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Figure 5: Estimates of BBP m-type densities using BBCAv2. A. Probability matrices to illustrate

the equation used for m-type densities estimates. For clarity, instead of𝑃(𝑚 − 𝑡𝑦𝑝𝑒|𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

is shown in (i). Similarly, is shown in (iii) instead of𝑃(𝑚𝑒 − 𝑡𝑦𝑝𝑒|𝑐𝑙𝑢𝑠𝑡𝑒𝑟) 𝑃(𝑚 − 𝑡𝑦𝑝𝑒|𝑚𝑎𝑟𝑘𝑒𝑟)

. Probability values higher than 0.1 are displayed as percentages in matrices.𝑃(𝑚𝑒 − 𝑡𝑦𝑝𝑒|𝑚𝑎𝑟𝑘𝑒𝑟)

was computed on BBP dataset in (i). The number of BBP me-models in each𝑃(𝑚 − 𝑡𝑦𝑝𝑒|𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

cluster is given in the bottom row, while the number of cells of each m-type is given in the first column.

was similarly computed on AIBS dataset in (ii). The number of AIBS cells in each𝑃(𝑐𝑙𝑢𝑠𝑡𝑒𝑟|𝑚𝑎𝑟𝑘𝑒𝑟)

cluster are given in the first column, while the number of cells for each AIBS molecular ID is given in

the bottom row. B. Typical distribution of m-types in mouse cortex. A populator algorithm took as input

cortical densities of m-types in 25 µm wide voxels and assigned spatial coordinates to neurons in a

random fashion within the same voxel. Sagittal and coronal view of inhibitory neuron distributions are

color-coded by m-types. Orange vertical bar in i shows the position of the coronal slice. C. BBP

m-types densities along cortical depth computed by applying the matrix to𝑃(𝑚 − 𝑡𝑦𝑝𝑒|𝑚𝑎𝑟𝑘𝑒𝑟)

marker densities from the BBCAv2. Two different cortical areas are displayed: primary somatosensory

cortex, hindlimb area (SSCx, i) and primary area in visual cortex (Visp, ii). Densities of all inhibitory

neurons are shown in the first row and only LBC, MC and DBC m-types are shown for clarity (all

m-types are available in supp. data). Other m-types and me-types are similarly computed.

Contributions per layer are shown as colored lines while the total is displayed in black. For

comparison in somatosensory cortex, data from rat neocortical microcircuitry reconstruction are

shown in light grey.

Validation of the cross-dataset clustering pipeline

We submitted our pipeline to two types of validations. First, a validation for molecular type

prediction and second, a validation for cross-species prediction.

The first kind of validation means that we want to test how good our approach is to predict

the molecular ID of a neuron solely based on the available me-features. Since we had no

information about the molecular ID of BBP me-models we restricted ourselves to the AIBS

31

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469815doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469815
http://creativecommons.org/licenses/by-nd/4.0/


dataset only. We split the AIBS dataset into 10 subsets of comparable sizes and proceeded to

perform a 10-fold cross-validation of the pipeline’s prediction. We did the optimizationα

step using 9 subsets grouped together and predicted the molecular ID of cells from the last

subset by assigning them to the most frequent molecular ID of their cluster. For clarity, the

hierarchical tree was computed using the complete dataset for every tested while theα

cluster homogeneity score was computed with labels from the nine grouped subsets used as

training dataset. We repeated this for the 10 possible combinations of the 10 subsets. Results

show promising weighted precision and accuracy (89% +/- 8% and 85% +/- 13% respectively,

see Table 1) scores well above chance levels. Precision measures the rate of correct

prediction in a class. For instance, it tells how many of all the Pvalb predicted labels were

actually Pvalb cells. Then we averaged obtained precisions over all classes but weighted

them by the number of elements in a class giving the global weighted precision. Accuracy on

the other hand measures the rate of correct predictions.

For the second kind of validation we used both common labeling systems, i.e. labels that can

be used to describe neurons from both the BBP and AIBS datasets. As defined in the

Methods section, we used two common labeling systems: one based on the cortical layer

where the soma resides and another based on consensual morphology types .

First, we assessed the performance of the pipeline at predicting common m-type and

common layer labels within a dataset. We then proceeded to a 10-fold cross-validation for

each of the following cases: common m-type labels on Gouwens et al. dataset, common layer

labels on Gouwens et al. dataset, common m-type labels on BBP dataset and common layer

labels on BBP dataset. Precision and accuracy scores were very satisfactory (Table 1) showing

that the pipeline is able to correctly predict common m-types and common layers when

training on a dataset from the same species.

We tested the ability of the pipeline to do cross-species prediction. This process consisted in

running the full pipeline but with a common labelling system (Table 1). We did the training
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on one dataset and the prediction on the other dataset. The optimization step wasα

performed on the AIBS dataset (with respect to the BBP dataset) and cells from the BBP

dataset (with respect to the AIBS) and assigned a label using the most frequent label of the

cluster they belonged to. For clarity, the hierarchical tree was computed using all data points

from both BBP and AIBS datasets but the cluster homogeneity score was computed with

labels from one dataset only. A “no-match” case in which the cluster is 100% composed of

AIBS (or BBP) cells could also be observed. In such cases, data points were excluded. As a

result, only a subset of the tested dataset was predicted. For instance, for common m-labels

prediction of BBP cells when trained on the Gouwens dataset, we predicted 90 % of the BBP

dataset with a precision of 31% and an accuracy of 34% (Table 1). Conversely, when we

trained with the BBP dataset and predicted common m-labels of AIBS cells, we obtained a

precision and accuracy score of 83% and 62% respectively, while 98% of the AIBS dataset had

a predicted label.

Interestingly, when training on the AIBS dataset the value is lower ( ) compared toα α = 0. 3

when the BBP dataset was used for training ( ). While we would expect a forα = 0. 4 α > 0. 3

predicted morphological labels, this might partly be explained by the large difference in

dataset sizes as we will develop in the discussion. This difference in values could also beα

due to the imbalance in the reference dataset labels. For instance, the BBP dataset has a

sizeable amount of basket cells (Fig.S5) potentially driving the optimal value towards aα

more systematic prediction of basket cells.

We proceeded similarly with layer labels (Table 1). However, the precision and accuracy

scores were lower (Table 1) when compared to scores obtained using common m-labels. This

could be due to the realignment of neuron morphologies (see Methods) a�er which the soma

could reside in a different layer close to the original one.

Since only morphologically related common labels were available for cross dataset

validation, we have little information about the ability of the pipeline for
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electrophysiology-related cross-dataset predictions. We nonetheless explored the results

obtained when applying the pipeline with electrophysiological labels. In the provided

description of their me-types, Gouwens et al. reported electrophysiological phenotypes that

were regularly used in literature (e.g. with fast spiking neurons). We thus could easily group

Gouwens et al. me-types into four “common” e-types: fast spiking (FS), regular spiking (RS),

irregular spiking (IR) and adapting (Adapt). We ran the pipeline optimising for theseα

“common” e-types to output the probabilistic mapping 𝑃(𝑐𝑜𝑚𝑚𝑜𝑛 𝑒 − 𝑡𝑦𝑝𝑒|𝐵𝐵𝑃 𝑒 − 𝑡𝑦𝑝𝑒) 

(Fig.S6,A, see Methods). This mapping clearly suggests that most of the cNAC, dNAC,

cSTUT and dSTUT labeled neurons map to FS neurons. All the other labels map to RS, IR

and Adapt but not to FS neurons. To push the analysis further, we output the probabilistic

mapping (Fig.S6,B). Common me-types were defined as𝑃(𝑚𝑜𝑙.  𝐼𝐷|𝐵𝐵𝑃 𝑐𝑜𝑚𝑚𝑜𝑛 𝑚𝑒 − 𝑡𝑦𝑝𝑒)

common m-type with common e-type. For the BBP dataset, cNAC, dNAC, cSTUT and

dSTUT labels were grouped under the FS common e-types while the other labels were

classified as non-fast spiking (nFS). The resulting mapping suggests that, using the same

morphology but matching it to a different set of e-features, either FS or nFS, could change

the molecular ID of the resulting neuron model. For instance, an MC morphology grouped

with nFS efeatures would most likely map to SST positive neurons while if the morphology is

grouped to FS e-features it will be mapped to PV positive neurons. These results suggest that

considering electrophysiological and morphological dimensions separately when building

neuron models could increase noise and confusion in the mapping.

Overall, these results suggest that the pipeline is well suited for molecular ID prediction and

is able to do cross-dataset predictions while more refinement of features normalizations

would likely increase the precision of predictions.
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Training

dataset
Alpha

Precision

(weighted)
Accuracy

Chance

Mean

(median)

Ratio of

dataset

matched

A. 10-fold cross

validation

Molecular

IDs

Gouwens et

al.

0.36

(0.05)
0.89 (0.08) 0.85 (0.13) 0.25 (0.25) 1.0 (0.0)

Common

m-types

Gouwens et

al.

0.35

(0.05)
0.86 (0.09) 0.79 (0.11) 0.2 (0.18) 0.99 (0.02)

BBP
0.48

(0.17)
0.83 (0.02) 0.83 (0.03) 0.2 (0.16) 0.99 (0.02)

Common

layers

Gouwens et

al.
0.6 (0.1) 0.70 (0.19) 0.71 (0.13) 0.25 (0.23) 0.93 (0.07)

BBP
0.62

(0.18)
0.95 (0.02) 0.94 (0.02) 0.2 (0.2) 0.99 (0.01)

B. Cross-dataset

Common

m-types

Gouwens et

al.
0.3 0.31 0.34 0.2(0.18) 0.9

BBP 0.4 0.83 0.62 0.2 (0.16) 0.98

Common

layers

Gouwens et

al.
0.8 0.58 0.24 0.25 (0.23) 0.81

BBP 0.8 0.53 0.38 0.25 (0.24) 0.96

Table 1: Validation experiments results. Section A: 10-fold cross-validation on the

Gouwens et al. dataset using molecular markers, common m-types and common layer labels.

10-fold cross-validation on BBP dataset using common m-types and common layer labels

only. Mean (standard deviation) are shown except for the chance level column where it is

mean (median). Section B: Cross dataset validation on common m-types and on common

layer labels, respectively.
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Discussion

In this paper we populated a digitalized mouse cortex with well characterised inhibitory

me-types from the BBP neuron model database, thereby paving the path for detailed

modeling of this whole brain region. In the process we created a common framework to

effectively compare mouse and rat inhibitory cells. This framework was subsequently used to

map neuron models from the rat to mouse neurons from a recent AIBS dataset (9) in order to

extrapolate missing molecular IDs. The resulting probabilistic mapping served as a

convertor to estimate me-type densities using molecular marker densities from the BBCAv2

as input. Results showed relatively comparable distributions across the cortical areas (Fig.5,

S4).

A major strength of the approach presented here is the ability to accommodate data coming

from different species. Normalization processes made possible the expression of me-features

in a common framework necessary for cross-species comparison. Doing so required

invariant values across species such as layer delineation for morphologies and rheobase

current for electrophysiology (see Methods and Fig.1B). Although the normalization could be

improved for e-features, it showed promising results for m-features (Fig.2). Further

refinements of the normalization process improving dataset compatibility would help

minimize mapping uncertainties. Additionally, we showed that a well-identified morphology

grouped with different e-types could be associated with different molecular markers (Fig.S6).

These results confirm that considering morphology and electrophysiology as two fully

independent dimensions might increase confusion in the mapping process (9–11). However,

with further exploration, these normalization methods could help to adapt data gathered in

the rat and utilise them for building a model of the mouse cortex.

Optimization of the latent space to maximize prediction of molecular IDs confirmed that

considering both m- and e-features together makes more sense when trying to predict

molecular ID. Indeed, the obtained with molecular ID labels had a value close to theα
𝑜𝑝𝑡

α
𝑜𝑝𝑡
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obtained with me-type labels (Fig.3). These results agree with multiple previous studies

searching for links between molecular IDs and morpho-electrical description of neurons

(9–11). However, the latent space optimization step presented here does not inform on the

exact features that are important for molecular ID predictions. One can expect that not all of

the extracted features are of the same relevance when it comes to predicting the molecular

ID of a neuron. A refined version of the optimization that we are currently exploring

considers having individual weights for each principal component instead of only one. Thus,

we would have a list of , one for each principal component, that could be optimized using aα
𝑖

multivariate optimization algorithm with a loss function inspired from cluster homogeneity.

As a result, we would expect me-features from principal components with high values toα
𝑖

be more relevant for molecular ID prediction. This could also improve the result for theα
𝑜𝑝𝑡

Gouwens dataset with native e-labels (Fig.3 C).

To form clusters in the optimized latent space, we showed there was a trade-off between the

molecular ID precision, via cluster homogeneity, and the number of mapped BBP models

(fig.4,B). Therefore, we made a compromise between cluster homogeneity and BBP cell

mapping percentage. As an alternative, one can consider increasing cluster homogeneity by

choosing a smaller clustering distance, hence preferring molecular ID precision over the

number of mapped BBP cells. The final choice should depend on the goal and should be at

the user's discretion. On the other hand, this trade-off can leave some room to identify

species-specific cell types. It is highly likely that strictly rat-specific cells would not cluster

well with their mouse equivalents (if they exist), which makes our method a strong contender

compared to other supervised methods where unique cell clusters might be forced to cluster

together in a less specific group. For example, three clusters were composed of BBP cells

only, which could suggest rat-specific cell types. However, with more than 1,300 BBP models

and as few as 150 neurons from the Gouwens dataset, we are dealing with datasets of

different sizes. Due to datasets size differences, it is hard to discern if we are in a rat
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exclusive cell-type case or, more likely, if there are not enough neurons in the Gouwens

dataset to map to these clusters (Fig.5,Aii). Furthermore, two clusters (1 and 12) contain only

a couple of AIBS cells to infer molecular IDs for the BBP neurons. Consequently, the

inferred molecular IDs for BBP cells in these clusters should be considered with caution.

The use of a larger reference dataset balancing the very large BBP dataset could help reduce

these mapping uncertainties. For instance, new Patch-seq datasets combining morphological

reconstruction, electrophysiological recordings and scRNAseq for individual neurons are

becoming increasingly available (10,11,30,31). Future inclusion of such datasets would

improve the precision of mapping by equilibrating the number of mouse cells compared to

rat cells.

Finally, we showed that using a probabilistic mapping approach, we were able to estimate

densities of well characterised me-type across cortical areas. However, this approach

assumes that the cell repartition in labels is unbiased (i.e. it reflects what we could observe

naturally). We know that it is not the case for the AIBS dataset, as some specific driver lines

have been used to boost up the probability of observing some types of neurons such as

chandelier cells with the Vipr2-IRES2-Cre driver line. To correct for this, we explored using

only non-overlapping driver lines for our probabilistic mapping when estimating m(e)-type

densities. However, choosing non-overlapping driver lines reduced the already modest

number of AIBS cells. In addition, the resulting dataset might still be biased due to

experimental methods such as the accessibility of cells for patching, for instance. We thus

chose to proceed with the complete AIBS dataset. The BBP dataset could present a similar

experimental bias with over-representation of LBC or MC for instance. However, it remains

difficult to estimate to which proportion the numbers from the BBP dataset are due to

natural occurrence or experimental biases. The obtained m-type densities showed similar

distributions across cortical regions for a given m-type (Fig.5,C and Fig.S4). The variation of

me-type densities across cortical regions are necessarily rooted in the input marker densities
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since we linearly transformed these inputs using a unique probability matrix

. It should also be noted that this matrix was derived using cells from𝑃(𝑚𝑒 − 𝑡𝑦𝑝𝑒|𝑚𝑎𝑟𝑘𝑒𝑟)

juvenile rat somatosensory cortex and adult mouse visual primary cortex. Including cells

from other brain areas and comparable development stages could improve precision of

me-types predictions. Nonetheless, these results provide a first estimate of inhibitory

me-types composition for the whole cortex enabling more precise modeling of this brain

region in the future.

These results should be nuanced by the outcomes of our validation tests. Molecular ID

prediction gave very good precision and accuracy scores, supporting the validity of the

approach (Table 1). Unfortunately, for cross dataset validations, only morphology-related

labels were available. We observed averaged scores with an unexpectedly low for commonα

morphological labels prediction (Table 1). These results might be partly explained by the lack

of objective, consensual morphological classification in the literature. However, the better

results observed when training on the BBP dataset suggest dataset size differences could also

play a role in the obtained validation scores. It is possible that the AIBS dataset is too small

to fully encompass all morphological diversities, potentially resulting in inaccurate and

imprecise predictions. Nonetheless, overall, we found these results satisfying for

cross-dataset mapping.

A valid technical criticism about the pipeline is that all data points are considered when

doing the hierarchical clustering, even the points for which we don’t have labels. For

instance when we optimized our latent space for molecular IDs prediction, we proceeded to

hierarchical clustering using both AIBS cells (with known molecular IDs) and BBP cells (with

unknown molecular IDs). Thus, we might influence the actual value of alpha to our

advantage to predict the unknown labels. One could argue nonetheless that hierarchical

clustering is used here as a deterministic mathematical tool to probe the common space
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structure. The alpha optimization is then performed on this projection of the subspace.

Hence, the actual optimization uses only the data points with known labels.

It is possible to generalize the mapping approach presented here as long as a common

framework can be defined to allow comparisons between datasets. The optimization of the

subspace resulting from this common framework will always find the best based on theα

available features. Building an extensive cell-type—based knowledge graph linking multiple

datasets will be a useful resource to establish such frameworks. This initiative is already

under process both at BBP, AIBS, and in other groups. In addition, incorporating multiple

datasets will not only increase the range of information types that we can infer but also the

precision and confidence in the inferred information. In the future, Patch-seq dataset

integration could possibly be generalized to infer even specific me-features solely on gene

expression profiles (32,33). The ultimate goal would be to make precise predictions about

neuronal types of uncharted brain areas from very sparse data. An essential key to this

problem is the definition of a brain area independent framework in which we can express

morphological and electrophysiological features. For other regions than the cortex, or even

other species, morphology normalization using layer delineation might not be well adapted,

thus other "invariants" must be found. In addition, the low R-value observed with

normalized e-features (Fig.2) suggest that electrophysiology normalization using rheobase

current should be improved. If the newly defined framework is general enough, it could even

be conserved across species (e.g. mouse and rat) also enabling cross-species predictions.

We present here a first step towards what we think is an essential task: to develop and refine

algorithms that infer missing composition knowledge from what is already known. Such

algorithms will not only help to draw parallels across different animal species but also

extend our comprehension of less studied brain areas, thus facilitating the process of

building a biologically detailed model of the mouse brain.

40

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469815doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469815
http://creativecommons.org/licenses/by-nd/4.0/


Acknowledgements

We thank Emilie Delattre, Lida Kanari, Alexis Arnaudon, Karin Holm and members of the

Molecular Systems team at BBP for helpful comments and suggestions.

Conflicts of Interest

The authors declare that the research was conducted in the absence of any commercial or

financial relationships that could be construed as a potential conflict of interest.

Funding

This study was supported by funding to the Blue Brain Project, a research center of the École

polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the

Swiss Federal Institutes of Technology.

41

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469815doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469815
http://creativecommons.org/licenses/by-nd/4.0/


References

1. Erö C, Gewaltig M-O, Keller D, Markram H. A Cell Atlas for the Mouse Brain. Front

Neuroinformatics. 2018;12:84.

2. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide

atlas of gene expression in the adult mouse brain. Nature. 2007 Jan;445(7124):168–76.

3. Huang ZJ, Paul A. The diversity of GABAergic neurons and neural communication

elements. Nat Rev Neurosci. 2019 Sep;20(9):563–72.

4. Lerner TN, Ye L, Deisseroth K. Communication in Neural Circuits: Tools, Opportunities,

and Challenges. Cell. 2016 Mar 10;164(6):1136–50.

5. Zeng H, Sanes JR. Neuronal cell-type classification: challenges, opportunities and the

path forward. Nat Rev Neurosci. 2017 Sep;18(9):530–46.

6. Ascoli GA, Donohue DE, Halavi M. NeuroMorpho.Org: a central resource for neuronal

morphologies. J Neurosci Off J Soc Neurosci. 2007 Aug 29;27(35):9247–51.

7. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, et al.

Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 2015 Oct

8;163(2):456–92.

8. Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC. NeuroElectro: a window to

the world’s neuron electrophysiology data. Front Neuroinformatics. 2014;8:40.

9. Gouwens NW, Sorensen SA, Berg J, Lee C, Jarsky T, Ting J, et al. Classification of

electrophysiological and morphological neuron types in the mouse visual cortex. Nat

Neurosci. 2019 Jul;22(7):1182–95.

10. Gouwens NW, Sorensen SA, Baftizadeh F, Budzillo A, Lee BR, Jarsky T, et al. Integrated

42

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469815doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469815
http://creativecommons.org/licenses/by-nd/4.0/


Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells. Cell. 2020

Nov 12;183(4):935-953.e19.

11. Scala F, Kobak D, Bernabucci M, Bernaerts Y, Cadwell CR, Castro JR, et al. Phenotypic

variation of transcriptomic cell types in mouse motor cortex. Nature. 2020 Nov 12;1–7.

12. Rodarie D, Veraszto C, Roussel Y, Reimann M, Keller D, Ramaswamy S, et al. Atlas of

Inhibitory Neurons in the Mouse Brain. bioRxiv. 2021 Jan 1;2021.11.20.469384.

13. Keller D, Meystre J, Veettil RV, Burri O, Guiet R, Schürmann F, et al. A Derived

Positional Mapping of Inhibitory Subtypes in the Somatosensory Cortex. Front

Neuroanat. 2019;13:78.

14. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and

distinct transcriptomic cell types across neocortical areas. Nature. 2018

Nov;563(7729):72–8.

15. The Allen SDK. Allen Institute; 2021. Available from:

https://github.com/AllenInstitute/AllenSDK

16. Schuman B, Machold RP, Hashikawa Y, Fuzik J, Fishell GJ, Rudy B. Four Unique

Interneuron Populations Reside in Neocortical Layer 1. J Neurosci. 2019 Jan

2;39(1):125–39.

17. DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielza C, Larrañaga P, Anderson S,

et al. New insights into the classification and nomenclature of cortical GABAergic

interneurons. Nat Rev Neurosci. 2013 Mar;14(3):202–16.

18. Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: From cellular

properties to circuits. Neuron. 2016 Jul 20;91(2):260–92.

43

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469815doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469815
http://creativecommons.org/licenses/by-nd/4.0/


19. DeFelipe J. Cortical interneurons: from Cajal to 2001. Prog Brain Res. 2002;136:215–38.

20. DeFelipe J. The Evolution of the Brain, the Human Nature of Cortical Circuits, and

Intellectual Creativity. Front Neuroanat. 2011;5:29.

21. Fenlon LR, Liu S, Gobius I, Kurniawan ND, Murphy S, Moldrich RX, et al. Formation of

functional areas in the cerebral cortex is disrupted in a mouse model of autism spectrum

disorder. Neural Develop. 2015 Apr 3;10(1):10.

22. BlueBrain/NeuroM. The Blue Brain Project; 2021. Available from:

https://github.com/BlueBrain/NeuroM

23. Snider J, Pillai A, Stevens CF. A Universal Property of Axonal and Dendritic Arbors.

Neuron. 2010 Apr 15;66(1):45–56.

24. BlueBrain/BluePyEfe. The Blue Brain Project; 2021. Available from:

https://github.com/BlueBrain/BluePyEfe

25. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:

Machine Learning in Python. Mach Learn PYTHON. :6.

26. Oh S. A new dataset evaluation method based on category overlap. Comput Biol Med.

2011 Feb 1;41(2):115–22.

27. Borsos Z, Lemnaru C, Potolea R. Dealing with overlap and imbalance: a new metric and

approach. Pattern Anal Appl. 2018 May 1;21(2):381–95.

28. Bar-Joseph Z, Gifford DK, Jaakkola TS. Fast optimal leaf ordering for hierarchical

clustering. Bioinformatics. 2001 Jun 1;17(Suppl 1):S22–9.

29. Müllner D. Modern hierarchical, agglomerative clustering algorithms. ArXiv11092378 Cs

Stat. 2011 Sep 12; Available from: http://arxiv.org/abs/1109.2378

44

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469815doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469815
http://creativecommons.org/licenses/by-nd/4.0/


30. Fuzik J, Zeisel A, Máté Z, Calvigioni D, Yanagawa Y, Szabó G, et al. Integration of

electrophysiological recordings with single-cell RNA-seq data identifies neuronal

subtypes. Nat Biotechnol. 2016 Feb;34(2):175–83.

31. Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q, Yilmaz M, et al.

Electrophysiological, transcriptomic and morphologic profiling of single neurons using

Patch-seq. Nat Biotechnol. 2016 Feb;34(2):199–203.

32. Kobak D, Bernaerts Y, Weis MA, Scala F, Tolias AS, Berens P. Sparse reduced-rank

regression for exploratory visualisation of paired multivariate data. J R Stat Soc Ser C

Appl Stat. 2021;70(4):980–1000.

33. Bernaerts Y, Berens P, Kobak D. Sparse bottleneck neural networks for exploratory

non-linear visualization of Patch-seq data. ArXiv200610411 Cs Stat. 2021 Jun 17;

Available from: http://arxiv.org/abs/2006.10411

45

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469815doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469815
http://creativecommons.org/licenses/by-nd/4.0/

