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Main Conclusion 

Meta-QTL analysis in wheat for major quality traits identified 110 MQTLs with reduced confidence interval. 

Candidate gene mining and expression analysis discovered differentially expressed genes involve in quality 

traits. 

Abstract 

A meta-analysis of quantitative trait loci (QTLs) associated with following six major quality traits (i) 

arabinoxylan, (ii) dough rheology properties, (iii) nutritional traits, (iv) polyphenol content, (v) processing 

quality traits, and (vi) sedimentation volume was conducted in wheat.  For this purpose, as many as 2458 QTLs 

were collected from the 50 mapping studies published during 2013-20. Of the total QTLs, 1126 QTLs were 

projected on to the consensus map saturated with 2,50,077 markers resulting into the identification of 110 meta-

QTLs (MQTLs) with average confidence interval (CI) of 5.6 cM. These MQTLs had 18.84 times reduced CI 

compared to CI of initial QTLs. Fifty-one (51) MQTLs were also verified with the marker-trait associations 

(MTAs) detected in earlier genome-wide association studies (GWAS). Physical region occupied by a single 

MQTL ranged from 0.12 to 749.71 Mb with an average of 130.25 Mb. Candidate gene mining allowed the 

identification of 2533 unique gene models from the MQTL regions. In-silico expression analysis discovered 

439 differentially expressed gene models with >2 transcripts per million (TPM) expression in grains and related 

tissues which also included 44 high-confidence candidate genes known to be involved in the various cellular and 

biochemical processes related to quality traits. Further, nine functionally characterized wheat genes associated 

with grain protein content, high molecular weight glutenin and starch synthase enzymes were also found to be 

co-localized with some of the MQTLs. In addition, synteny analysis between wheat and rice MQTL regions 

identified 23 wheat MQTLs syntenic to 16 rice MQTLs. Furthermore, 64 wheat orthologues of 30 known rice 

genes were detected in 44 MQTL regions. These genes encoded proteins mainly belonging to the following 

families: starch synthase, glycosyl transferase, aldehyde dehydrogenase, SWEET sugar transporter, alpha 

amylase, glycoside hydrolase, glycogen debranching enzyme, protein kinase, peptidase, legumain and seed 

storage protein enzyme. 
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Introduction 

Wheat (Triticum aestivum L.) is a globally grown cereal crop and is a major contributor of calories and 

protein to the human diet. Currently, wheat is widely consumed and processed into bread, noodles, cakes, pasta, 

beer, and other products. Wheat research has greatly contributed to its yield enhancement and disease resistance, 

but focus on quality of the produce took the back stage while enhancing yield. Hence, developing the high 

yielding varieties with enhanced quality characters is the foremost concern of the breeders (Nuttall et al. 2017). 

Improving end-use qualities is a tough endeavour because firstly, it is very difficult to measure the seed quality 

and rheological properties such as grain protein content (GPC), sedimentation rate (SDS), hectolitre weight 

(HW), 1000-grain weight (TGW), wet gluten content (WGC), dry gluten content (DGC), flour water absorption 

(FWA), dough development time (DDT), dough stability time (DST), mixing tolerance index (MTI), break 

down time (BDT) and kernel hardness (KH) as they are labour intensive and also require much seeds for 

analysis. Secondly, quality characters are complex traits governed by a plethora of gene networks that are 

largely influenced by several environmental conditions (Quraishi et al. 2017). 

Quantitative trait locus (QTL) analysis has emerged as an effective approach for dissecting complex 

traits into component loci and studying the relative effects of the loci on the target trait (Doerge 2002). Since the 

first report on QTL analyses for wheat quality traits published in 1990s (Powell 1990),  a plentiful of QTLs have 

been identified using different mapping populations to underpin the genetic architecture underlying end-use 

quality, including GPC (Huang et al. 2006; Mann et al. 2009), dough rheological properties  (Huang et al. 2006; 

Mann et al. 2009), SDS (McCartney et al. 2006), falling number (FN) (Fofana et al. 2009) and starch pasting 

properties (Mohler et al. 2014). However, the rationality of these QTL mapping results is strongly influenced by 

the experimental conditions, type and size of mapping population, density of genetic markers, statistical 

methods used among others (Swamy et al. 2011). Thus, the practical implication of these QTLs for quality 

improvement via molecular QTL cloning and marker-assisted selection has been rather limited (Quraishi et al. 

2017). Considering this challenge, it is desirable to identify QTLs that show major effect on target phenotype 

and are consistently detected across the multiple genetic backgrounds and environments. 

Meta-analysis of available QTLs enable the identification of consensus and robust QTLs or MQTL 

regions that are most frequently associated with trait variation in diverse studies and reduce their confidence 

intervals (CIs) (Goffinet and Gerber 2000; Veyrieras et al. 2007). Software packages, such as Meta-QTL and 

BioMercator, facilitate meta-analysis of QTLs derived from independent studies by formulating and embedding 

specific sets of algorithms for exact evaluation and recalculation of the genetic position for the given QTLs 
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(Wang et al. 2014). Among them, BioMercator is the most advanced and commonly used software for 

projection of initial QTLs on consensus map and identification of MQTLs. In wheat, meta-QTL analysis has 

already been conducted for different traits, including the ear emergence (S et al. 2009), fusarium head blight 

(Liu et al. 2009; Venske et al. 2019; Zheng et al. 2021), tan spot resistance (Liu et al. 2020), pre-harvest 

sprouting tolerance (Tyagi and Gupta 2012), abiotic (drought and heat) stress tolerance (Acuña-Galindo et al. 

2015; Darzi-Ramandi et al. 2017; Kumar et al. 2020), yield (Yang et al.; Tyagi et al. 2015; Quraishi et al. 2017; 

Kumar Saini et al. 2021) and baking-quality and GPC (Quraishi et al. 2017). Quraishi et al. (2017) identified the 

six and eight MQTLs for GPC and baking quality traits, respectively, using the 155 initial QTLs collected from 

eight interval mapping studies. SError! Bookmark not defined.ince, large number of QTLs have been reported 

after the meta-QTL analysis for quality traits by Quraishi et al. (2017) in wheat, the present study involving 

meta-QTL analysis was performed (based on interval mapping studies published during 2013-20) to supplement 

the list of MQTLs and candidate genes reported in the earlier MQTL study for quality traits (Quraishi et al. 

2017). Further, the results of the meta-analysis were integrated with GWAS and transcriptomics studies to 

identify the promising genomic regions and important CGs, which affect quality traits in wheat. Further, by 

utilizing the synteny and collinearity of wheat with other cereals (Sorrells et al. 2003), ortho-MQTL analysis 

was conducted to see if the generated information can be transferred to other cereals such as rice. The findings 

of the present study may help in identification of diagnostic markers and aid marker-assisted breeding to 

improve quality traits in wheat.  

Material and methods 

Bibliographic search and QTL data cumulation 

A comprehensive bibliographic search and data retrieval on the published papers from 2013 to 2020 

enabled us to compile information from the available studies. From each independent study, the following 

information was obtained: (i) QTL name (wherever available), (ii) flanking or closely linked markers, (iii) 

peak position and CI, (iv) LOD score, (v) phenotypic variation explained (PVE) or R2 value for each QTL 

and (vi) type and size of the mapping population (S1 and S2 Tables). Wherever, information about the peak 

position of the QTL was missing, it was calculated as the mid-point of the two markers flanking the QTL, and 

when LOD scores of individual QTLs were unavailable from a particular study, LOD score of 3 was considered 

for all the QTLs identified in the concerned study. 
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All the quality traits were grouped into the following six major trait categories: (i) Arabinoxylan 

(Ax) recorded as total Ax, sucrose solvent retention capacity (SRC), sucrose softness equivalent SRC, water-

extractable and water-unextractable Ax; (ii) Dough rheology properties (DRP) recorded as mixolab, mixograph, 

mixogram, alveograph, farinograph, water SRC, alkaline SRC, dough mixing, and pasting properties; (iii) 

Nutritional traits (NT) recorded as lipoxygenase activity, yellow pigment, Fe, Zn, β-glucan, protein, and starch 

content; (iv) Polyphenol content (PPO) recorded as polyphenol oxidase activity, flour colour, and loaf colour; 

(v) Processing quality traits (PQT)  recorded as milling and baking qualities; and (vi) Sedimentation volume 

(SV) recorded as SV, sedimentation rate and zeleny SV (S3 Table). 

Construction of consensus map 

An R package LPmerge (Endelman and Plomion 2014) was used to construct a consensus map (named 

as Wheat_Reference_GeneticMap-2021) by merging the following linkage maps: “Wheat_Composite_2004” 

(http://wheat.pw.usda.gov), “Wheat_Consensus_SSR_2004” (Somers et al. 2004); “Durum wheat integrated 

map” (Marone et al. 2013); and four SNP array based maps developed using “Illumina 9K iSelect Beadchip 

Array” (Cavanagh et al. 2013), “Illumina iSelect 90K SNP Array” (Wang et al. 2014), “Wheat 55K SNP array” 

(Winfield et al. 2016) and “AxiomR, Wheat 660K SNP array” (Cui et al. 2017). Markers flanking the initial 

QTLs identified from different mapping studies were also integrated on to the consensus map (S4 Table). 

QTL Projection, meta-QTL and ortho-MQTL analysis 

For the QTLs with no CI available, CI (95%) was calculated by using the following population-specific 

equations (Darvasi and Soller 1997; Venske et al. 2019). 

For RIL, 

 

 

For DH, 
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Further, careful examination and evaluation of individual QTLs for genetic map or QTL-related 

information led us to exclude 472 QTLs from the further analysis. Information on LOD score, PVE, genetic 

position (i.e., CI and peak position) from the remaining 1986 QTLs were compiled and used for projection 

on consensus map using the QTLProj tool of BioMercator V4.2. Meta-analysis was then performed for 

the individual chromosomes using Veyrieras two-step approach available in the software. In the first step, 

the best QTL model (used to ascertain the number of MQTL per chromosome) were computed by using 

the following five criteria: (i) Akaike Information Criterion (AIC), (ii) corrected Akaike Information Criterion 

(AICc), (iii) Akaike Information Criterion 3 (AIC3), (iv) Bayesian Information Criterion (BIC) and (v) 

Approximate Weight of Evidence Criterion (AWE). QTL model which had the least criterion value and zero 

delta value was considered as the best model for the analysis. In the second step, selected model was 

considered to determine the number of MQTLs on each chromosome (based on number of input QTLs on 

common genetic map), their consensus positions (based on variance of input QTL positions) and 95% CI 

(based on variance of input QTL intervals) (Sosnowski et al. 2012). 

To investigate the ortho-MQTLs for quality characters, a previous meta-QTL study (Youlin et al. 2021) 

conducted in rice for starch pasting properties was used. To mine the ortho-MQTLs between wheat and rice, 

orthologous regions between the two species were investigated by using EnsemblPlants database. Candidate 

genes available in selected MQTL regions were used to search the corresponding rice genes. MQTL regions 

with at least 4 conserved genes present in wheat and rice genome were considered as the ortho-MQTL (Youlin 

et al. 2021). 

Delineating physical location and candidate gene mining in MQTL regions 

Nucleotide sequences of the markers flanking the MQTLs were retrieved from either of the following 

databases/websites: (i) the GrainGenes (https://wheat.pw.usda.gov/GG3), (ii) Diversity array technology 

(https://www.diversityarrays.com) and (iii) CerealsDB 

(https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php).  These sequences were used to 

obtain the physical positions of markers by BLASTN searches against Wheat Chinese Spring IWGSC RefSeq 

v1.0 genome assembly available in EnsemblPlants database (http://plants.ensembl.org/index.html). Physical 

positions of some of the SNP markers were directly obtained from the JBrowse-WHEAT URGI database 

(https://urgi.versailles.inra.fr/jbrowseiwgsc/).  

Peak physical positions of MQTLs were calculated by using the following formula: 
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Gene models available in 2 Mb genomic region i.e., 1 Mb region on either side of the MQTL peak position were 

retrieved using the ‘BioMart’ tool of EnsemblPlant database (https://plants.ensembl.org/biomart/). Functional 

characterization and gene ontology (GO) analysis for available gene models was also carried out using the same 

tool BioMart. 

Expression analysis for gene models 

An adaptable platform to create a gene expression interface ‘Wheat expression browser’ powered by 

expVIP was used to analyse the expression of gene models available in the MQTL regions (Borrill et al. 2016). 

Following relevant gene expression datasets: (i) grain tissue-specific developmental time course (CS grain, grain 

dissection, early grain) (Gillies et al. 2012; Li et al. 2013; Pfeifer et al. 2014); (ii) grain tissue-specific 

expression at 12 days post anthesis (Pearce et al. 2015) and (iii) grain developmental time course with 4A 

dormancy QTL (Barrero et al. 2015) were used for this purpose. These studies provided the expression data on 

“morphological stages of developing wheat grain”, “inner pericarp, outer pericarp and endosperm layers from 

developing grain of bread wheat at 12 days post-anthesis”, “aleurone and starchy endosperm tissues of the wheat 

seed at aleurone layer development time of 6, 9 and 14-days post anthesis” and “candidate genes underlying the 

grain dormancy in wheat”, respectively. 

Only the gene models with ≥ 2 TPM (transcripts per million) expression were considered in the present 

study (GP et al. 2013). Further, protein sequences of the known genes associated with quality traits (collected 

from the literature) were retrieved and BLASTP searches were made against the wheat genome database 

available in EnsemblPlants to find their physical positions. Then, the physical positions of these genes were 

compared with the physical coordinates of the MQTLs to determine their co-localization, if any. 

Validating MQTLs with MTAs identified in earlier GWA studies 

Information from the 11 independent GWA studies on most stable and significant MTAs were 

collected to validate the MQTLs identified in the present study. These GWA studies involved one durum wheat 

population (with population size 194), four spring wheat populations (with population size ranging from 189 to 

2038), three winter wheat populations (with population size ranging from 267 to 1325) and three mixed 

population of spring and winter wheat (with population size ranging from 163 to 4095). PError! Bookmark 

not defined.hysical positions of each significant and stable SNPs associated with the trait were obtained from 
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the respective studies and/or JBrowse-WHEAT URGI database (https://urgi.versailles.inra.fr/jbrowseiwgsc/). 

Finally, physical positions of these MTAs were compared with the physical coordinates of the MQTLs, to find 

any MQTL co-localizing with at least one MTA and such MQTLs were considered as a GWAS-

validated/verified MQTL. 

MQTL characterization using cloned genes from the rice 

Functionally validated rice genes associated with quality traits (involving starch and protein metabolism, 

embryo and endosperm development, sugar transportation, grain development, etc.) were collected from 

the available literature and their protein sequences were retrieved from the Rice Annotation Project 

Database (rap-db) (https://rapdb.dna.affrc.go.jp/index.html). The protein sequences of rice genes were 

then BLAST against wheat genome to identify their corresponding wheat homologues available in the 

MQTL regions. 

Results 

Characterization of QTL studies involving quality traits 

Characteristics of 50 independent mapping studies involving 63 bi-parental populations were 

rigorously reviewed to compile information on available QTLs. In total, 2458 QTLs associated with quality 

traits were collected and they were found to be distributed unequally on all the wheat chromosomes (Fig 1a). 

Maximum number of QTLs were present on the sub-genome B (995 QTLs), while the minimum number of 

QTLs were present on the sub-genome D (607 QTLs). There were 45 sets of RIL populations (population size 

ranging from 83 to 171) and 18 sets of DH populations (population size ranging from 94 to 192) (Fig 1b, c; S1 

and S2 Tables). The number of studies involving different DH and RIL populations, molecular markers and 

mapping methods are presented in Fig 1c, d and respectively. Most of the mapping studies used SSR as the 

markers and composite interval mapping (CIM) as method for QTL mapping, respectively (Fig 1d, e). Number 

of QTLs associated with the different quality traits also varied (from 36 QTLs for Ax content to 962 QTLs for 

DRP). PVE values and LOD score for individual QTLs ranged from 0.01 to 95.24 per cent with a mean of 9.31 

per cent and from 0.99 to 55.32 with an average of 5.74, respectively (Fig 1f, g; S1 Table). Peak positions of the 

initial QTLs also varied (ranging from 0 to 678.2 cM with a mean of 108.18 cM) (Fig 1h). 

Construction of consensus genetic map 
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The consensus map, “Wheat_Reference_GeneticMap-2021” showed significant variation for the 

genetic lengths of the individual linkage groups/chromosomes (ranging from 361.8 cM for 1A to 808.6 cM for 

2A, with a mean of 649.4 cM) and for the number of markers positioned on a single chromosome (ranging from 

2,225 on 4D to 21,253 on 3B with an average of 11908.4 markers per chromosome) (Fig 2). The total length of 

the consensus map measured 13,637.4 cM which included a total of 2,50,077 markers of different types such as 

AFLP, RFLP, SSR, SNP, etc. Since, different genetic maps with varying number and type of markers were used 

to construct the consensus map, the distribution of markers on the chromosomes was uneven and density of the 

markers was comparatively higher at the fore-end of the chromosome (Fig 2; S4 Table). Marker density on 

individual chromosomes ranged from 5.7 markers/cM on 4D to 46.2 markers/cM on 1A with a mean of 18.3 

markers/cM on whole genome. 

MQTLs identified for quality traits 

Of the total 1986 QTLs with complete information available for analysis, only 1128 (56.79% QTLs 

were projected onto the consensus map. Among the 1128 QTLs, 1121 QTLs were grouped into 110 MQTLs, 7 

QTLs remained as singletons (Table 1; Fig 3 and 4). Eight hundred and fifty-eight (850) QTLs were not 

projected onto the consensus map owing to either of the following reasons: (i) there were no common markers 

between the consensus and original maps, and (ii) the QTLs had low R2 values, resulting in a large CI. The 

number of MQTLs on individual chromosomes ranged from 2 (on chromosomes 5B, 6B and 7A) to 9 (on 

chromosome 1A) (Fig 3a; S5 Table). The number of clustered QTLs per MQTL ranged from 2 (in several 

MQTLs) to 85 (in MQTL1B.1) with 11 MQTLs involving at least 20 initial QTLs (Fig 3d; S5 Table). Of these 

11 MQTLs, four were located on chromosome 1B and remaining each of the seven MQTLs were located on 

different chromosomes. Since, these 11 MQTLs integrated the QTLs from different populations, they were 

considered to be more stable and reliable MQTLs for wheat quality breeding. The chromosome-wise average CI 

(95%) for the initial QTLs and MQTLs (presented in the Fig 3c) ranged from 14.87 cM (1D) to 95.55 cM (3D) 

for QTLs and from 0.55 cM (1D) to 34.30 cM (2D) for MQTLs. The average CI of MQTLs (5.56 cM) was 

18.84-fold less than that of initial QTLs (40.35 cM), and there were significant differences among different 

chromosomes (Fig 3c). The average CI of MQTLs reduced maximum for chromosome 5B (72.55 times) and 

minimum for chromosome 2D (1.99 times) compared to the CI of initials QTLs located on corresponding 

chromosomes. 
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Individual QTLs for processing quality traits were found to be associated with as many as 98 MQTLs 

and for that of the other traits are given in Fig 3b and S5 Table. All MQTLs were associated with at least one 

quality trait (Fig 3e). As many as 38 MQTLs were exclusively associated with only a single quality trait, 

whereas, four MQTLs (viz., 2D.2, 5A.2, 5D.4, and 7B.3) were found to be associated with 5 quality related 

traits (S5 Table). None of the MQTL included the QTLs associated with all of the six studied traits. MQTLs 

associated with multiple traits are considered to be more important for the breeding programmes aiming towards 

the simultaneous improvement of multiple quality traits. In this regard, MQTLs (viz., 2D.2, 5A.2, 5D.4, and 

7B.3) were considered as more promising and breeders can use them to enhance multiple quality traits 

simultaneously. 

Table 1. Summary of wheat MQTLs associated with different quality traits 

S. 
No. 

MQT
Ls 

Genetic 
position (cM) Flanking genetic markers 

Physical 
position (bp) 

Number of 
QTLs 

projected Start End Start End Start End 

1 
MQTL
1A.1 

14.7 15.1 IWB72800 D-1377838 9.5 36.6 24 

2 
MQTL
1A.2 

22.3 22.7 
3980487_1al_1115

1 
IWB35066 39.6 41.7 20 

3 
MQTL
1A.3 

36.1 36.4 
BobWhite_c5793_

372 
3955448_1al_1513 3.5 22.7 10 

4 
MQTL
1A.4 

42.6 43.1 3881592_1al_184 wPt2311 22.7 23.7 14 

5 
MQTL
1A.5 

68.6 69.1 AX-109031595 wPt8172 300.4 489.5 6 

6 
MQTL
1A.6 

85.5 87.8 
Tdurum_contig471

83_205 
Xwpt3698 30.5 42.3 2 

7 MQTL
1A.7 

92.9 94.8 Xbarc174 wPt1906 41.9 42.3 15 

8 
MQTL
1A.8 

118.4 123.1 snp2584 wPt7030 550.3 551.3 10 

9 
MQTL
1A.9 

156.6 156.9 D_3022884 Xcfe0242b 516.4 530.3 12 

10 
MQTL
1B.1 

41.2 41.4 AX-95133874 Xwmc44 635.0 635.1 85 

11 
MQTL
1B.2 

66.3 66.8 IWB65744 AX-94462160 442.2 646.1 21 

12 
MQTL
1B.3 

77.0 77.6 IWB13393 IWA7298 542.4 543.0 27 

13 
MQTL
1B.4 

110.0 111.7 Ku_c241_460 IWB6906 328.0 548.6 12 

14 
MQTL
1B.5 

195.5 197.3 wPt1973 wPt_2315 7.2 8.2 21 

15 
MQTL
1B.6 

428.3 439.3 
Kukri_rep_c11199

1_498 
XPaggMcgg6 408.6 553.0 9 

16 
MQTL
1D.1 

43.6 43.9 Xbarc229.2 cfd92 28.7 31.0 21 

17 
MQTL
1D.2 

47.2 47.6 
2257978_1dl_1591

3 
2281626_1dl_570 420.7 449.0 11 

18 MQTL
1D.3 

60.1 60.7 D_1073588 D_1234123 433.5 435.8 14 
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19 
MQTL
1D.4 

76.0 76.0 TA004476-0719 Glu_D1 411.6 411.7 2 

20 MQTL
1D.5 

77.0 77.0 TA004476-0719 Glu_D1 411.6 411.7 16 

21 
MQTL
1D.6 

109.4 110.6 AX-95218664 AX-94769043 494.6 573.1 10 

22 
MQTL
1D.7 

156.9 158.3 IWB9092 IWB56444 459.0 460.1 12 

23 
MQTL
2A.1 

8.1 11.9 Xgwm328_2A GBS_210 8.8 16.8 11 

24 
MQTL
2A.2 

28.4 28.6 Kukri_c36139_292 BS00063632_51 14.8 19.4 15 

25 
MQTL
2A.3 

81.2 82.3 
RAC875_c17787_

274 
TA004602-1630 7.6 14.8 14 

26 
MQTL
2A.4 

99.5 100.3 wPt-8049 IWB23030 57.8 61.3 9 

27 
MQTL
2A.5 

248.2 260.8 BS00082084_51 
RAC875_c54668_10

2 
732.6 770.9 2 

28 
MQTL
2A.6 

292.9 292.9 
RAC875_c54668_

102 
wsnp_Ku_c1292_25

72110 
27.9 45.1 10 

29 
MQTL
2B.1 

0.7 0.9 M35745 D_1162944 32.5 34.4 12 

30 
MQTL
2B.2 

25.3 29.2 Xwmc435 IWA897 58.8 217.3 6 

31 MQTL
2B.3 

49.9 50.3 Ex_c55735_1012 Xwpt8004 556.2 681.5 11 

32 
MQTL
2B.4 

73.2 75.0 Xgwm55b 
Excalibur_c33221_6

81 
532.1 736.4 6 

33 
MQTL
2B.5 

93.9 95.2 CAP7_6910_523 8086989_2bl_2189 31.0 32.5 9 

34 
MQTL
2B.6 

136.7 139.7 8074934_2bl_7628 Kukri_c9507_495 236.3 784.9 12 

35 
MQTL
2B.7 

228.7 230.0 Xgwm1273 U296 41.2 790.9 8 

36 
MQTL
2D.1 

28.8 32.1 
2DS_5366150_149

1 
AX-95093513 48.3 579.9 6 

37 
MQTL
2D.2 

63.7 65.8 AX-110230565 Xctg05205 429.2 584.5 14 

38 
MQTL
2D.3 

112.5 113.6 Kukri_c44769_750 BS00011109_51 409.6 608.8 5 

39 
MQTL
2D.4 

140.0 140.1 IWB64805 IWB34403 428.9 542.3 2 

40 
MQTL
2D.5 

163.8 169.7 IWB29964 IWB32041 574.4 593.5 2 

41 
MQTL
2D.6 

337.3 530.5 IWB44461 GENE_4086_115 604.1 629.2 3 

42 MQTL
3A.1 

0.0 3.5 Excalibur_c12875_
1573 

4397491_3al_1806 513.6 571.4 3 

43 
MQTL
3A.2 

25.5 25.6 AX-109316906 P41/M41-4 614.0 733.5 19 

44 
MQTL
3A.3 

65.7 70.5 IWB54878.1 
KUKRI_REP_C6997

0_717 
650.4 724.6 4 

45 
MQTL
3A.4 

110.5 111.0 XPaggMcgg1 
Excalibur_c5416_84

6 
569.4 737.3 9 

46 
MQTL
3B.1 

34.0 36.7 XPaggMctg16 wPt7502 616.9 760.6 10 

47 
MQTL
3B.2 

72.4 73.7 IWB6207 D-4329487 31.7 32.3 6 

48 MQTL 111.5 113.6 AX-109869742 AX-109842601 773.8 787.0 11 
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3B.3 

49 
MQTL
3B.4 

173.9 174.4 ACA.CTGA12 Xctgacg317 553.1 798.3 21 

50 
MQTL
3D.1 

36.2 39.2 AX-95218150 AX-110037813 597.5 597.9 6 

51 
MQTL
3D.2 

67.2 69.2 IWB40541 IWB19457 600.1 600.3 8 

52 
MQTL
3D.3 

122.3 144.9 wPt669255 
RFL_Contig5276_17

56 
21.8 73.9 4 

53 
MQTL
3D.4 

189.1 238.9 
RFL_Contig5276_

1756 
BS00066932_51 73.9 515.7 3 

54 MQTL
4A.1 

8.9 10.8 Kukri_c17417_797 Xgwm113 24.1 601.3 11 

55 
MQTL
4A.2 

34.7 38.8 wPt7924 wPt0538 671.9 713.0 6 

56 
MQTL
4A.3 66.7 71.5 wPt0105 snp1066 623.3 699.5 3 

57 
MQTL
4A.4 

113.2 115.3 IAAV5818 SSRabg390.DI 603.5 730.5 30 

58 
MQTL
4A.5 

164.7 165.0 
RAC875_c78248_

115 
BS00067074_51 602.3 609.4 19 

59 
MQTL
4B.1 

12.3 12.5 Xfbb255a D_3939025 13.9 15.0 15 

60 
MQTL
4B.2 

20.9 21.4 Xmag983 S-3025233 601.9 609.5 6 

61 
MQTL
4B.3 

44.9 45.2 AX-110396575 BS00076259_51 457.9 616.6 11 

62 
MQTL
4B.4 

52.3 52.8 wPt_3908 Xgwm538 32.8 53.6 16 

63 
MQTL
4B.5 

89.3 92.3 IWB73486 IWB15523 660.7 663.1 11 

64 
MQTL
4B.6 

181.8 185.4 Xgwm637b 
wsnp_CAP12_c1101

_569783 
237.0 609.5 10 

65 
MQTL
4D.1 

0.7 1.6 Xwmc617 AX-110527441 14.6 15.0 10 

66 
MQTL
4D.2 

53.6 53.9 IWB16077 Xsrap16 5.6 49.9 5 

67 
MQTL
4D.3 78.7 80.4 Xgdm129 wPt2379 196.6 484.4 2 

68 
MQTL
4D.4 

83.3 83.9 AX-94881415 AX-94383842 2.7 492.0 8 

69 
MQTL
4D.5 

86.0 86.7 Xsrap11b IWB62209 490.9 499.1 2 

70 
MQTL
4D.6 

87.9 88.5 AX-110418361 Xgdm125 3.4 12.8 4 

71 
MQTL
4D.7 

93.9 94.5 Xbarc1183 AX-94403999 4.4 5.7 8 

72 
MQTL
4D.8 

205.4 206.0 Xscss30.2.2 Kukri_c40437_66 497.6 508.3 3 

73 
MQTL
5A.1 

8.8 9.5 Xgwm0304b AX-95186387 6.7 8.1 10 

74 
MQTL
5A.2 

39.0 42.0 D-1206650 XACG.GAC1.2 526.6 528.6 10 

75 
MQTL
5A.3 

103.5 103.8 Xgwm410.3 IWB61598 699.5 700.4 24 

76 
MQTL
5B.1 

8.6 8.8 Xbarc133 GBS_257 577.9 713.0 3 

77 
MQTL
5B.2 

42.7 44.0 wPt5168 IWB36196 14.5 570.6 26 
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78 
MQTL
5D.1 

9.7 10.9 D-4329273 S-1046500 458.1 463.1 16 

79 MQTL
5D.2 

28.1 28.3 S-982589 S-1052739 481.4 483.1 5 

80 
MQTL
5D.3 

31.6 31.7 D-4329207 D-1116418 485.5 486.8 4 

81 
MQTL
5D.4 

72.2 72.3 IWB58798 Xswes342a 371.8 531.5 7 

82 
MQTL
5D.5 

168.3 173.0 wPt1197 5DL_4588938_1981 204.9 343.3 12 

83 
MQTL
5D.6 

418.1 432.6 Jagger_c550_91 JD_c4438_839 406.6 546.7 6 

84 
MQTL
6A.1 

0.0 3.3 AX-94788664 D_3952327 16.6 17.6 3 

85 
MQTL
6A.2 

9.4 18.2 IWB44292 D-2278273 14.4 15.8 2 

86 
MQTL
6A.3 

35.3 35.9 
Tdurum_contig468

28_1430 
S_1116215 571.9 614.2 9 

87 
MQTL
6A.4 

40.4 46.3 S_1116215 IWB23460.2 574.5 614.2 3 

88 
MQTL
6A.5 

57.6 70.3 IWA504 wPt4791 253.2 602.5 4 

89 
MQTL
6A.6 

202.0 235.7 104.172 Xcdo1090a 1.9 60.4 2 

90 MQTL
6A.7 

270.9 277.3 XPaggMctg18 Xbarc146b 1.9 614.7 5 

91 
MQTL
6B.1 

27.0 28.7 S_1054930 GTG.CTT1 3.5 698.6 6 

92 
MQTL
6B.2 

62.7 62.9 Xdupw16 wPt745074 19.5 648.7 24 

93 
MQTL
6D.1 

33.7 38.2 AX-86177993 cfd13c 24.0 89.3 15 

94 
MQTL
6D.2 

75.8 78.7 
BobWhite_c13435

_700 
wPt666008 213.1 471.0 8 

95 
MQTL
6D.3 

116.5 121.7 Xfbb9b AX-94381525 - - 5 

96 
MQTL
6D.4 

165.0 165.1 IWB4527 IWB58414 - - 4 

97 
MQTL
7A.1 

57.1 80.6 M103823 GBS_539 8.8 12.9 2 

98 
MQTL
7A.2 

148.1 154.4 tarc0748 gwm332 42.2 47.4 3 

99 
MQTL
7B.1 

1.1 1.3 
Excalibur_c22830_

2010 
Excalibur_c16580_3

88 
3.1 53.6 6 

100 
MQTL
7B.2 

14.7 15.0 Kukri_c16416_647 Xgwm1250 1.1 6.4 6 

101 MQTL
7B.3 

46.8 50.4 wPt_0789 snp2273 593.2 718.4 16 

102 
MQTL
7B.4 

78.1 81.8 wPt_2592 D_3938216 587.9 710.7 6 

103 
MQTL
7B.5 

92.3 95.8 wPt_732048 wPt7368 21.7 643.4 3 

104 
MQTL
7B.6 

231.3 234.5 Xgwm0037 
RFL_Contig4686_70

0 
0.8 744.3 5 

105 
MQTL
7D.1 

12.7 20.2 Xgwm350 Xgwm974 22.5 25.4 7 

106 
MQTL
7D.2 

40.1 45.8 AX-110940110 wPt664368 58.9 91.7 4 

107 MQTL 55.3 64.2 IWB6964 S-1162003 58.9 526.4 2 
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7D.3 

108 
MQTL
7D.4 

66.8 75.1 Xgwm0437 D-1135134 2.9 86.1 17 

109 
MQTL
7D.5 

114.9 121.2 AX-110579501 
Excalibur_rep_c8301

9_155 
15.8 135.3 7 

110 
MQTL
7D.6 

290.6 305.4 
CAP8_rep_c9420_

186 
Excalibur_rep_c8589

1_96 
211.4 237.5 10 

 

MQTLs validated with GWAS results 

The physical coordinates of the MQTLs identified in the present study were also compared with MTAs 

reported in earlier GWA studies (S6 Table). Among the 108 MQTLs, as many as 43 MQTLs (39.81 %) co-

localized with at least one MTA available from the GWAS (Fig 4; S6 Table). There were some MQTLs co-

localized with MTAs available from more than one GWA study. For instance, MQTL6A 7 co-located with 

MTAs reported in seven different GWA studies. Each of the five MQTLs (viz., 1A.1, 1B.2, 3B.4, 5B.2 and 

6B.2) involving at least 20 initial QTLs co-localized with multiple MTAs reported from different GWA studies. 

 Surprisingly, five genes, TraesCS1A02G040600, TraesCS2D02G531100, 

TraesCS3B02G449200, TraesCS3D02G095700 and TraesCS3D02G096000 described by Yang et al. (2021) 

GWA study were overlapped with four MQTLs identified in the present study. Among them, first three genes 

were present in the MQTL1A.1, MQTL2D.6, and MQTL3B.1, respectively. While, last two genes located on 

the 3D chromosomes were present in the MQTL3D.3. Functional annotation and GO study revealed their 

participation in the various biological processes associated with grain quality in wheat. Genes, namely 

TraesCS3D02G095700 and TraesCS3D02G096000 encode for the wheat allergens and trypsin and alpha-

amylase inhibitor present in the seeds. 

Wheat homologues of known rice genes in MQTL regions 

An extensive search made on known rice genes associated with quality traits led to the collection of 

information on 34 genes which were further utilized for the identification of their corresponding homologues in 

wheat MQTL regions. These genes encode proteins/products mainly belonging to the following families: starch 

synthase, glycosyl transferase, aldehyde dehydrogenase, SWEET sugar transporter, alpha amylase, glycoside 

hydrolase, glycogen debranching, protein kinase, peptidase, legumain, and seed storage proteins. Wheat 

homologues of 30 of these rice genes were identified in different MQTL regions (S7 Table); wheat homologues 

for three rice genes, namely, RP6, RM1, and OsAGPL4/OsAPL4 could not be identified due to low sequence 

identity (<60%) and query coverage (<30%). Further, it has been noticed that, wheat homologues for nine rice 
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genes are identified on the different chromosomes of wheat. For example, wheat homologues for rice gene, Wx1 

are present on the 4th and 7th chromosomes. Sixty-four wheat homologues of these 30 rice genes were detected 

in the 44 wheat MQTL regions (S7 Table); some MQTL regions harboured more than one wheat homologues of 

rice genes. For example, wheat homologues of rice genes wx1, OsACS6 and GBSSII genes were present within 

the MQTL4A.2 (S7 Table). 

Ortho-MQTL analysis 

Extensive investigation of orthologous gene models available from all the 108 wheat MQTLs (with known 

genomic coordinates) led to the identification of 23 wheat MQTLs (ortho-MQTLs) syntenic to 16 rice MQTLs 

(Fig 4; S8 Table). In some cases, more than one wheat MQTLs were found to be syntenic to a single rice 

MQTL. For instance, three wheat MQTLs (viz., 2B.3, 2D.2, and 2D.2) were found to be syntenic to a rice 

MQTL (i.e., MQTL4.5) (Figs 6 and 8). Conversely, single wheat MQTL was found to be syntenic to multiple 

rice MQTLs. For instance, wheat MQTL4A.4 was syntenic to two rice MQTLs located on chromosome 8 (viz., 

MQTL8.6 and MQTL8.8) and MQTL4B.6 was syntenic to two rice MQTLs located on chromosome 3 

(MQTL3.3 and MQTL3.4). 

Number of orthologous gene models in individual MQTL varied from 3 in MQTL1A.3 to 19 genes in 

MQTL2D.2. Five ortho-MQTLs (viz., 2A.1, 2D.2, 4D.8, 5D.1 and 7D.1) each involving more than 10 gene 

models syntenic to rice genome are presented in Fig 5. Gene models present in the two wheat MQTLs (viz., 

2D.2 and 4D.8) located on chromosome 2D were found to be orthologous to rice MQTL4.5 and MQTL3.4, 

respectively, in the reverse order (Fig 5b, c). From this, it can be inferred that genomic regions in MQTL2D.2 

and MQTL4D.8 were inverted once in the evolutionary time and conserved in the rice genome. MQTL5D.1 

with 13 gene models was corresponding to rice MQTL3.7. Wheat genes present in MQTL5D.1 was found to be 

collinear to one rice MQTL3.7 (Fig 5d). We also reported a disruption in collinearity between the genes 

available from the wheat (MQTL7D.1) and rice (MQTL6.1) MQTLs (Fig 5e). Wheat MQTL2A.1 with 14 genes 

was found to be syntenic to the rice MQTL4.2 (Fig 5a). 

Gene models available in MQTL regions and their expression analysis 

A total of 108 MQTLs were anchored to the physical map of wheat reference genome. Physical 

positions of the two MQTLs (viz., MQTL6D.3 and MQTL6D.4) could not be deduced, as these MQTLs 

were flanked by markers with no sequence information available. Gene mining within 108 MQTL regions 

permitted the identification of as many as 2533 gene models. Maximum number of gene models (276) were 
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identified for MQTLs located on the chromosome 2A, while the minimum number of the gene models (6 gene 

models) were available from the MQTLs located on chromosome 6B (Table 2; S9 Table). 

 
 
 
 
 
Table 2. Number of initial QTLs, projected QTLs, gene models identified in the different chromosomes 

Chromosome Initial number 
of QTLs 

Projected 
QTLs Unique gene models  Gene models with >2 

TPM expression 
1A 206 113 262 52 
1B 289 175 119 47 
1D 158 86 116 25 
2A 121 61 276 47 
2B 177 64 88 17 
2D 100 32 140 38 
3A 90 35 93 14 
3B 105 48 79 21 
3D 34 22 104 26 
4A 124 69 112 12 
4B 142 69 117 31 
4D 49 42 242 69 
5A 93 44 94 18 
5B 100 29 28 8 
5D 94 50 143 38 
6A 82 28 204 43 
6B 94 30 6 2 
6D 62 32 54 18 
7A 140 2 47 7 
7B 88 43 118 25 
7D 110 47 91 22 

Total 2458 1121 2533 580 
 

Expression analysis of available gene models detected 556 gene models with >2 transcripts per million 

(TPM) expression, which included 94 gene models with >5 TPM and 6 gene models with >10 TPM expression 

in grains and its component tissues such as seed coat, starchy endosperm, whole endosperm, aleurone 

layer and grain transfer cells in (Fig 8; S10 Table). Of these 556 gene models, 117 gene models showed 

constitutive expression in all the tissues studied. While, the remaining 439 gene models showed the differential 

expression (tissue specific). Further, 44 differentially expressed gene models with more than 5 TPM expression 

were involved in the improvement of grain quality (Fig 7). Based on their expression pattern, gene models could 

be divided into two classes, i.e., genes in class-I showed expression in the seed, while genes in the class-II 

exhibited expression in the different sub-tissues. Further, functional characterization of these genes revealed 

their involvement in transcriptional and translational regulation of various genes, signalling mechanism, 

metabolism, cellular development and transfer, etc. 
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In recent study, transcriptome analysis in the hexaploid wheat and its diploid progenitors identified the 

differentially expressed genes (DEGs) associated with carbohydrate metabolism (Kaushik et al. 2020). Seven 

DEGs (Table 3) identified from Kaushik et al. (2020) study were common to the genes characterized in the 

present study. Of these seven genes, six genes were downregulated (Table 3) and one gene, 

TraesCS7B02G194000.1 was upregulated. Among the downregulated genes, two genes were encoding for NB-

ARC domain containing proteins and one gene for the F-box domain (Table 3). While the functions of the three 

downregulated genes were not characterized. 

Table 3. Differentially expressed genes detected from the transcriptomic studies (Kaushik et al. 2020) which co-

localized with MQTLs identified in the current study 

Sl.
No. MQTL Gene stable 

ID Gene position (bp) GO term Interpro 
Description Expression 

1 MQTL1A.1 
TraesCS1A02

G041100 
22612227-22614080 

ADP 
binding 

NB-ARC 

Down- 
regulated 

2 MQTL2A.2 
TraesCS2A02

G042500 
17025906-17033628 

ADP 
binding 

NB-ARC 

3 MQTL2B.3 
TraesCS2B02

G430500 
619391291-619391622 - - 

4 MQTL4A.5 
TraesCS4A02

G316100 
606335446-606340512 

protein 
binding 

F-box domain 

5 MQTL6A.3 
TraesCS6A02

G365500 
593732776-593733555 - - 

6 MQTL7A.2 TraesCS7A02
G078900 

44355885-44362888 - - 

7 MQTL7B.5 
TraesCS7B02

G194000 
333406094-333422302 

catalytic 
activity 

Alpha/beta 
hydrolase fold-1 

Upregulate
d 

 

Cloned and characterized wheat genes associated with grain protein content (GPC) (GPC-B1/NAM-

B1), HMW glutenin (Glu-B1-1b, Glu-1D-1d, 1Dx2t and Glu-1By9) and starch synthase enzymes (TaSSI, 

TaSSIIa, TaGBSSIa and TaSSIVb) were identified in the 12 MQTL regions (S11 Table). Two MQTLs (6B.1 and 

6B.2) present on chromosome 6B are associated with the GPC. MQTLs lying on the chromosome 1B (1B.2, 

1B.3 and 1B.4) and 1D (1D.4 and 1D5) are act as a precursor for the HMW. Genes for the starch synthase 

enzyme present on the 1D (MQTL1D.2) and 7D (MQTL7D.2, MQTL7D.3, MQTL7D.4 & MQTL7D.5) 

chromosomes are responsible for the amylopectin biosynthesis via α-1,4-glycosidic linkages. Present study has 

also identified the 165 genes associated with catechol oxidase activity and metal ion binding (related PPO), Zn-

transporter and zinc-binding site (Zn and Fe content), Small hydrophilic plant seed protein, Amino acid 

transporter and seed storage helical domain (seed storage protein), sweet-sugar transporters, UDP-

glucuronosyl/UDP-glucosyltransferase and Sugar/inositol transporter (starch content) etc. Among them, 44 

genes had the expression value of more than two TPM and were regarded as the putative CGs (Table 4). All the 
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six CGs, TraesCS3D02G095700, TraesCS3D02G096000, TraesCS4B02G017500, TraesCS4D02G016000, 

TraesCS4D02G016100 and TraesCS6D02G000200 having high expression value of >10 TPM were showed to 

be involved in improving the seed quality through nutrient reservoir activity. 

Table 4. High-confidence candidate genes with >5 TPM expression identified in the present study 

Sl. 
N
o. 

MQTL 
No. 

Gene stable 
ID 

Gene 
start (bp) 

Gene end 
(bp) 

GO term 
name Interpro Description 

Expressi
on (in 
TPM) 

1 
MQTL
1A.2 

TraesCS1A02
G060100 

41357284 41362423 
peptidase 
activity 

Peptidase C13, legumain >2 

2 
MQTL
1A.7 

TraesCS1A02
G062500 

42670658 42671830  
seed storage helical 
domain superfamily 

>5 

3 
MQTL
1A.7 

TraesCS1A02
G062700 

42695416 42698084  
seed storage helical 
domain superfamily 

>5 

4 MQTL
1A.7 

TraesCS1A02
G062900 

42721261 42721834  seed storage helical 
domain superfamily 

>5 

5 
MQTL
1A.5 

TraesCS1A02
G224000 

39432525
0 

39432853
8 

 Peptidase M24 >5 

6 
MQTL
1A.5 

TraesCS1A02
G224200 

39448204
7 

39448279
7 cytosol 

Small hydrophilic plant 
seed protein >5 

7 
MQTL
1A.5 

TraesCS1A02
G224600 

39458793
0 

39458828
4 

cytosol 
Small hydrophilic plant 

seed protein 
>5 

8 
MQTL
1B.6 

TraesCS1B02
G274300 

48154049
9 

48154256
4 

nucleus NAC domain >2 

9 
MQTL
1B.1 

TraesCS1B02
G407800 

63493436
0 

63493485
8 

 
seed storage helical 

domain 
>2 

10 
MQTL
1D.4 

TraesCS1D02
G317300 

41222343
2 

41222411
2 

IgE binding 
seed storage helical 

domain 
>5 

11 
MQTL
1D.2 

TraesCS1D02
G346100 

43389929
1 

43390534
5 

metal ion 
binding 

Peptidase M16, zinc-
binding site 

>2 

12 
MQTL
2A.1 

TraesCS2A02
G028400 

12990103 12992210 

transferase 
activity, 

transferring 
hexosyl 
groups 

UDP-
glucuronosyl/UDP-
glucosyltransferase 

>2 

13 
MQTL
2A.1 

TraesCS2A02
G028500 

13002991 13004793 

transferase 
activity, 

transferring 
hexosyl 
groups 

UDP-
glucuronosyl/UDP-
glucosyltransferase 

>5 

14 
MQTL
2A.6 

TraesCS2A02
G081100 

36700022 36701587 

transferase 
activity, 

transferring 
hexosyl 
groups 

UDP-
glucuronosyl/UDP-
glucosyltransferase 

>2 

15 
MQTL
2B.3 

TraesCS2B02
G430900 

61975486
3 

61975794
0 

serine-type 
carboxypepti
dase activity 

Peptidase S10, serine 
carboxypeptidase 

>2 

16 
MQTL
2D.4 

TraesCS2D02
G382400 

48639027
2 

48639293
5 

peptidase 
activity 

Peptidase C13, legumain >5 

17 
MQTL
3A.4 

TraesCS3A02
G408200 

65330315
1 

65330620
3 

integral 
component 

of 
membrane 

SWEET sugar 
transporter 

>2 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.11.24.469810doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469810
http://creativecommons.org/licenses/by/4.0/


19 

 

18 
MQTL
3A.3 

TraesCS3A02
G446200 

68676225
8 

68676770
1 

serine-type 
carboxypepti
dase activity 

Peptidase S10, serine 
carboxypeptidase 

>2 

19 
MQTL
3B.2 

TraesCS3B02
G059300 

31058376 31059986 
hydrolase 
activity 

Peptidase C26 >2 

20 
MQTL
3B.2 

TraesCS3B02
G059500 

31066580 31068297 
hydrolase 
activity 

Peptidase C26 >2 

21 
MQTL
3D.3 

TraesCS3D02
G095700 

48543331 48543795 

serine-type 
endopeptida
se inhibitor 

activity 

Cereal seed 
allergen/trypsin and 

alpha-amylase inhibitor 
>10 

22 
MQTL
3D.3 

TraesCS3D02
G096000 

48732052 48732516 

serine-type 
endopeptida
se inhibitor 

activity 

Cereal seed 
allergen/trypsin and 

alpha-amylase inhibitor 
>10 

23 
MQTL
3D.3 

TraesCS3D02
G096500 

48836328 48842240 

integral 
component 

of 
membrane 

Amino acid/polyamine 
transporter I 

>2 

24 
MQTL
3D.1 

TraesCS3D02
G514700 

59816086
1 

59816327
4 

transferase 
activity, 

transferring 
hexosyl 
groups 

UDP-
glucuronosyl/UDP-
glucosyltransferase 

>2 

25 
MQTL
4B.1 

TraesCS4B02
G017500 13052500 13054709 

nutrient 
reservoir 
activity 

Cupin 1 >10 

26 
MQTL
4B.1 

TraesCS4B02
G017600 

13077784 13080425 
nutrient 
reservoir 
activity 

Cupin 1 >5 

27 MQTL
4B.1 

TraesCS4B02
G020000 

14117806 14125905 zinc ion 
binding 

Peptidase M1, alanine 
aminopeptidase 

>2 

28 
MQTL
4B.6 

TraesCS4B02
G196600 

42335771
8 

42336290
0 

 
Alpha/beta hydrolase 

fold-1 
>2 

29 MQTL
4D.6 

TraesCS4D02
G016000 

7182216 7204066 
nutrient 
reservoir 
activity 

Cupin 1 >10 

30 
MQTL
4D.6 

TraesCS4D02
G016100 

7203800 7206343  Cupin 1 >10 

31 
MQTL
4D.6 

TraesCS4D02
G017700 

7826751 7834962 
zinc ion 
binding 

Peptidase M1, alanine 
aminopeptidase 

>2 

32 
MQTL
4D.2 

TraesCS4D02
G051100 

26933336 26934958  
Alpha/beta hydrolase 

fold-1 
>2 

33 MQTL
4D.5 

TraesCS4D02
G336100 

49405054
0 

49405787
8 

integral 
component 

of 
membrane 

Sugar/inositol 
transporter 

>2 

34 
MQTL
4D.5 

TraesCS4D02
G337300 

49482913
9 

49483387
1 

serine-type 
carboxypepti
dase activity 

Peptidase S10, serine 
carboxypeptidase 

>2 

35 
MQTL
4D.8 

TraesCS4D02
G350300 

50257679
5 

50257973
4 

integral 
component 

of 
membrane 

Peptidase S54, rhomboid >2 

36 
MQTL
4D.8 

TraesCS4D02
G350700 

50274767
1 

50275183
3 

 
Alpha/beta hydrolase 

fold-1 
>2 

37 
MQTL
5D.4 

TraesCS5D02
G381000 

45117370
5 

45117909
9 

 Peptidase S1, PA clan >2 

38 MQTL TraesCS5D02 45154202 45154741  Peptidase S1, PA clan >2 
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5D.4 G381200 4 7 

39 
MQTL
6A.4 

TraesCS6A02
G370300 

59518282
3 

59518656
1 

hydrolase 
activity, 
acting on 
carbon-
nitrogen 
bonds 

Acetamidase/Formamida
se 

>5 

40 
MQTL
6D.4 

TraesCS6D02
G000200 

52444 52899 

serine-type 
endopeptida
se inhibitor 

activity 

Cereal seed 
allergen/trypsin and 

alpha-amylase inhibitor 
>10 

41 
MQTL
6D.1 

TraesCS6D02
G091300 

57107880 57116429 
serine-type 
endopeptida
se activity 

Peptidase S9, prolyl 
oligopeptidase 

>2 

42 
MQTL
7B.5 

TraesCS7B02
G193800 

33292358
2 

33292643
1 

integral 
component 

of 
membrane 

Diacylglycerol 
acyltransferase 

>2 

43 
MQTL
7D.2 

TraesCS7D02
G121200 

75330927 75337847 
serine-type 
peptidase 
activity 

Peptidase S9, prolyl 
oligopeptidase, catalytic 

domain 
>2 

44 
MQTL
7D.2 

TraesCS7D02
G121900 

75930917 75945541 
serine-type 
endopeptida
se activity 

Peptidase S8/S53 
domain 

>2 

Discussion 

Discovery of molecular markers and advancements in QTL mapping strategies have promoted the plant 

researchers across the globe to underpin the complex genetic architecture of quality traits in wheat (Quraishi et 

al. 2017). Results of these intensive studies has accrued a large number of QTLs controlling the quality traits in 

wheat. Majority of these QTLs are minor QTLs (with low PVE value) and have larger CI, making them 

unsuitable for the marker assisted plant breeding (Kumar Saini et al. 2021). Further, it has been observed that, 

QTLs identified from one population may not be effective for a breeding programme involving the other 

population (Yang et al.). Downsides of these QTLs promoted us to reanalyze all of these loci together, with 

the goal of fine-tuning this vast amount of data, so that breeders and researchers can make greater use of these 

QTLs.  

Meta-QTL analysis has the great capability to compile the information from multiple QTL mapping 

studies involving diverse environments with different genetic backgrounds to identify stable and reliable 

MQTLs with reduced CI (Welcker et al.). MQTL analysis have already conducted for the major crops including 

the rice, wheat, maize, etc. (Yang et al.; Li et al. 2013; Quraishi et al. 2017). Meta-QTL analysis for agronomic 

and quality traits in wheat has identified the six MQTLs for GPC and eight MQTLs for baking quality from the 

initial pool of 155 QTLs involving eight genetic studies published before 2013 (Quraishi et al. 2017). Further, 

seven MQTLs associated with Zn and Fe content were identified from initial set of 50 QTLs involving seven 
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independent segregating populations. These studies have employed a small number of initial QTLs for the meta-

analysis. However, the results of MQTL analysis have been found to be significantly and positively correlated 

with the quality of the results of meta-analysis (Yang et al.; Quraishi et al. 2017). Furthermore, as molecular 

genetics and QTL mapping methodologies are advancing, novel QTLs are adding to the database on a regular 

basis, therefore we must keep up with this pace in order to integrate new QTLs into more stable and reliable 

MQTLs. 

Thus, to supplement the previous studies (Quraishi et al. 2017), in the present study, we conducted the 

meta-analysis for the QTLs reported during 2013-20 by projecting very large number of initial QTLs (1986 

QTLs) on the high-density consensus map and identified 110 MQTLs each involving at least two initial QTLs. 

In addition to Zn, Fe, GPC and baking quality (studied by Quraishi et al. 2017), the present study also 

considered the other important quality parameters such as starch, PPO, Ax content, bread making properties, etc. 

From the breeding perspectives, it is noteworthy to identify the most stable and reliable MQTLs 

involving a greater number of initial QTLs identified across the different populations and environments. Eleven 

such MQTLs involving more than 20 initial QTLs were detected in the present study. One MQTL located on  

chromosome 1B (MQTL1B.1) included as many as 85 initial QTLs, which is much higher than earlier study of 

(Quraishi et al. 2017). Further, to reduce the confidence interval, meta-QTL analysis relies on a large number of 

initial QTLs and heterogeneous populations (Berman and Parker 2002). Present study aggregated a vast QTL 

information from multiple genetic backgrounds and efficiently reduced the CI of the QTLs, thereby improved 

the accuracy of candidate gene prediction from the important QTL regions. The average CI of MQTL was 

18.84-fold less than that of initial QTLs, and there were significant differences among different chromosomes. 

Some of the MQTLs with reduced CI identified in the present study may lay the foundation for molecular 

cloning and functional characterization of genes associated with quality traits in wheat. Further, this may offer 

the possibilities for the marker assisted gene transfer across the populations and contribute to the wheat quality 

improvement. 

Validating MQTLs with GWAS-MTAs 

Genome wide association studies (GWAS) is a powerful tool which allows the investigation of highly 

complex characters by exploiting the recent and historical recombinant events present in the natural populations 

and permits the high-resolution mapping (Bush and Moore 2012). High-throughput, low-cost sequencing 

technologies have helped to identify MTAs for many quality traits in natural populations of wheat (Suliman et 
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al.; Godoy et al. 2018). In the present study, 39.81% (43/108) of the identified MQTLs were verified by the 

GWAS-MTAs, which is in agreement with the earlier reports on the comparison of MQTLs with MTAs (Yang 

et al.; Aduragbemi and Soriano 2021). It is indicated from the previous studies (Yang et al.; Aduragbemi and 

Soriano 2021) and the present study, that, only a part of the MQTL region could be verified by the MTAs. 

Considering this, we propose the following two hypothesis: (i) none of the approaches whether meta-QTL 

analysis or GWAS approach included all the genetic variation present in the crop species, and (ii) genetic 

materials used in the two approaches were entirely different from each other. MQTLs could be considered more 

stable and consistent, if they are validated by more than one GWA study and also included the large number of 

initial QTLs from independent experiments. Five such MQTLs (1A.1, 1B.2, 3B.4, 5B.2 and 6B2) with more 

than 20 initial QTLs were verified with multiple MTAs derived from different GWA studies. These MQTL 

regions may be further investigated to explore the underlying complex genetics of the quality traits. 

More interestingly, five genes identified in the wheat multi-locus GWA study (Yang et al.) were co-

localized with four MQTLs detected in the current study. These genes are known to take active participation in 

the various biological processes to improve the grain quality in the wheat. For instance, gene, 

TraesCS1A02G040600 encodes the cupin superfamily proteins such as phospho-glucose isomerase (PGI), which 

in turn takes part in the non-enzymatic protein storage in plant seeds (Dunwell and Gane 1998). Genes, 

TraesCS3D02G095700 and TraesCS3D02G096000 encode for the wheat allergens and trypsin & alpha-amylase 

inhibitor, respectively. Wheat allergens such as seed storage proteins (glutelin and prolamins) causing celiac 

disease may reduce the nutritional value of wheat seeds. Creating the null mutants for such genes through RNAi 

or CRISPR-CAS9 may reduce such allergic compounds present in the seeds (Zhang et al. 2014). Alpha-amylase 

inhibitors prevent the hydrolysis of storage starch granules present in the endosperm and there by maintain the 

integrity of starch in the seeds (Ali and Elozeiri 2017). 

Ortho-MQTL mining: revealing conserved genomic regions between wheat and rice 

Identification of ortho-MQTLs among the related crop species may provide a better understanding of 

genes controlling various quality characters with similar evolutionary lineage and conserved functions. Further, 

this may provide potential opportunities to transfer information from on species to another (Khahani et al. 2020; 

Kumar Saini et al. 2021). Ortho-MQTL analysis have been sparingly conducted in wheat, with only three 

studies are available for different studies including, nitrogen-use efficiency and related traits (Quraishi et al. 

2017; Kumar Saini et al. 2021) and thermotolerance (Kumar et al. 2020). However, to our knowledge, no study 
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has reported the ortho-MQTLs for the quality related traits in wheat and other cereals so far. This is the first 

report, where we identified the 23 ortho-MQTLs associated with quality traits conserved between wheat and 

rice. Functional characterization of gene models present in the wheat ortho-MQTLs revealed their associations 

with the sugar-phosphate transportation, seed storage protein, lipid storage activities, etc. Wheat gene, 

TraesCS1B02G248000 present on the ortho-MQTL1B.4 is belonging to the NAC domain family and is 

associated with improving the GPC in wheat seeds. Corresponding orthologous rice gene, BGIOSGA019745 

located on MQTL5.6 belongs to the same gene family and is associated with improving the seed size (Mathew 

et al. 2016). Further,  TraesCS2B02G430300 gene present on the ortho-MQTL2B.3 is belonging to hydrophobic 

seed protein domain which accumulates hydrophobic proteins (HPS) on the seed surface. HPS are the abundant 

seed constituent and a potentially hazardous allergen that causes asthma in persons allergic to the crop dust  

(Gijzen et al. 1999). Phenotypic or genetic screening may be devised to select plants with reduced amounts of 

HPS on the seed surface and may offers new avenue for lessening the health hazard of seed dust exposure. 

Orthologue for this gene, BGIOSGA016898 is present on the rice MQTL4.5 and is belong to the same class of 

protein domain. Exploring of such conserved genomic regions among related species may unravel the common 

regulatory pathways and may assist the utilization of genomic resources from the model species, which may 

greatly contribute to the rapid crop improvement. 

Candidate genes available in MQTL regions 

MQTLs are considered as the potential targets for mining candidate genes (CGs) associated with the 

traits in question. Further, MQTL regions have been shown to have high correlation with gene density in 

genome as revealed by earlier reports on meta-QTL studies conducted in different crops including rice, wheat, 

and maize (Yang et al.; Swamy et al. 2011; Quraishi et al. 2017). In wheat, previous studies have reported 

15,772 gene models for yield, baking quality and grain protein content (Quraishi et al. 2017), 324 gene models 

for Fusarium head blight (Venske et al. 2019), 228 gene models for drought (Kumar et al. 2020), and 237 gene 

models (Yang et al.) for yield related traits. In the present study, gene mining within 108 MQTLs identified 

2533 gene models in wheat, at least some of them are known to be associated with quality traits. 

Gene expression analysis is the study of how genes are transcribed to produce functional gene 

products, such as RNA or protein. In silico expression analysis permitted the identification of 556 gene 

models with more than 2 TPM expression. An extensive survey of literature revealed their involvement in 

transcriptional and translation regulation of different genes, signalling mechanism, metabolism, cellular 
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development and transfer etc. (Table. S7). In the present study, ABC transporter genes were identified on 

chromosomes 1A, 2A, 2B, 4A, 4B, 6D and 7B, which may give opportunity to develop nutritionally enriched, 

high-yielding wheat cultivars. ABC type transporters are known to regulate seed weight, by transcriptional 

regulation and modulation of the transport of glutathione conjugates in chickpea (Basu et al. 2019). Along with 

seed weight, they may enhance the quality component traits, as reported in chickpea (Basu et al. 2019). 

Ammonium transporter genes available in MQTL6A.5 may play a crucial role in the transport of seed nitrogen 

(N) and metabolic processes for seed N accumulation, seed yield and N use efficiency (NUE) (McDonald and 

Ward 2016). They take part in increasing the level of specific amino acids, total soluble protein, and specific 

high-quality proteins in the seeds. Overall, the present study identified at least 165 gene models associated with 

catechol oxidase activity and metal ion binding (related PPO), Zn-transporter and zinc-binding site (Zn and Fe 

content), small hydrophilic plant seed protein, amino acid transporter and seed storage helical domain (seed 

storage protein), sweet-sugar transporters, UDP-glucuronosyl/UDP-glucosyltransferase, sugar/inositol 

transporter (starch content) etc. which are known to be associated with quality related traits in different crops. 44 

of these 165 gene models with functions previously reported to be important for quality related traits in different 

crops were selected and recommended for future basic studies involving cloning and functional characterization. 

Gene expression analysis of hexaploid bread wheat through RNA-seq and the GeneChip®Wheat 

Genome array identified numerous DEGs related to starch biosynthesis, nutrient reservoir activity, carbohydrate 

metabolism and seed storage protein synthesis (Kaushik et al. 2020). Seven DEGs identified in (Kaushik et al. 

2020) study were co-located with some MQTLs identified on following 7 chromosomes 1A, 2A, 2B, 4A, 6A, 

7A and 7B in the present study. Of these seven genes, six genes were downregulated and one gene, 

TraesCS7B02G194000.1 was upregulated. Among the downregulated genes, two genes encode for NB-ARC 

domain containing proteins and one gene for the F-box domain (Table 3). While the functions of the three 

downregulated genes have not been characterized. Up-regulated gene, TraesCS7B02G194000 encode the 

alpha/beta hydrolase enzyme which take part in the multitude of biochemical processes, including 

bioluminescence, fatty acid and polyketide biosynthesis and metabolism (M 2000).  

To strengthen the location of MQTLs identified in this study, a search for co-localization of quality 

related genes was also carried out. This enabled detection of functionally characterized wheat genes such as, 

GPC-B1/NAM-B1, Glu-B1-1b, Glu-1D-1d, 1Dx2t, Glu-1By9, TaSSI, TaSSIIa, TaGBSSIa and TaSSIVb in 

different MQTL regions. MQTL6B.1 and MQTL6B.2 were identified to be associated with the GPC, which may 

also take part in the nutrient remobilization from leaves to developing grains (Distelfeld et al. 2014). Genomic 
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regions underlying the five wheat MQTLs, (viz., 1B.2, 1B.3, 1B.4, 1D.4 and 1D.5) carried some known genes 

which are the known precursors of HMW glutenin, a prime deciding factor for determining the dough elasticity 

and bread-making quality in wheat (Anjum et al. 2007). Genes for the starch synthase enzyme available from 

MQTL1D.2, 7D.2, 7D.3, 7D.4 and 7D.5 regions are responsible for the amylopectin biosynthesis via α-1,4-

glycosidic linkages. Amylopectin-A is the unique chemical compounds present in the wheat which trigger the 

low-density lipoproteins, which take part in the transportation and delivery of fatty acids, triacylglycerol, and 

cholesterol in many plant organs (Horstmann et al. 2017). 

Wheat homologues of known rice genes available in MQTL regions 

Comparative genomics study of wheat with model grasses such as rice has revolutionized the 

molecular genetics and contributed to the wheat improvement by identifying the linkage blocks, gene 

rearrangements and conserved regions in the wheat (Kumar et al. 2020). Functionally characterized rice genes 

are known to have similar function in the wheat and their homologues have been identified to be co-located with 

MQTLs for the various traits (Hanif et al. 2016). For instance, in the present study, three wheat homologues of 

one rice genes (OsSWEET4) were identified in different MQTLs located on homoeologous group 2 

chromosomes, these wheat homologues may be engaged in the embryo nourishment by supplying the sufficient 

amount of nutrients to the developing embryo in the wheat (Yang et al. 2018). 

 Using comparative genomics, homologues of these genes in wheat can be characterized, and 

functional markers for these genes can be developed and validated. A meta-analysis of QTLs associated with 

grain weight in tetraploid wheat, for instance, resulted in the identification of one important locus, mQTL-GW-

6A on chromosome 6A (Avni et al. 2018). Within this MQTL region, authors discovered and characterized a 

wheat homologue of the rice gene, OsGRF4 (Avni et al. 2018). This suggests that combining a MQTL study 

with a well-annotated genome can result in the rapid identification of CGs underlying traits of interest. 

Manipulation and integration of these genes in the breeding programme may contribute to the enhanced wheat 

quality. 

Conclusion 

Meta-analysis of QTLs and comparative genomic approaches helped us to dissect the complex genetic 

architecture underlying various quality parameters such as GPC, total starch, Zn, Fe, PPO, baking and bread 

making properties in the wheat. Identified MQTLs and corresponding high-confidence CGs may enhance the 

marker assisted breeding for quality improvement in wheat. Molecular cloning and functional characterization 
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of these CGs may further improve the understanding of wheat genetics. Ortho-MQTLs identified in this study 

may help to understand the common evolutionary pathways underlying the quality traits. Breeders across the 

globe can make use of most promising MQTLs (viz., 2D.2, 5A.2, 5D.4, and 7B.3) associated with multiple 

quality traits and CGs in their study to improve the quality related traits in wheat. 

Figures 

Fig 1. Salient features of the initial QTLs. 

(a) number of QTLs available from different chromosomes, (b) sizes of the populations utilized for 

mapping, (c) number of different types of populations, (d) different types of markers utilized for 

mapping, (e) methods employed for mapping, (f) PVE, (g) LOD, and (h) peak positions of the QTLs. 

Fig 2. Consensus map, “Wheat_Reference_GeneticMap-2021” showing the marker density (number of 

markers/cM), chromosome length (cM) and number of markers in each chromosome. 

Fig 3. Characteristic features of the MQTLs. 

(a) distribution of MQTLs identified on different wheat chromosomes, (b) trait-wise distribution of the 

MQTLs, (c) average CIs of initial QTLs and MQTLs and fold reduction in CI values after meta-QTL 

analysis, (d) different number of QTLs involved in MQTLs, (e) MQTLs associated with different 

number of traits. 

Fig 4. Distribution of different MQTLs on wheat chromosomes. Explanation for different colours utilized to 

represent the MQTLs are given at the bottom of the figure. 

Fig 5. The syntenic region of MQTLs between the wheat and rice. The genomic position, chromosome number, 

and common genes between the wheat and rice are indicated. 

Fig 6. Circular diagram representing the conserved regions between wheat and rice MQTLs. 

Fig 7. Expression pattern of 44 high-confidence candidate genes in the different relevant tissues. 

Fig 8. Circular diagram showing the different features of QTLs and MQTLs 

(A) number of QTLs for each trait in each MQTL (i.e., Ax, PPO, SV, DRP, nutritional traits, processing 

quality traits) and number of traits in each MQTL, (B) chromosome wise distribution of initial number 

of QTLs, projected QTLs, average confidence interval (CI) of MQTLs and average CI of initial QTLs, 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.11.24.469810doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469810
http://creativecommons.org/licenses/by/4.0/


27 

 

(C) number of initial QTLs projected on each of the MQTL, (D) MQTLs colocalized with known 

wheat genes, GWAS-MTAs and functionally characterized rice genes, (E) Gene density distribution in 

the MQTL regions, (F) expression pattern of candidate gene models with >2 TPM in the 8 different 

tissues (i.e., whole grain, whole endosperm, starchy endosperm, aleurone layer, seed coat, starchy 

endosperm + seed coat, transfer cells and aleurone layer + starchy endosperm), (G) syntenic region 

between wheat and rice MQTLs. Outer circle represents the physical maps of wheat and rice 

chromosomes (wheat chromosomes 1A to 7D and rice chromosomes R1 to R9). 
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