine learning model256

capable of discovering the physical parameters and rules of a complex biological phenomenon, cell competition, directly257

from image data. Starting tabula rasa, we demonstrate that our approach is able to learn a meaningful representation258

of cell behaviour in an automated and minimally-supervised manner. The model requires minimal human input to259

train and is able to correctly predict the fate of cells in mechanical cell competition. Strikingly, the model learns that260

local cell density is the single most important determinant of cell fate in mechanical competition, an observation that261

has taken scientists a decade of experimental research and data analysis to determine. Most exciting is that we are262

able to introspect the model to identify the physical features enabling prediction as well as the time-scale over which263

correct predictions are made. In the case of cell competition, we expect that these features will prove invaluable in264

formulating hypotheses about the nature of the mechanical changes detected during competition and the signalling265

pathways leading to loser cell death. This model can be used directly, and with no further modification, to investigate266

which candidate pathways participate in competition. Although we have demonstrated the utility of this approach using267

a model phenomenon and cell type, the approach is generalizable to many other systems, for example the study of the268

microenvironmental factors leading to differentiation of stem cells or embryonic development. Finally, we have shown269

that a novel discriminator network, based on the autonomously learned τ -VAE model, can detect conditions which270

deviate from the normal cellular behaviour due to inhibition or silencing, signifying that it can be used as a screening271

tool. Once trained, this fully automated system is able to discriminate between normal cell behavior and perturbations272

without any further human intervention, paving the way for mechanism-aware AI-based drug discovery.273

Methods274

Cell culture, imaging assays, single-cell tracking and cell fate classification network Detailed methods can be275

found in the supplementary information.276

Drug treatments BIRB796 (Tocris 5989, [25]) was dissolved in DMSO and added to the cell culture 5 h before277

imaging at a final concentration of 2 µM. As a negative control, a similar volume of DMSO was added to some wells.278

Variational Autoencoder (β-VAE) We built a convolutional variational autoencoder to learn a low-dimensional279

representation of the cell image data that could be used by a TCN for fate prediction. The encoder network consists of280

four convolutional layers with 3× 3 kernels, Swish activations, with 32, 64, 128 and 256 kernels respectively. Each281

layer was pooled by a 2× 2 max-pooling operation. The convolutional output was flattened and split into two arms282

with two fully connected layers for the µ and σ2 estimators. We found that adding additional fully connected layers of283

128 units between the estimators and the flattened encoder output improved the model performance. We used a random284

normal sampler to generate samples from the distribution. The decoder is inverse of the encoder, using nearest neighbor285

upsampling between the convolutional layers.286

We use the revised objective function [21, 27] to train the network:287

L(θ, φ;x, z, γ, C) = Eqφ(z|x)[log pθ(x|z)]− γ |DKL(qφ(z|x) || p(z))− C| (1)

Our loss function is composed of two terms. The first term is the reconstruction loss term which penalises differences288

between the reconstruction (the decoded, encoded input) and the real input. In practice, we use the mean squared error289

between the input image (x) and the output (x′) of the β-VAE. The second term is the Kullback-Leibler divergence290

(DKL(· || ·)), which penalizes the latent space model variance from dropping to zero, by forcing the encoding to match291
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the Gaussian prior with a diagonal covariance matrix, N(0, I). This has the effect of regularizing the latent space to292

promote a continuous representation of the underlying image data.293

In our implementation, we dynamically adjust the bottleneck capacity (C) of the network during training. The value294

of C is scaled linearly as a function of training iteration, reaching a maximum value Cmax. This ensures that at early295

training iterations the network prioritizes the encoding, while at later iterations this is refined to optimize the decoding.296

The scaling constant γ balances the two terms of the loss function.297

We prepared a training set of 1.2 million images of cells by sampling individual cells from the time-lapse movies. A298

fraction of cells (random 10% of cells in frame) was selected from a random sample of frames (10% of frames in movie)299

and an ROI of varying size around each cell was extracted. These were then downsampled using nearest neighbor300

sampling, to the network input size of (64× 64× 2). We then trained the β-VAE network using γ = 1000, Cmax = 50,301

latent vector z ∈ Rn. We found n = 32 to be the optimal value of the latent space dimensions. Optimization was302

performed using an Adam optimizer for 100 epochs and a minibatch size of 256. Training images were augmented303

on-the-fly by random flipping, rotations and simulated edge cropping.304

Trajectory Synthesis In order to simulate a third class of trajectory, referred to as “synthetic”, we utilised the305

generative property of the decoder network. The first frame of each synthetic trajectory is a real image, i.e. it is decoded306

by the decoder network from the latent-space encoding of an image that actually exists. For the next frame, the encoding307

is adjusted by adding to each latent variable a scalar that is sampled from a Gaussian distribution (with µ = 0.0 and308

σ = 0.2). The image for this second frame is then the decoder output with this new encoding as input. This process is309

then repeated until all the frames of the synthetic movie are generated, with the trajectories taking a random walk in310

latent space.311

Principal Component Analysis (PCA) We used PCA to analyse the learnt representation of the total dataset. The312

principal components of the latent features derived by the β-VAE have a higher degree of interpretability than the latent313

features themselves. PCA was applied to the latent features before analysis of the latent space was undertaken. We used314

the PCA function from Scikit-learn to perform the decomposition into 32 components, once for each of the β-VAE315

latent dimensions.316

Temporal Convolution Network (TCN) The timelapse sequences encoded by the β-VAE become the input features317

(n× t) of a temporal convolution network (TCN) [22]. The procedure for preparing a timelapse movie for input to the318

TCN is as follows. First, each frame in the timelapse movie is normalized such that the pixel values of that individual319

frame have zero mean and unit variance. This is performed on a per-channel basis, such that the RFP and GFP channels320

are normalized separately. Next, the normalized timelapse movie is fed through the encoder network of the trained321

β-VAE. The encoder yields three outputs for each latent variable - the mean, standard deviation, and Gaussian-sampled322

value. This is calculated for every timelapse movie in the dataset.323

Once encoded, the timelapse sequences are transformed from latent space (Z) into principal component space (T) using324

the transform T = ZW, where W are the principal components. and then fed into the TCN for training. The TCN is325

formed of seven convolutional layers with respective dilations of 1, 2, 4, 8, 16, 32 and 64. Each of these layers has 64326

convolutional filters. The output from the convolutional layers is fed into a fate prediction head. This network projects327

the output into a classification, and is composed of a fully connected layer with 128 units, and a final fully connected328

layer with three units that represent the possible classifications of the sequence ("apoptosis", "mitosis" or "synthetic").329

We used a sparse categorical cross entropy loss function to train the network.330

The TCN is trained with a batch size of 128 for 100 epochs. Optimization was performed using the RMSprop optimizer331

with a learning rate of 0.001. Training sequences were augmented on-the-fly by random frame removal, cropping and332

the addition of noise to the encoded sequences. Regularization was ensured by applying batch normalization and a333

dropout rate of 0.3 to the TCN layer of the network.334

Feature saliency We can determine the salient features of the input images by calculating a saliency map (Mc) for335

an input (x). This is achieved by calculating the gradient of the output function Sc with respect to the input during336

backpropagation: Mc(x) = ∂Sc(x)/∂x. In practice, we average n gradient calculations, each with a small added337

Gaussian noise (µ=0.0, σ = 0.1× |(max(Sc)−min(Sc)|) component to the input.338

Software availability A reference implementation of the τ -VAE is available at: https://github.com/339

lowe-lab-ucl/cellx-predict340

Data availability Data is available from the UCL data repository: https://dx.doi.org/10.5522/04/16578959.341
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