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Abstract  24 

The rational design of effective vector control tools requires detailed knowledge of vector behaviour. Yet, 25 

behavioural observations, interpretations, evaluations and definitions by even the most experienced 26 

researcher are constrained by subjectivity and perceptual limits. Seeking an objective alternative to 27 

‘expertise’, we developed and tested an unsupervised method for the automatic identification of video-28 

tracked mosquito flight behaviour. This method unites path-segmentation and unsupervised machine 29 

learning in an innovative workflow and is implemented using a combination of R and python. The workflow 30 

(1) records movement trajectories; (2) applies path-segmentation; (3) clusters path segments using 31 

unsupervised learning; and (4) interprets results. Analysis of the flight patterns of An. gambiae s.s., 32 

responding to human-baited insecticide-treated bednets (ITNs), by the new method identified four distinct 33 

behaviour modes: with ‘swooping’ and ‘approaching’ modes predominant at ITNs; increased ‘walking’ 34 

behaviours at untreated nets; similar rates of 'reacting' at both nets; and higher overall activity at treated 35 

nets. The method’s validity was tested by comparing these findings with those from a similar setting using 36 

an expertise-based method. The level of correspondence found between the studies validated the accuracy 37 

of the new method. While researcher-defined behaviours are inherently subjective, and prone to corollary 38 

shortcomings, the new approach’s mathematical method is objective, automatic, repeatable and a validated 39 

alternative for analysing complex vector behaviour. This method provides a novel and adaptable analytical 40 

tool and is freely available to vector biologists, ethologists and behavioural ecologists. 41 

Author summary 42 

Vector control targets the insects and arachnids that transmit 1 in every 6 communicable diseases worldwide. 43 

Since the effectiveness of many vector control tools depends on exploiting or changing vector behaviour, a 44 

firm understanding of this behaviour is required to maximise the impact of existing tools and design new 45 

interventions. However, current methods for identifying such behaviours are based primarily on expert 46 

knowledge, which can be inefficient, difficult to scale and limited by perceptual abilities. To overcome this, 47 

we present, detail and validate a new method for categorising vector behaviour. This method combines 48 

existing path segmentation and unsupervised machine learning algorithms to identify changes in vector 49 
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movement trajectories and classify behaviours. The accuracy of the new method is demonstrated by 50 

replicating existing, expert-derived, findings covering the behaviour of host-seeking mosquitos around 51 

insecticide treated bednets, compared to nets without insecticide. As the method found the same changes 52 

in mosquito activity as previous research, it is said to be validated. The new method is significant, as it 53 

improves the analytical capabilities of biologists working to reduce the burden of vector-borne diseases, such 54 

as malaria, through an understanding of behaviour. 55 

Introduction  56 

Vector-borne diseases (VBDs) are illnesses caused by Protozoa, viruses and nematodes and transmitted by 57 

infected arthropods, such as mosquitoes and ticks. VBDs threaten 80% of the planet’s population, and are 58 

responsible for an estimated 17% of all human communicable diseases and over 700 000 deaths annually [1–59 

3]. Many effective strategies to reduce the burden of VBDs target the arthropod vector. Such an approach 60 

involves the development and use of interventions that control or exploit vector behaviour and prevent 61 

human contact with pathogens. For example, tools that exploit a vector’s host-seeking behaviour include 62 

decoys or targets for Glossina sp. (tsetse fly, vectors of human animal trypanosomiasis) [4,5] and insecticide-63 

treated bednets (ITNs) for Anopheles sp. (the mosquitoes that transmit malaria) and Aedes sp. (the principal 64 

vector for dengue fever) [6]. Significantly, although these devices are now essential tools for their respective 65 

disease control or elimination programmes in sub-Saharan Africa [7], both continue to undergo further 66 

research to improve their performance and applicability [8,9]. For example, efforts to improve ITNs have 67 

entailed analysis of mosquito net responses through the segregation of flight paths around a human-baited 68 

bednet into distinct movements and behaviours. These behaviours were based on flight characteristics 69 

detected and defined by the researchers and interpreted as responses to the human, the net itself and/or 70 

the presence of any insecticide treatment on the net [9–11]. However, investigations into distinguishing, 71 

defining and classifying vector behaviour in such contexts are still principally based on researchers’ expertise 72 

and experience with the target species’ biology and ethology [9,12–14]. Nevertheless, reliance on such a 73 

solely subjective method is problematic. Expert knowledge is intrinsically inefficient to apply at scale, it is 74 
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domain-specific, subject to cognitive biases and constrained by the physical limits of human perception [15–75 

17].  76 

Much of this subjectivity can be eliminated by the application of objective computational processes. These 77 

processes have the potential to analyse the movement paths of arthropod vectors to isolate and define 78 

behaviours, but do so in an automated, repeatable and objective way. Computational algorithms that can 79 

investigate animal movement and behaviour in this manner are already available. More specifically, 80 

Behavioural Change Point Analysis (BCPA) is a form of path segmentation that splits movements into distinct 81 

behavioural ‘bursts’ at significant changes in activity [18–20], thereby isolating movements. For example, 82 

BCPA has been used to identify the timing of animal movements [21,22] and to quantify animal behavioural 83 

shifts from seasonal environmental changes [23,24]. Secondly, unsupervised machine learning is a statistical 84 

approach that can identify hidden patterns present within datasets and has the potential to cluster, and 85 

therefore define, movements. These clustering algorithms group datapoints into distinct collections based 86 

on any latent structure present within data [25,26] and have been used to identify patterns in neuronal 87 

ensembles in the brain [27] and to identify subgroups within patient populations [28]. However, BCPA and 88 

unsupervised machine learning are yet to successfully classify insect behaviour from movement trajectories 89 

alone. Their application has been restricted in this context, as path segmentation can only identify changes 90 

in behaviour rather than behaviours themselves [18], while clustering requires a sufficiently high signal-to-91 

noise ratio to be successful (something raw movement trajectories do not possess) [26]. 92 

This study proposes and tests that a solution to the problem of a total subjective base for the classification 93 

of vector behaviour is possible by combining the above two identified computational processes. That is, path 94 

segmentation and unsupervised machine learning can be brought together to discriminate and categorise 95 

vector movements into distinct behavioural modes. However, the combination and application of these 96 

algorithms requires a workflow to collect, prepare and analyse trajectories. In this report, we present, 97 

describe and test such a workflow. This is a novel method that was devised to support complex behavioural 98 

analyses, specifically concerning resource location by mosquitoes, in which: (1) detailed spatial and time-99 

series data covering the movement trajectory of a vector in a domain-specific setting is collected [10,29,30] 100 
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(Fig 1A); (2) movement trajectories are segmented into behavioural ‘bursts’ through BCPA [19,20] (Fig 1B); 101 

(3) these behavioural ‘bursts’  are grouped through an optimised clustering algorithm [31,32] (Fig 1C); and 102 

(4) results are interpreted through the analysis of descriptive statistics and examination of representative 103 

samples [33–35] (Fig 1D). 104 

Combining path segmentation and unsupervised machine learning into a single unique workflow provides a 105 

novel method to overcome the inherent subjectivity and perceptual limitations of any investigator-led 106 

alternative. In a first application of the method, we analysed the flight paths of the primary African malaria 107 

vector mosquito, An. gambiae s.s., during host location around an ITN with a single human occupant, 108 

recorded under experimental conditions in the laboratory. We report that the new workflow distinguished 109 

four behavioural types that varied in frequency depending on net treatment. These findings corresponded 110 

well with those in a previous investigator-led interpretation [9], but were achieved in a more objective, 111 

repeatable manner.  112 
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 113 
 114 
Fig 1. Example of workflow process. (A) Time series data detailing a single vector movement trajectory. For each 115 
observation that comprise the movement an identifier, an x-coordinate, a y-coordinate and a time are required. The 116 
triangle is the start of the movement, the square the end of the movement. (B) BCPA is used to segment the movement 117 
into distinct behaviours, here based on significant changes in persistence velocity. Three significant changes in persistence 118 
velocity are identified in this example, giving four tokens of behaviour. BCPA segmentation produces a data frame 119 
summarising each phase. (C) The movement segments are grouped using the optimum clustering algorithm and initial 120 
parameters, as defined by internal validation. Clustering is internally validated through silhouette score, silhouette plot 121 
and manual inspection of a t-SNE visualisation. (D) A label is attached to behavioural groups by interpreting the clustering 122 
results. Interpretation is systemised through analysis of group statistics and examination of representative examples from 123 
each cluster (i.e., those found at the centre of each groups’ t-SNE plot).  124 
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Results  125 

To assess the accuracy of the new workflow, we applied the method to the activity of An. gambiae, a principal 126 

vector of malaria in sub-Saharan Africa, around either an insecticide-treated net (as approved by the World 127 

Health Organisation, hereafter ‘treated’) or an untreated polyester net (‘untreated’). A strain of mosquito 128 

susceptible to all insecticides, Kisumu, was used in both the untreated and treated arms of the experiment. 129 

The results of this application were then compared with those from a previous, expert-derived, study to 130 

validate the accuracy of the workflow. 131 

Data acquisition, cleaning and assessment 132 

Activity rates, based on observations from the raw data, were found to be much higher around an untreated 133 

net, with the number and length of movements significantly lower when an ITN was used (Table 1). When 134 

the autocorrelation of the datasets was assessed, it was found that movement velocity was positively 135 

autocorrelated through 50 time-lags in both the untreated (Fig 2A) and treated (Fig 2B) data. Accordingly, 136 

the data were taken to be suitable for analysis.  137 

 138 

  Untreated Treated 

 
 
 
Tracking - 
Raw  

Replicates 5 5 

Total Length 10 hrs 10 hrs 

Strain Kisumu Kisumu 

Observations 3 514 999 491 708 

Trajectories 9 076 1 472 

Max trajectory length 215.3 secs 124.0 secs 

Mean trajectory length 7.4 secs 6.7 secs 

Mode trajectory length 0.5 secs 0.5 secs 

 
 
Tracking - 
Cleaned 

Observations 3 320 055 453 201 

Trajectories  5 475 798 

Max trajectory length 215.3 secs 124.0 secs 

Mean trajectory length 12.1 secs 11.4 secs 

Mode trajectory length 2.2 secs 2.1 secs 

 
Segmentation 
(BCPA) 

Total phases 33 350 3 979 

Max trajectory phases 61 40 

Mean trajectory phases 6 5 

Mode trajectory phases 2 2 
 139 

Table 1. Untreated and Treated tracking and segmentation figures for evaluation. All BCPA set to detect a significant 140 
change in persistence velocity (‘Velocity*cos(Turning Angle)’), using a window size of 30, a window step of 1, a sensitivity 141 
value of 2 and a cluster width of 1.  142 

 143 
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 144 

Fig 2. Correlograms. (A) Untreated velocity correlogram. Movement speed is autocorrelated with its recent past (through 145 
a maximum of 50 lags). This association becomes weaker as the lag increases (from 0.8 at lag 1 to 0.5 at lag 50). (B) 146 
Treated velocity correlogram. Movement speed is autocorrelated with its recent past (through a maximum of 50 lags). 147 
This association becomes weaker as the lag increases (from 0.7 at lag 1 to 0.3 at lag 50). 148 

Path segmentation 149 

Results of the path segmentation are found in Table 1. Activity of An. gambiae s.s. was again found to be 150 

significantly higher in the untreated trial.  151 

Clustering 152 

Internal validation indicated that the optimal algorithm and parameters to cluster both the untreated and 153 

treated data was an agglomerative clustering algorithm using Ward’s method for linkage and four clusters. 154 

The untreated clustering produced a silhouette score of 0.36 (Fig 3A), while the treated grouping’s silhouette 155 

score was 0.41 (Fig 3B). Results of this analysis are shown in Table 2. 156 

 157 

 Untreated Treated 

Label Swoop Approach React Walk Swoop Approach React Walk 

Count 5 332 7 572 10 850 9 596 924 1 198 1 419 438 
Count PCT (%) 15.99 22.70 32.53 28.77 23.22 30.11 35.66 11.01 
Duration (s) 24 625 46 918 63 280 56 534 33 326 8 259 8 287 3 241 
Duration PCT (%) 12.87 24.52 33.07 29.54 14.39 35.73 35.85 14.02 
Mean Speed (mm/s) 301.06 92.80 122.49 51.42 369.17 90.23 182.32 33.59 
Mean SD (±) 131.40 93.46 181.82 93.83 139.05 102.54 107.16 63.93 
Mean Autocorrelation 0.17 0.03 0.04 0.02 0.27 0.03 0.08 0.02 
Mean Duration (s) 4.62 6.20 5.83 5.89 3.60 6.89 5.84 7.40 

 158 

Table 2. Cluster summaries and interpretation labels for evaluation. ‘Count’ is the total number of discrete phases in 159 
each cluster; ‘Count PCT’ is percentage of phases; ‘Total Duration’ is the total time, in seconds, for each group. ‘Duration 160 
PCT’ is percentage of duration. ‘Mean Speed’ and ‘Mean SD’ are group means given in mm/s. ‘Mean Autocorrelation’ and 161 
‘Mean Duration’ are group means. An autocorrelation of 1.0 represents a perfect correlation and 0.0 represents no 162 
correlation.  163 
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 164 
 165 
Fig 3. Internal validation and clustering. A) Untreated silhouette score and t-SNE plot. 33 350 datapoints on a t-SNE plot 166 
with a perplexity of 75 in four clusters using agglomerative clustering with Ward’s linkage, giving a silhouette score of 167 
0.36. (B) Treated silhouette score and t-SNE plot. 3 979 datapoints on a t-SNE plot with a perplexity of 25 in four clusters 168 
using agglomerative clustering with Ward’s linkage, giving a silhouette score of 0.41. 169 

 170 

Interpreting results 171 

Mean statistics of each group were investigated to interpret the results (Table 2). Similarly broad behavioural 172 

types were found in both arms of the study. After interpretation, these groups were labelled ‘swooping’, 173 

‘approaching’, ‘reacting’ and ‘walking.’ ‘Swooping' captures fast, short and highly autocorrelated 174 

movements; ‘approaching’ slower, less variable behaviour with low autocorrelation; ‘reacting’ faster, more 175 

variable actions with some autocorrelation; and ‘walking’ encompasses long, slow movements that are not 176 

autocorrelated. As only information about vector movements is used in classification, environmental 177 

interactions (e.g., net contact) cannot be included in the definition of behaviours. The labels, and the broad 178 
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nature of each grouping, were then confirmed through investigation of representative samples from each 179 

group.  180 

Conclusions 181 

Seven principal conclusions can be drawn from this analysis into An. gambiae s.s. activity around untreated 182 

and treated nets: (1) in any fixed time period, mosquito flight activity is significantly greater when the human 183 

host is protected within an untreated net compared to a treated net (two sample Z-test, P < 0.01); (2) four 184 

behavioural modes are exhibited around both treated and untreated nets; (3) The proportion of ‘swooping’ 185 

behaviour increases significantly around a treated net (two sample Z-test, P < 0.01); (4) The proportion of 186 

‘approaching’ increases significantly in the presence of a treated net (two sample Z-test, P < 0.01); (5) The 187 

proportion of ‘reacting’ increases significantly around a treated net (two sample Z-test, P < 0.01); (6) The 188 

proportion of ‘walking’ decreases significantly around a treated net (two sample Z-test, P < 0.01); and (7) An. 189 

gambiae s.s. ‘swoop’ faster in experiments with a treated net (GLM, P < 0.001). 190 

External Validation 191 

A similar study of the effect of bednet treatment on vector behaviour had previously been conducted in 192 

Tanzania using wild An. arabiensis, a sibling species closely related to Anopheles gambiae s.s. and that 193 

exhibits many of the same host seeking behaviour characteristics [9]. This previous study used expert 194 

knowledge to identify behaviour types, determining that mosquitos exhibited four behaviours around both 195 

an untreated and treated net (‘swooping’, ‘visiting’, ‘bouncing’ and ‘resting’) and that total activity levels 196 

dropped significantly at ITNs compared to untreated bednet (from a geometric mean time of 73.5 mins to 197 

23.8 mins). Where particular behaviours are concerned, and comparing total mean times, the study found 198 

that ‘swooping’ (where “tracks do not contact the bednet”), ‘visiting’ (“long periods of flight are interspersed 199 

with infrequent net contacts’) and ‘resting’ (“mosquito movement is under 1.33 mm /s”) all increased in the 200 

presence of a treated net (however, this increase in swooping was not found to be statistically significant). 201 

The study also found that ‘bouncing’ (“rapid contacts with the bednet surface… include[ing] walking”) 202 

reduced significantly around the treated net (when evaluating geometric mean times).  203 
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Comparing findings from this study and those of [9], several replications are clear: (1) both studies recognised 204 

four types of mosquito behaviour; (2) total vector activity fell at a treated bednet; (3) ‘swooping’ behaviour 205 

increased with a treated net; and (4) ‘walking’ / ‘bouncing’ is decreased when using a treated net. However, 206 

although ‘swooping’ and ‘bouncing’ from [9] are acceptable analogues to the behaviours ‘swooping’ and 207 

‘walking’ from this study, it is not possible to align the prior study’s ‘resting’ and ‘visiting’ with the 208 

‘approaching’ or ‘reacting’ categories of this study, due to divergent definitions.  209 

As such, comparison with previous results can only be said to validate four of this study’s conclusions (i.e., 210 

(1), (2), (3) and (6) from the Conclusions section). Although there are slight differences between [9] and the 211 

current study (i.e., in vectors observed and the definition of behaviour modes), these differences are minor, 212 

potentially explicable by the use of a wild population, which is inherently more genetically diverse. With this 213 

knowledge, the similarities are such that [9] can be said to support several major findings from this study in 214 

the given setting. Consequently, the external validity of the new method was deemed to be proven.   215 

Discussion  216 

In this study, we present an automated, generalised method for the identification and classification of the 217 

behaviour of vectors based on their movement trajectories. This new workflow combines BCPA [19,20] and 218 

unsupervised machine learning [31,32] and offers a new solution to current challenges faced by vector 219 

biologists and for vector control [1–3]. Although a similar methodology has been proposed for the 220 

investigation of marine animal behaviour [36], to our knowledge this is the first use of such an approach 221 

within entomology. The method has particular relevance in vector biology, where an automated, repeatable 222 

and generalisable means of identifying and defining behaviour that has been validated against vector activity 223 

is most pertinent. 224 

Here we supply a preliminary application of the new method, analysing the behaviour of An. gambiae s.s., in 225 

the presence of both baited untreated bednets and baited ITNs. As the study replicated previous findings, 226 

the method is deemed to be an innovative, validated and productive approach that improves and expands 227 

the existing toolkit available to vector biologists. Furthermore, the method is repeatable, as any individual 228 
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with the same dataset will produce the same behavioural tokens and behavioural types; it is generalisable, 229 

as it is not limited to a single domain, but can be applied to any vector in any setting; and its foundation in 230 

mathematical processes ensures it is immune to observer bias. The accuracy of the new method is confirmed 231 

using both internal and external validation [37,38]. The former ensures the correct algorithm and initial 232 

parameters are applied, while the latter tests the accuracy of the approach itself. Internal validity is measured 233 

in two ways: (1) formal metrics of similarity between datapoints (i.e., silhouette scores) are studied; and (2) 234 

t-SNE visualisations of cluster assignment are manually inspected [39–41]. External validation is achieved by 235 

replicating known results [42]. The new method is used to compare the behaviour of an insecticide 236 

susceptible strain of An. gambiae s.s. (Kisumu) around both Long-lasting Insecticidal Nets (ITNs) and 237 

untreated nets, producing findings that are corroborated by previous research [9]. 238 

The new method offers advantages over alternative, objective approaches that are theoretically automated, 239 

repeatable and generalisable. One such method, Hidden Markov Models (HMMs) are probabilistic models 240 

that determine the underlying hidden states (e.g., behavioural modes) that cause an observed process (e.g., 241 

movement trajectories) [43]. However, for HMMs to apply in this instance, a vector’s behavioural states must 242 

be a first-order Markov process. That is, a vector’s behaviour at time t must be determined solely by their 243 

behavioural state at time t-1 [43–45]. Nevertheless, it is reasonable to assert that vector behaviour is 244 

influenced by internal and external drivers acting over greater periods of time than this and that vector 245 

ecology is determined by a wider range of datapoints that cannot be described by a first-order Markov 246 

process and an HMM [46]. To capture this more nuanced conception of vector behaviour, a sliding window, 247 

such as is applied in BCPA, is needed. Similarly, although several path segmentation methods exist for 248 

detecting changes in animal movements other than BCPA [47–50], a form of segmentation that can account 249 

for the particular difficulties encountered when tracking vectors must be used in this instance. As the key 250 

difficulty here is the frequency of lost frames (caused by the recording system momentarily losing track of 251 

the small vector), a method that can handle an irregular dataset is required. As BCPA is a likelihood-based 252 

form of path segmentation, which sweeps an analysis window over an entire movement path to identify 253 

significant shifts in a parameter value, it provides a robust method for dissecting vector activity into 254 
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behavioural tokens that can account for irregular temporal measurement intervals and does so without any 255 

a priori assumptions [19,20].  256 

Although offering several advancements, the method presented here is subject to its own limitations. One 257 

such constraint concerns the clarity of the silhouette created by any grouping of behaviours. That is, as 258 

behavioural units are nebulous concepts, any silhouette of their classification will be equally unclear and 259 

datapoints from different behaviours will not necessarily have a high separateness [51–53]. For example, the 260 

distinction between fast walking and slow running is not clear. Consequently, the identification of strong 261 

patterns when assessing the clustering of behaviour is unlikely. This is shown in the contiguous silhouettes 262 

and the silhouette values produced by movement data (Fig 3). Additionally, it is important to make explicit 263 

the assumptions on which this study is based. These assumptions are that vectors are always in some 264 

behavioural state, that vectors have more than one potential behavioural mode and that these modes are 265 

discrete and expressed over a period of time. Finally, it needs to be clarified that the method presented here 266 

is not totally objective. Since the workflow’s Interpretation stage requires experts to attach a label to clusters, 267 

a level of subjectivity is still required to implement this analysis. Although this labelling is not theoretically 268 

necessary to produce and compare results (as clusters can be described by their characteristics alone), a level 269 

of subjectivity is still needed to interpret these results and apply them to everyday discourse concerning 270 

behaviour [51–53]. 271 

In conclusion, we present and test a new workflow that represents an innovative use of path segmentation 272 

and unsupervised machine learning to classify vector behaviour and expands the analytic toolkit available to 273 

researchers. This represents a promising development that can improve the evidence base available to 274 

vector biologists and open new avenues for the exploitation of vector behaviour to improve intervention 275 

performance. Given that global vector control is currently facing a raft of challenges – including 276 

environmental and species distribution changes [2], limited resources [3] and an increase in insecticide 277 

resistance [54] – novel methodological approaches are more important than ever. Furthermore, it is likely 278 

that developments can be made to improve performance and applicability. For example, an analysis of 279 

transitions between behaviours could be undertaken, potentially providing additional insights into vector 280 
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activity and ensuring ecological limits to behavioural transitions have been captured. Finally, the output from 281 

this workflow could be used as input to a supervised machine learning algorithm, increasing the efficiency of 282 

future analyses. 283 

Materials and Methods  284 

We present a four-stage workflow in which vector movement trajectories are first collected and pre-285 

processed via BCPA. The most appropriate unsupervised clustering algorithm, and initial parameters, are 286 

then identified and applied before the workflow concludes with the interpretation of results, decoding and 287 

attaching a behavioural label to each group. The whole workflow is then validated by measuring the accuracy 288 

of its results. 289 

Resources 290 

The workflow presented here is implemented using a combination of R and Python. R is used for pre-291 

processing, utilising the BCPA package built for that language. Python, through a Jupyter notebook, is used 292 

at the clustering stage to exploit the scikit-learn library. We recommend that the Anaconda platform 293 

be used to access RStudio and JupyterLab, as up-to-date installations for Windows, Linux and Mac can all be 294 

found in that single distribution. Code, and further details, needed to run the workflow can be accessed 295 

through a public GitLab repository: https://gitlab.com/MTFowler/lstm_flightcluster. All analysis found here 296 

was performed on a ThinkPad X1 Carbon, using an Intel i7-7500u CPU. 297 

All procedures associated with the collection of mosquito flight data are as described in [9,11,55,56]. Briefly, 298 

the ‘Kisumu’ laboratory strain of An gambiae, a primary malaria vector across sub-Saharan Africa and 299 

susceptible to all insecticides, was used in both the untreated and treated arms of the experiment. All 300 

mosquito flight assays were completed in a purpose-built climate-controlled insectary in Liverpool. 301 

Data acquisition, cleaning and assessment 302 

Vector movement paths were represented by spatial identifiers ordered sequentially via a time variable [18–303 

20,30]. Each event was captured by a unique identifier, an x (longitude or easting) coordinate, a y (latitude 304 

or northing) coordinate and a time variable (Fig 1A). This data was collected using an optical imaging and 305 
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flight-tracking system detailed in [55,56]. This system allowed for multiple vectors to move unconstrained 306 

within an enclosed area, a subset of this space being within the field of view of the recording system, creating 307 

the recording volume. After collection, movement trajectory data was cleaned and assessed (Table 1). 308 

Movements considered noise were removed. This ‘noise’ included short tracks deemed to be isolated 309 

fragments from a larger track, or disturbance that has been missed during video cleaning [9–11]. 310 

Furthermore, although BCPA accounts for semi-regular sampling [19,20], allowing for some irregularity in 311 

the dataset, movement tracks were removed from the analysis if they contained two datapoints at the same 312 

time or if they had especially large time gaps (i.e., greater than 10 seconds). Finally, as path segmentation 313 

assumes that all time series data displays serial dependence, it was confirmed that the dataset was 314 

autocorrelated (i.e., that the velocity of each datapoint is statistically correlated with its recent past) [20]. 315 

This was accomplished in R using the ‘Autocorrelation and Cross-Correlation Function Estimation’, ACF().  316 

Path segmentation 317 

With a correctly formatted dataset, that had been cleaned and assessed, BCPA was applied. BCPA is a form 318 

of path segmentation that identifies changes in animal behaviour, at the path-level, based on significant 319 

shifts in a parameter value of an organism’s movement trajectory. As BCPA accepts movement paths as 320 

sequentially ordered step lengths, turning angles and velocities, rather than the spatial identifiers collected 321 

by tracking technology, spatial values were converted into the required variables using the GetVT() 322 

function from R’s BCPA package [57]. Within BCPA there are four user defined parameters: (1) the 323 

‘Parameter Value’ (the response time-series variable in which significant changes will identify a behavioural 324 

change point); (2) the ‘Window Size’ (the number of datapoints the window will capture when sweeping); 325 

(3) a sensitivity parameter ‘K’; and (4) the ‘Cluster Width.’ For arthropod activity, it was determined that 326 

optimal segmentation occurs at a significant change in persistence velocity (Velocity*cos(Turning Angle)), 327 

using a window size of 30, a window step of 1, a sensitivity value of 2 and a cluster width of 1. These initial 328 

parameters were determined following BCPA documentation recommendations [19,20,57] and to maximise 329 

sensitivity to behavioural shifts. (Note, however, that this increase in sensitivity amplifies the chances of 330 

spurious shifts being detected which will ultimately result in transitions to the same behaviour in the final 331 
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output. However, as the alternative is to lower sensitivity and potentially miss legitimate changes in 332 

behaviour, a high sensitivity, with corollary spurious shifts, is preferred.) 333 

Clustering 334 

To determine the optimal unsupervised learning algorithm and initial parameters for clustering, internal 335 

validation was undertaken. Following [37,38], the form of internal validation used was silhouette scores 336 

[58,59] and visual inspection of t-SNE plots [39–41]. A silhouette score measures how well data had been 337 

grouped, comparing each object’s similarity to others within its own cluster (group tightness) and those from 338 

other clusters (group separation) and was calculated using Python’s silhouette_score() function from 339 

the metrics module of the scikit-learn library. This measure gives a score between -1.00 and +1.00, 340 

with a silhouette value below 0.20 showing no structure is present in the data and the grouping is invalid; a 341 

figure over 0.70 representing a strong structure and a valid grouping; and a silhouette score around 0.50 342 

illustrating that a reasonable structure has been found within the data and that the clustering is acceptable 343 

[59]. Detailed silhouette coefficients for each sample was then visualised using a silhouette plot in Python 344 

with the silhouette_samples() function from the sklearn.metrics  module (Fig 1C). As all 345 

clusterings require manual review to validate appropriateness [37], the high-dimensional data was reduced 346 

and positioned in a two-dimension map using t-distributed Stochastic Neighbour Embedding (t-SNE) [39]. 347 

Once mapped, the appropriateness of the clustering was verified through manual visual inspection. Review 348 

ensured there were acceptable levels of cohesion between members of the same group and separateness 349 

between members of different groups. t-SNE was undertaken using the TSNE() function from the 350 

sklearn.manifold module found within Python. When performing t-SNE, the user needs to define the 351 

perplexity (an estimate number of nearest neighbours for each datapoint), with larger datasets requiring a 352 

larger perplexity [41]. Consequently, perplexity was fine-tuned to show global geometry.  353 

Once the optimum algorithm and parameters were determined by silhouette score and inspection of t-SNE 354 

plot, findings were applied to the BCPA output. Python’s scikit-learn library was used as it is an efficient 355 

means of building standard machine learning models [60]. (Other packages, such as R’s class, are available 356 
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when implementing unsupervised machine learning, however different packages may produce different 357 

results.)  358 

Interpreting results 359 

The final stage of analysis is to interpret and label clusters [35]. Although the naming of individual clusters 360 

can be systematised, its final interpretation is ultimately a somewhat subjective process. Interpretation here 361 

entailed scrutiny of the attributes of each cluster. Taking each group’s mean velocity, standard deviation, 362 

autocorrelation and duration, an expert analysed and named the behaviour associated with the movement 363 

classes. This initial understanding was then confirmed and refined through visual inspection of 364 

representative samples. ‘Representative’ was defined as those samples found at the centre point of a group 365 

and such datapoints were deemed to be the most typical of that behaviour class [33,34]. Consequently, 366 

interpretation of results was bolstered through centroid analysis, with those datapoints at the heart of each 367 

group’s t-SNE mapping, or as close to the centre as possible, isolated and visually inspected by an expert. 368 

Multiple such examples close to the centre were isolated and inspected, thereby confirming, or refining, the 369 

initial analysis.  370 

Using both the analysis of descriptive statistics and centroid analysis, an expert was able to interpret the 371 

broad behavioural type of each cluster and attach a sensible label. If no label was able to be attached, either 372 

because no behaviour is being demonstrated or behaviours are spread between clusters, the full workflow 373 

was undertaken again. By manipulating the user defined settings during BCPA or dimensionality reduction, 374 

significant changes in clustering can result. Consequently, these parameters were fine-tuned to optimise 375 

performance and final behaviour identification. 376 

External Validation 377 

To ascertain the accuracy of the new method, its performance was externally validated by comparing results 378 

concerning the difference in flight patterns of An. gambiae s.s. around human-baited insecticide-treated 379 

bednets (ITNs) and untreated bednets. Findings generated by the new, computation-derived, method were 380 

contrasted with those from a previous study that employed the existing, expert-defined, method for 381 
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behavioural classification. Although a standard method of external validation is through comparison against 382 

an a priori dataset, testing whether a known, true, clustering can be recreated [38], this was not possible in 383 

this instance. There is no known, incontrovertibly true, grouping for this An. gambiae s.s. behaviour and 384 

therefore no such comparison can be made. Consequently, external validation was established via 385 

confirmation with previous results. That is, the workflow’s accuracy as a method was corroborated by 386 

comparing its conclusions to those already present in the literature [9] to verify whether prior findings could 387 

be replicated. 388 
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