










Learning the rules of cell competition without prior scientific knowledge

Figure 2: An explainable internal representation of cell competition enables drug evaluation. (a) Feature ablation demonstrates
the role of each PC in the final prediction of the model. Each arrow indicates the cumulative replacement of a given PC with Gaussian
noise. Error bars represent the standard deviation of model accuracy over all ten TCN models. (b) Example apoptotic trajectory with
network predictions, and internal representation. Top row shows a sampled sequence of images from the trajectory. Second row
shows the PC feature saliency over time calculated by the TCN. Third row is the values of the top-5 principal components over time.
Final row is the prediction of cell fate over time. (c) Example mitotic trajectory with network predictions, and measured parameters,
as in panel b. (d) Survival fraction for scribkd cells in competition (MDCKWT:scribkd), BIRB796 treated (MDCKWT:scribkd + 2µM
BIRB796) and uninduced (MDCKWT:scribkd, tet-). Values below 1 (dotted line) indicate a cell population decrease, values greater
than 1 indicate a population increase over the course of the experiment. (e) Confusion matrix of prediction accuracy for scribkd, tet-

cells (n = 161 real trajectories) showing many mitoses are incorrectly predicted as apoptoses. (f) Confusion matrix for BIRB796
treated cells (n = 198 real trajectories) showing a similar pattern to the scribkd, tet- condition. (g) A discriminator network that uses
two models to detect changes in cell behavior. Network A is the τ -VAE model of learned cell behaviour and Network B is the cell
fate classification network. A discriminator (shown as an XOR gate) determines discrepancies between the two outputs. (h) Example
outputs of per-cell predictions and discriminator output for individual timepoints of competition, uninduced and BIRB796 treated
timelapse movies, as in panel d. The top row shows the raw input image data. The middle row shows the current prediction (in this
frame of the movie) of the τ -VAE network for scribkd cells in the FOV. Blue represents mitosis, orange represents apoptosis and
white represents unknown fate or insufficient data to make a prediction at this time-point. The bottom row shows the discriminator
output for each cell in the FOV. Red indicates that the τ -VAE network did not agree with the fate classification, and blue indicates
agreement. Grey cells have no predictions associated with them. The full movies can be found in the supplementary information.
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prediction. The PC feature saliency reveals the timescales of activations within the network that are used to make190

predictions. The high gradients reveal that many of the late time steps are used in making the predictions for apoptosis191

and mitosis. Empirically, the pixel saliency reveals that nearby cells and the geometry (aspect ratio, convexity) of192

the nucleus (Supplementary Information) have significant contributions to the prediction - however, it is difficult to193

assign quantitative meaning to these observations, owing to the fact that they are in image space rather than feature194

space.195

Challenging the learned representation with biochemical perturbations196

Finally, to confirm that the network has learnt a model of mechanical cell competition, we sought to challenge the model197

with cells treated with different biochemical perturbations. For example, we performed experiments using cells that198

were uninduced (MDCKWT:scribkd, tet-) such that there was no competition. In this case, the knockdown of the polarity199

protein Scribble is not induced with tetracycline (scribkd, tet-), so the cells do not engage in mechanical competition200

with MDCKWT cells, but can still be distinguished by their H2B-RFP marker. We acquired timelapse data of the cells201

and confirmed that the scribkd, tet- cell count was consistent with a non-competitive scenario (Fig 2d, Supplementary202

Information). From this dataset, we randomly selected a set of full length trajectories with a known fate (either203

apoptosis, mitosis or neither), and, after removing the final images and discarding the trajectories where no event occurs,204

we passed them to the τ -VAE network. We found that the fate prediction accuracy of the network dropped significantly205

for the scribkd, tet- cells. Strikingly, many scribkd, tet- mitotic trajectories were incorrectly predicted to be apoptotic as can206

been seen from the confusion matrix (Fig 2e). This is an important result – the τ -VAE, using the available information207

predicts, correctly, that the scribkd, tet- cells should die under these conditions if knock-down of Scribble had been208

induced to start competition. A human would arrive at the same conclusion, given the same information. The fact that,209

under an unseen biochemical perturbation that disturbs the competition, we subsequently observe that they do not die,210

lays the foundation for a method to identify systematic deviations from normal (i.e. predictable) behavior.211

This variation in the performance of the τ -VAE when applied to cells under different biochemical perturbations212

suggested that our model is sensitive to changes in gene expression and the biochemical mechanisms of competition.213

Therefore, we sought to determine whether the methodology could be used for identifying drugs that perturb competition214

without further modification to the prediction network. Recent studies have suggested that p38 kinase inhibitors may215

interfere with mechanical cell competition by inhibiting the stress response pathways that lead to apoptosis [7]. To test216

this hypothesis, and to determine whether the network was able to discriminate these events, we acquired timelapse217

data of the cell competition (MDCKWT:scribkd) in the presence of 2 µM BIRB796, a p38 MAPK inhibitor [25]. We218

measured the loser cell count over the course of the experiments and noted that there was a higher survival fraction of219

the scribkd cells, although they still grew significantly slower than MDCKWT (Fig 2d, Supplementary Information).220

From these data, we extracted single cell trajectories and used the τ -VAE network to predict the fate of the cells as221

before. As with the uninduced dataset, the network predicted a significantly higher number of apoptoses where the true222

label was mitosis (Fig 2f).223

Given that both the p38 MAPK inhibitor and the scribkd, tet- condition interfere with the competition by limiting224

apoptosis, we would expect the scribkd cells to reach higher densities in these conditions. Indeed, when analysing the225

network’s representation, we noticed that the signatures of incorrectly predicted trajectories are more similar to the226

trajectories categorised as apoptotic under control conditions, especially with respect to the increased magnitude of227

PC1, that represents local cell density (Supplementary Information). This is consistent with the observations that the228

scribkd, tet-and BIRB796 treated scribkdcells reach higher densities, with significantly lower apoptotic rates. Overall,229

our results suggest that the τ -VAE network, trained on the MDCKWT:scribkd data, has learnt a complex and predictive230

model of cell competition, that is sensitive to local changes in the tissue organization and the signalling pathways231

participating in competition.232

A method for automated drug screening Having established that the τ -VAE network is able to represent a complex233

model of cell behavior in an explainable manner, we sought to define a general approach to utilise such a predictive234

model for image-based drug screening [26]. To do so, we introduce a novel discriminator network (Fig 2g) that235

compares the outputs of two models (Networks A & B) to determine discrepancies indicative of drug activity. The two236

networks utilise different amounts of information from each single-cell trajectory. Network A (the τ -VAE), a model of237

“normal” cellular behavior, uses only the early part of the trajectory to predict the fate of the cell. In contrast, Network B238

(the cell fate classification network, Supplementary Information) uses the entire trajectory to classify the actual fate239

of the cell. When these two models agree for a particular cell, it suggests that the fate is predictable and thus competition240

conforms to learned behavior. However, when the two models disagree, this suggests that the cell is deviating from241

normal learned behavior, presumably due to the influence of an added drug or other perturbation. We demonstrate242

the utility of the discriminator to evaluate individual cells in movies in three different conditions, MDCKWT:scribkd,243

MDCKWT:scribkd, tet- and MDCKWT:scribkd + 2 µM BIRB796. First, we determined the performance of the cell fate244
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classification network, finding it to achieve an accuracy of 0.96 in determining cell fate (n = 392) across all of the data.245

Then we used the τ -VAE to make predictions for these cells, and the discriminator to determine the agreement with the246

cell fate classification network. In control conditions, the two networks show a high level of agreement with a fraction247

of agreement a of 0.8. The results show a similar pattern to the confusion matrices in Fig 2e-f, in that the uninduced248

Scribble (a=0.22) and and BIRB796 (a=0.62) treated cells show the lowest fraction of agreement between the τ -VAE249

and the cell fate classification, indicating deviation from the normal model of behavior. Therefore, the discriminator250

network automatically identifies conditions that deviate from learned behavior. Further, this approach can be utilized to251

monitor the time evolution and spatial pattern of predictions for individual cells in their original context (Fig 2h).252

Conclusions253

Deep learning is now a powerful tool in microscopy image analysis. However, the complex internal representations of254

many deep learning models, and the difficulty of analysing time dependent features, means that they have rarely been255

used to gain mechanistic insight into biological phenomena. Here, we developed an end-to-end machine learning model256

capable of discovering the physical parameters and rules of a complex biological phenomenon, cell competition, directly257

from image data. Starting tabula rasa, we demonstrate that our approach is able to learn a meaningful representation258

of cell behaviour in an automated and minimally-supervised manner. The model requires minimal human input to259

train and is able to correctly predict the fate of cells in mechanical cell competition. Strikingly, the model learns that260

local cell density is the single most important determinant of cell fate in mechanical competition, an observation that261

has taken scientists a decade of experimental research and data analysis to determine. Most exciting is that we are262

able to introspect the model to identify the physical features enabling prediction as well as the time-scale over which263

correct predictions are made. In the case of cell competition, we expect that these features will prove invaluable in264

formulating hypotheses about the nature of the mechanical changes detected during competition and the signalling265

pathways leading to loser cell death. This model can be used directly, and with no further modification, to investigate266

which candidate pathways participate in competition. Although we have demonstrated the utility of this approach using267

a model phenomenon and cell type, the approach is generalizable to many other systems, for example the study of the268

microenvironmental factors leading to differentiation of stem cells or embryonic development. Finally, we have shown269

that a novel discriminator network, based on the autonomously learned τ -VAE model, can detect conditions which270

deviate from the normal cellular behaviour due to inhibition or silencing, signifying that it can be used as a screening271

tool. Once trained, this fully automated system is able to discriminate between normal cell behavior and perturbations272

without any further human intervention, paving the way for mechanism-aware AI-based drug discovery.273

Methods274

Cell culture, imaging assays, single-cell tracking and cell fate classification network Detailed methods can be275

found in the supplementary information.276

Drug treatments BIRB796 (Tocris 5989, [25]) was dissolved in DMSO and added to the cell culture 5 h before277

imaging at a final concentration of 2 µM. As a negative control, a similar volume of DMSO was added to some wells.278

Variational Autoencoder (β-VAE) We built a convolutional variational autoencoder to learn a low-dimensional279

representation of the cell image data that could be used by a TCN for fate prediction. The encoder network consists of280

four convolutional layers with 3× 3 kernels, Swish activations, with 32, 64, 128 and 256 kernels respectively. Each281

layer was pooled by a 2× 2 max-pooling operation. The convolutional output was flattened and split into two arms282

with two fully connected layers for the µ and σ2 estimators. We found that adding additional fully connected layers of283

128 units between the estimators and the flattened encoder output improved the model performance. We used a random284

normal sampler to generate samples from the distribution. The decoder is inverse of the encoder, using nearest neighbor285

upsampling between the convolutional layers.286

We use the revised objective function [21, 27] to train the network:287

L(θ, φ;x, z, γ, C) = Eqφ(z|x)[log pθ(x|z)]− γ |DKL(qφ(z|x) || p(z))− C| (1)

Our loss function is composed of two terms. The first term is the reconstruction loss term which penalises differences288

between the reconstruction (the decoded, encoded input) and the real input. In practice, we use the mean squared error289

between the input image (x) and the output (x′) of the β-VAE. The second term is the Kullback-Leibler divergence290

(DKL(· || ·)), which penalizes the latent space model variance from dropping to zero, by forcing the encoding to match291
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the Gaussian prior with a diagonal covariance matrix, N(0, I). This has the effect of regularizing the latent space to292

promote a continuous representation of the underlying image data.293

In our implementation, we dynamically adjust the bottleneck capacity (C) of the network during training. The value294

of C is scaled linearly as a function of training iteration, reaching a maximum value Cmax. This ensures that at early295

training iterations the network prioritizes the encoding, while at later iterations this is refined to optimize the decoding.296

The scaling constant γ balances the two terms of the loss function.297

We prepared a training set of 1.2 million images of cells by sampling individual cells from the time-lapse movies. A298

fraction of cells (random 10% of cells in frame) was selected from a random sample of frames (10% of frames in movie)299

and an ROI of varying size around each cell was extracted. These were then downsampled using nearest neighbor300

sampling, to the network input size of (64× 64× 2). We then trained the β-VAE network using γ = 1000, Cmax = 50,301

latent vector z ∈ Rn. We found n = 32 to be the optimal value of the latent space dimensions. Optimization was302

performed using an Adam optimizer for 100 epochs and a minibatch size of 256. Training images were augmented303

on-the-fly by random flipping, rotations and simulated edge cropping.304

Trajectory Synthesis In order to simulate a third class of trajectory, referred to as “synthetic”, we utilised the305

generative property of the decoder network. The first frame of each synthetic trajectory is a real image, i.e. it is decoded306

by the decoder network from the latent-space encoding of an image that actually exists. For the next frame, the encoding307

is adjusted by adding to each latent variable a scalar that is sampled from a Gaussian distribution (with µ = 0.0 and308

σ = 0.2). The image for this second frame is then the decoder output with this new encoding as input. This process is309

then repeated until all the frames of the synthetic movie are generated, with the trajectories taking a random walk in310

latent space.311

Principal Component Analysis (PCA) We used PCA to analyse the learnt representation of the total dataset. The312

principal components of the latent features derived by the β-VAE have a higher degree of interpretability than the latent313

features themselves. PCA was applied to the latent features before analysis of the latent space was undertaken. We used314

the PCA function from Scikit-learn to perform the decomposition into 32 components, once for each of the β-VAE315

latent dimensions.316

Temporal Convolution Network (TCN) The timelapse sequences encoded by the β-VAE become the input features317

(n× t) of a temporal convolution network (TCN) [22]. The procedure for preparing a timelapse movie for input to the318

TCN is as follows. First, each frame in the timelapse movie is normalized such that the pixel values of that individual319

frame have zero mean and unit variance. This is performed on a per-channel basis, such that the RFP and GFP channels320

are normalized separately. Next, the normalized timelapse movie is fed through the encoder network of the trained321

β-VAE. The encoder yields three outputs for each latent variable - the mean, standard deviation, and Gaussian-sampled322

value. This is calculated for every timelapse movie in the dataset.323

Once encoded, the timelapse sequences are transformed from latent space (Z) into principal component space (T) using324

the transform T = ZW, where W are the principal components. and then fed into the TCN for training. The TCN is325

formed of seven convolutional layers with respective dilations of 1, 2, 4, 8, 16, 32 and 64. Each of these layers has 64326

convolutional filters. The output from the convolutional layers is fed into a fate prediction head. This network projects327

the output into a classification, and is composed of a fully connected layer with 128 units, and a final fully connected328

layer with three units that represent the possible classifications of the sequence ("apoptosis", "mitosis" or "synthetic").329

We used a sparse categorical cross entropy loss function to train the network.330

The TCN is trained with a batch size of 128 for 100 epochs. Optimization was performed using the RMSprop optimizer331

with a learning rate of 0.001. Training sequences were augmented on-the-fly by random frame removal, cropping and332

the addition of noise to the encoded sequences. Regularization was ensured by applying batch normalization and a333

dropout rate of 0.3 to the TCN layer of the network.334

Feature saliency We can determine the salient features of the input images by calculating a saliency map (Mc) for335

an input (x). This is achieved by calculating the gradient of the output function Sc with respect to the input during336

backpropagation: Mc(x) = ∂Sc(x)/∂x. In practice, we average n gradient calculations, each with a small added337

Gaussian noise (µ=0.0, σ = 0.1× |(max(Sc)−min(Sc)|) component to the input.338

Software availability A reference implementation of the τ -VAE is available at: https://github.com/339

lowe-lab-ucl/cellx-predict340

Data availability Data is available from the UCL data repository: https://dx.doi.org/10.5522/04/16578959.341
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