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ABSTRACT  

Objective: We developed a novel transcranial magnetic stimulation (TMS) device to generate 

flexible stimuli and patterns. The system synthesizes digital equivalents of analog waveforms, 

relying on the filtering properties of the nervous system. Here, we test the hypothesis that the 

novel pulses can mimic the effect of conventional pulses on the cortex. 

Approach: A second-generation programmable TMS (pTMS2) stimulator with magnetic pulse 

shaping capabilities using pulse-width modulation (PWM) was tested. A computational and an 

in-human study on twelve healthy participants compared the neuronal effects of conventional 

and modulation-based stimuli. 

Main results: Both the computational modeling and the in-human stimulation showed that the 

PWM-based system can synthesize pulses to effectively stimulate the human brain, equivalent 
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to conventional stimulators. The comparison includes motor threshold, MEP latency and input-

output curve measurements. 

Significance: PWM stimuli can fundamentally imitate the effect of conventional magnetic 

stimuli while adding considerable flexibility to TMS systems, enabling the generation of highly 

configurable TMS protocols. 

Keywords: Transcranial magnetic stimulation; programmable TMS; TMS pulse generator; 

MEP measurement. 

HIGHLIGHTS: 

• The PWM method promises the implementation of flexible neurostimulation 

• PWM magnetic pulses were well tolerated by the participants without adverse events 

• RMTs and MEPs were compared for PWM and conventional stimuli 

• PWM-equivalent of conventional pulses has relatively similar effects on the cortex  

• The use of digital synthesis techniques to create novel patterns is a promising method 

for future neuromodulation  
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INTRODUCTION 

Transcranial magnetic stimulation (TMS) is a non-invasive method utilized to stimulate and 

modulate the nervous system. Most TMS devices are limited to predefined pulse shapes, only 

generating either monophasic or biphasic cosine-shaped pulses. Repetitive TMS protocols, 

particularly monophasic paradigms, have always been associated with an energy recovery 

challenge [1]. Recently, the use of state-of-the-art power electronic instruments has permitted 

more control over the waveform parameters [2] [3] [4]. A novel technique utilizing pulse width 

modulation (PWM), called programmable TMS or pTMS [5], enables the imitation of a wide 

range of arbitrary pulses. This structure can generate PWM-equivalents of monophasic, 

biphasic and polyphasic pulses with low interstimulus intervals (1 ms) by optimally recovering 

the energy delivered to the coil. 

This study introduces a first-in-human study which uses the second generation of the pTMS 

device (pTMS2), making use of the modular device topology. To validate the effect of this 

device, the conventional monophasic pulse of a Magstim 2002 stimulator was imitated by the 

pTMS2 device. Computational modelling, resting motor thresholds (RMT), motor evoked 

potential (MEP) amplitude, latency and input-output (IO) curve measurements were compared 

for both devices.  

MATERIALS AND METHODS 

TMS devices: We used a custom-built pTMS2 device that cascades two of the inverter cells 

introduced in [5] [6] [7] and generates magnetic pulses with five voltage levels. The PWM can 

approximate any reference waveform, but the pulse will include the fundamental harmonic of 

the reference pulse as well as its higher frequency harmonics. With this principle, pulses of 

different shapes and lengths can be generated as single pulses and trains of pulses (Fig S1-S4).  

The conventional monophasic pulses were generated with a commercial Magstim 2002 

(Magstim Co., UK). Both devices were connected to the same 70 mm figure-of-eight coil 
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(Magstim Co., P/N 9925–00) with an adapter (Magstim Co., P/N 3110–00). The output pulses 

of the two devices are shown in Figure 1a.  

PHYSIOLOGICAL RESPONSE MODELS 

To understand how the PWM stimuli, with their high-frequency harmonics, interact with 

neural tissues, two biophysically based models were applied before conducting the in-human 

study: 

RC model: Considering only the subthreshold dynamics of the neuronal membrane, a resistor–

capacitor (RC) model can estimate the membrane potential variation (∆Vm), where ∆Vm 

biophysically outlines the shift of the membrane potential from the resting state of the 

membrane [8]. This model approximates the membrane as a low-pass filter with a time constant 

of 150 μs. 

Morphological neural models: A model which integrates morphological neural models with 

transcranially induced electric fields is used to compare the neural response to the Magstim 

and pTMS2 pulses [9] [10], similar to a previous study [11](see supplementary file for more 

details). The Simulink models for the temporal waveforms were adjusted to replicate the 

stimulation pulses of the devices used in the in-human study. 

IN-HUMAN STUDY 

Participants: Twelve healthy participants (mean age: 28.6 years, range: 22–37 years; 4 male) 

gave their informed consent to participate in the study which was approved by the Central 

University Research Ethics Committee (CUREC), University of Oxford (R75180/RE002). All 

participants were right-handed as assessed by the Edinburgh Handedness Inventory (Oldfield, 

1971), had no current significant medical condition and reported no other contraindications to 

TMS. 

Procedure: Within each session, conventional and PWM stimuli were applied using the 

Magstim stimulator and pTMS2 devices, respectively, in counterbalanced order. The 
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participants were seated in a chair with their arms resting on a pillow on top of a table in front 

of them. The coil was positioned over the left primary motor cortex and oriented at 45º to the 

midline with the handle pointing backwards. At the beginning of each session, the motor 

hotspot was determined with the Magstim stimulator, which indicates the optimal scalp 

position where MEPs could be elicited in the right first dorsal interosseous (FDI) muscle. A 

Brainsight neuronavigation system (Rogue Research Inc., Montreal, Canada) was used to track 

the position and orientation of the coil. 

Electromyography (EMG) was recorded from the FDI of the right hand by positioning 

disposable neonatal ECG electrodes (Henley’s Medical, Welwyn Garden City, UK) in a belly-

tendon montage, with the ground electrode over the ulnar styloid process. The RMT, defined 

as the minimum intensity required to evoke MEPs with ≥50 μV peak-to-peak at rest in 5 out of 

10 trials [12], was measured and compared for both devices. 

For the IO curve, MEPs at intensities up to the maximum voltage achievable by the pTMS2 

device (see limitations section) were measured. Similar to other recent studies [13], TMS 

stimuli were applied in increasing order from low to high intensities in steps of 3% of the 

maximum stimulator output (MSO) of the Magstim 200. Results of stimulating in this fixed 

order have been shown to be similar to randomizing the intensities [14].  

Data analysis: For statistical analysis, we used repeated measures ANOVA. In addition to 

calculating the RMTs and input-output curves, the data was used to compute the latencies of 

MEPs with peak-to-peak amplitudes of 50 µV, 500 µV and 1mV, as done in previous studies 

[15]. The latency is defined as the time point where rectified EMG signals surpass a mean plus 

two standard deviations of the 100 ms pre-stimulus EMG level [16] [17]. The data were log-

transformed [18] [19] [20] and the least-squares curve regression, which is a Gaussian-type 

curve with four parameters, was utilized to fit the data points of each participant individually 

[17] [21]. The slope of the IO curves was calculated from the tangent at the point where 50% 
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of the maximal MEP size was reached. For two of the participants, who had a high threshold, 

we could not reach a plateau value for the IO curve, therefore these curves were excluded from 

the slope comparison. 

RESULTS AND DISCUSSION 

The computational modeling, as well as the in-human results show that the PWM pulses 

approximate the neuronal effects of the conventional stimulus closely. 

Physiological response models: Figure 1(b) shows the change in membrane potential obtained 

from the RC model for both stimuli, with overall small dissimilarities. The modeled low-pass 

filtering properties of the neuron result in the membrane potential following the fundamental 

pulse frequency and attenuating the high frequency harmonics [22]. This dynamic of neural 

cells supports the principle of using PWM in TMS devices without causing unwanted side-

effects due to the higher harmonics. Figure 1(c) displays the median excitation thresholds for 

both waveforms across the 2D cross-section of the pre-central crown, as obtained using the 

morphological neural models. The activation thresholds are consistently 5.6-6.2% lower for 

the pTMS2 pulse than for the Magstim pulse. The thresholds for each layer within the cortical 

hand muscle representation are shown in Figure 1(d), where each boxplot includes the data 

from five neuron clones within each layer. Linear regression between the thresholds for the 

two pulse types revealed a strong correlation (r2= 1.000, p= 0.000) with a slope of 0.939 (Figure 

1(e)), indicating a consistently lower threshold for the pTMS2 pulses. 

MEP measurements: The RMTs as a percentage of the respective Magstim output are 41.34± 

6.07% (mean ± standard deviation), and 38.00± 5.91% for pTMS2 stimuli, as shown in Figure 

2(a). The pulse shape has a significant influence on the RMT (F1.11= 115, p< 0.01). Notably, 

the PWM pulses have a lower RMT than sinusoidal monophasic pulses for all participants 

(approximately 3%), as expected from the modeling results.  The observed stronger effects of 

the PWM stimuli on the RMT may be related to the sharp edges and higher amplitude in the 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469832doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469832
http://creativecommons.org/licenses/by/4.0/


7 
 

negative phase of the PWM pulses; other studies report similar results for rectangular pulses 

[15] [23]. However, further studies are required to confirm this. 

The MEP latency is a reliable measure of the microcircuitry site of action potential initiation 

[15]. This latency is thought to show the number of synapses that the corticospinal volley 

crossed from the stimulation site to the target muscle. The MEP latencies for the two pulses 

are shown in Figure 2(b) which are not statistically significantly different between the devices 

(for 50 µV MEPs: F1.11= 0.07, p= 0.79, for 500 µV: F1.11= 0.65, p= 0.44, and for 1 mV: F1.11= 

0.58, p= 0.46) while they differ for different MEP amplitudes. This supports the hypothesis 

that conventional and PWM pulses activate the same sites in the microcircuitry around the 

RMT value; Goetz et al. and D’Ostilio et al. have reported that different pulse shapes can cause 

different latencies and possibly activate different sites in the primary motor cortex or more than 

one population of axons [15] [17]. 

IO curves: It has previously been reported that the stimulus shape affects the slope of the 

IO curve [17] [13]. Figure 2(c) shows an example of a sigmoidal IO curve of one participant 

for both devices. The raw EMG data for this participant is shown in Figure S5. Across the 

participants, the slopes of the IO curves are not significantly different between the devices 

(F1.10= 0.08, p= 0.77), as displayed in Figure 2(d). Together, the measured motor responses and 

IO curves indicate that the neural response to the conventional and PWM stimuli only differ 

by a small shift but not in their mechanisms of action.  

Side effects: No adverse events occurred during or after the stimulations. Participants did not 

report a subjective difference during stimulation, apart from a change in the sound emitted 

during pulse firing. 

LIMITATIONS 

More research is needed to examine the brain’s response to different PWM pulse shapes, 

especially biphasic waveforms, and this study should be repeated for a larger participant cohort 
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to replicate the findings. The pTMS2 device is currently limited to lower stimulation 

amplitudes than the Magstim 2002 for the pulse widths used here, which limited the data 

collection for individuals with very high thresholds. The maximum pulse amplitude of pTMS2 

was 1600 V, compared to the maximum outputs for the Magstim Rapid, MagVenture MagPro, 

and Magstim 2002 which are approximately 1650, 1800 and 2800 V, respectively [15] [24]. 

Additionally, measurements of the clicking sound and electromagnetic noise are necessary for 

a better comparison of artifacts. 

CONCLUSION  

TMS technologies are moving towards more programmable approaches to nerve 

stimulation. This study shows that PWM-based TMS can effectively imitate the effect of 

conventional stimuli on the cortex. Future applications of these TMS devices with new 

modulation paradigms might aid in finding new treatments for psychiatric and neurological 

diseases. 
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peak coil voltage of the pTMS2 device was compared with the Magstim device. (b) Average MEP latencies were 

measured for 50 µV, 500 µV and 1 mV peak-to-peak MEP amplitudes. * indicates the comparison between the MEP 

latencies across the different amplitudes for the Magstim pulses (p < .02), + indicates the comparison between the 

latencies across the different amplitudes for the pTMS2 pulses (p < 0.01), which is statistically significant for both 

devices. This significant difference indicates that different pulse sizes have different latencies. (c) Example IO curves 

of one participant for the Magstim pulse in orange and the pTMS pulse in blue, both in logarithmic scale (23-year-old 

female, RMT= 42% for Magstim and 38% for pTMS2 devices). (d) The IO curve slopes for both pulse types. For the 

IO curves, MEP measurements below 20 µV were set to 20 µV, as this was the lowest amplitude that was distinguishable 

from EMG signal noise.  The MEP measurement was repeated 15 times for each amplitude, and the order of devices for 

the IO curves was counterbalanced to avoid order effects. For (a), (b) and (d), bars and whiskers show mean and standard 

error, respectively, with individual data points overlaid in grey. 
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