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Abstract

In this work, based on real data on the size of the eyeball (in a fetus, in
a child, and in young people under 20), we constructed a model function
of the growth of the retinal cell tissue.

We used this function to construct a theoretical age distribution of
retinoblastomas. We constructed theoretical age distributions for four
different models of retinoblastoma: a complex mutational model, a third
mutational model, a model with a sequence of key events, and a model
of a single oncogenic event with two different latencies (hereditary and
non-hereditary retinoblastoma).

We compared the theoretical age distribution of retinoblastomas with
the real age distribution based on SEER data (Surveillance Epidemiology
and End Results; program of the American National Cancer Institute). In
total, we examined 843 cases in women and 908 cases in men.

For all models (separately for women and men), we obtained estimates
of the following cancer parameters: the specific frequency of key events
(events that trigger cancer); the duration of the latency period of cancer;
the number of key events required for cancer to occur.

For the composite age distributions, we calculated the theoretical
mean age at diagnosis for hereditary and non-hereditary retinoblastomas.

The best approximation accuracy (for male and female forms of
retinoblastoma) is shown by a model with a sequence of key events.
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1. Introduction

Retinoblastoma (childhood malignant tumour of the retina) differs from
other cancers in that the peak incidence occurs in the first years of a child’s
life.

About half of retinoblastoma cases are hereditary – patients have a parent
with this disease. In [1], Alfred Knudson suggested that retinoblastoma oc-
curs when both alleles of the retinoblastoma gene are damaged as a result of
mutation (the tumour suppressor gene Rb was discovered later, in 1986 [2]).
In hereditary retinoblastoma, the patient receives one mutant allele from the
parent, the second, later mutation, occurs by chance. In the non-hereditary
form of the disease, both alleles are damaged by random mutations.

Despite the long period of study of retinoblastoma, the picture of the onset
of the disease is not completely clear. It is known that not all patients with
non-hereditary retinoblastoma have mutations in the Rb gene [3].

In this work, we will try to obtain a theoretical form of the age distri-
bution of retinoblastomas for different models of retinoblastoma occurrence
(different models give different age distribution) and compare them with real
age distributions.

2. Cellular tissue growth function

2.1. Initial data

To construct the age distribution of the incidence of retinoblastoma, we,
as a rule, need a certain model function of the growth of cell tissue.

As the initial data for constructing the function of cell tissue growth (reti-
nal cell tissue), we used data on the diametral size of the eyeball.

The size of the eyeball is measured both in utero (in the fetus) and in
the postpartum period (in a child) by computed NMR tomography (nuclear
magnetic resonance), ultrasound scanning (US) and infrared interferometer.
Research is carried out to monitor various eye diseases (myopia, glaucoma,
cataracts). Usually, the transverse diameter of the eye and the axial length
(the distance between the anterior and posterior walls of the eyeball) are
measured.

To construct the retinal growth function, we used data obtained from three
different sources: [4],[5],[6].

In [4], measurements of the diameter of the fetal eye at the age from 11
weeks of gestation to childbirth, performed by NMR tomography, are pre-
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sented: 127 cases are presented with known age in weeks. For each case, the
average diameter of the left and right eye is presented.

The work [5] is a review article summarizing the work devoted to the
measurement of the axial length of the eye in children from 0 to 3 years old,
performed by the method of ultrasound scanning. The authors analyzed the
measurements of 6575 eyes presented in 27 scientific articles. The data are
categorized by age group and the mean is presented for each group. The data
were not separated by sex of the child (this is not essential in infancy).

The work [6] presents the results of measurements of healthy eyes (238
cases), performed using an infrared laser interferometer in patients from 4 to
20 years old (separately for men and women). Widely scattered data, divided
into 7 age groups (the average value for the group is given).

The three datasets differ in the measurement method. In the fetus, before
birth, measurements are carried out on an NMR tomograph. This is bulky
and expensive equipment (it takes a small room). Therefore, less data is
collected than data from the other two age groups. From birth to 4 years
of age, eye size is measured using an ultrasound scan. This is a desktop
equipment, quite cheap and widely used, and this group of measurements is
represented by the largest amount of data. The third group of measurements
– children from 4 years old – is represented by data obtained on a laser
scanning interferometer. This is a tabletop device that measures the axial
length of the eyeball with a low-power laser beam through the open eye pupil.
The child should consciously look into the eyepiece of the device for several
seconds. For this reason, measurements are taken on children aged 4 years
and older. The interferometer provides greater measurement accuracy com-
pared to ultrasound, but measurements in young children are not made on it.

In order to construct a function of growth of cellular tissue (retina) on
the basis of these data, we must calculate the volume of cellular tissue and
the number of cells in a given volume from the linear size of the eye (eye
diameter D).

Assuming that the retinal cells are located on the inner spherical surface
of the eye in one layer, we can also assume that the total number of cells N(t)
(for an adult organ and for an organ in the process of growth) is proportional
to the area of a sphere with diameter D:

N(t) = k πD(t)2 ( 2.1)

Here k is some constant coefficient that can be set if we know the num-
ber of cells in the tissue of an adult organ. Eye diameter D(t) changes with
time during growth.

At present, it is not known exactly what type of retinal cells the tumour
develops from. It is assumed [7] that the tumour originates from the progen-
itor cells of the retinal light-sensitive cones.
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Figure 2.1. Retinal cell growth (plot points are based on real data). The
upper figure is data for ages from 3 to 33 months. Average figure is data
for ages from 3 to 240 months (20 years) for women. Bottom figure is
data for ages from 3 to 240 months (20 years) for men. Time is counted
from the start of gestation. The vertical dashed line is the time of birth t0.
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In [8], the number of cone cells in the retina of an adult eye is estimated
at 4.6 million cells. Therefore, we assume that the number of cells in the
cellular tissue is 9.2 · 10 6. We set the coefficient k in (2.1) so that the value of
the function N(t) in adulthood is equal to 9.2 · 10 6 cells.

The set of discrete points Ni of the cell tissue growth function obtained by
formula (2.1) based on real data sets on the linear dimensions of the eyeball is
shown in Fig. (2.1). The figure shows data from all three sources: [4],[5],[6].
Data from work [5] (children from 0 to 4 years old) are marked with black
squares. The top graph shows the data [4], [5] for ages from 3 to 33 months
(data without gender division). The middle graph (different timescale) shows
data for ages from 0 to 240 months (20 years) for women. The bottom graph
shows data for men aged 0 to 240 months (20 years). Time is counted from
the beginning of gestation. The time of birth t0 is marked with a vertical
dashed line in all three graphs.

We will approximate this data using a theoretical growth function (pre-
sented in the next section). After performing the first approximation, we can
establish the exact value of the coefficient k in formula (2.1). In Fig. 2.1 the
coefficient k is k = 5.87 · 10 3 for women and k = 5.66 · 10 3 for men.

Besides the real dataset, we set the initial point of the growth function
N(0) = 1. Here we assume that at the initial moment of time t = 0 the cellular
tissue consists of one cell.

2.2. Model function of growth

As a growth function, we use our usual growth function, which we used
earlier – for example, in [9]:

N(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c1 e b t if t ≤ t1

R0
k0
− c3 e

−
k0
k3

t
if t > t1

( 2.2)

This is the simplest growth function, and, in this case, c1 = 1 (at the initial
moment of time t = 0, the tissue consists of one cell).

The function consists of two pieces (of two curved lines) given at intervals
[0; t1] and [t1;∞]. On the first interval, the function N(t) grows exponen-
tially, after time t = t1, the function N(t) encounters some growth-limiting
factors, and the growth of the function slows down, exponentially approach-
ing a certain limit:

N(∞) =
R0
k0
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In our case:

N(∞) = 9.2 · 10 6

The R0/ k0 ratio specifies the number of cells in an adult organ. The
constant b from the upper equation of system (2.2) is determined by the
expression:

b =
k1 − k0

k3
( 2.3)

The parameters t1, R0 and k3 are related by the equation:

b t1 = ln
(︂R0

k1

)︂
( 2.4)

The constant c3 (this is the constant of integration) is found from the
equation:

c3 =

(︃
R0
k0
− c1 e b t

)︃
e

k0
k3

t
( 2.5)

All parameters included in equations (2.2) are described in detail in the
book [10].

2.3. Approximation of the initial data

In this section, based on real data sets, we will construct N(t) function
(model function of cell tissue growth), which we will use later to obtain the
age distribution of retinoblastomas.

We need to substitute into the equations describing this model function
(2.2) such (optimal) coefficients R0, k0, k3 in order to minimize the value of
the error function Er

We need to substitute certain coefficients R0, k0, k3 in the equations de-
scribing this model function (2.2) to minimize the error function Er (least
square method):

Er (R0, k0, k3) =
1
n

⎯⎸⎷ n−1∑︁
i=0

(︁
Ni − N (ti)

)︁2

Optimization of the error function is carried out programmatically, using
the quasi-Newtonian method.

Figures 2.2 and 2.3 show graphs of cell tissue growth functions obtained
as a result of approximation (separately for women and men). The growth
function N(t) is shown by the bold solid line. The datasets are shown with
open circles.
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The top and bottom plots in Figures 2.2 and 2.3 show the same function
at different time scales. Age is measured from the start of gestation. The
vertical dashed line shows the time of birth t0.

Figure 2.2. Retinal cell growth function (bold solid line) is approxima-
tion for a real dataset (women). Real data are shown with open circles.
The top and bottom figures show the graph at different time scales. Age is
counted from the beginning of gestation. The vertical dashed line shows
the time of birth t0.

As a result of optimization, we obtained the following values of the
parameters of the cell tissue growth function: R0 = 2.78 · 10 5, k0 = 0.30,
k3 = 0.22, k = 5.87 · 10 5, t1 = 2.8 (women); R0 = 2.32 · 10 5, k0 = 0.25, k3 = 0.20,
t1 = 2.6 (men). The coefficient k1 in both cases is considered equal to one.
The root-mean-square error of approximation is Er = 7.04 · 10 4 for women
and Er = 7.99 · 10 4 for men.

We will use these two functions (with the obtained optimal coefficients) to
construct the age distribution of retinoblastomas.
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Figure 2.3. Retinal cell growth function (bold solid line) is approxima-
tion for a real dataset (men). Real data are shown with open circles. The
top and bottom figures show the graph at different time scales. Age is
counted from the beginning of gestation. The vertical dashed line shows
the time of birth t0.

3. Real age distribution of retinoblastomas. Data
preparation.

To construct the real age distribution of retinoblastomas, we used data
from the SEER program (Surveillance Epidemiology and End Results) of
National Cancer Institute (US) for the period from 2000 to 2016 [11]. The
SEER database contains information on 843 cases of retinoblastoma in women
and on 908 cases in men.

The preparation of cancer incidence data is described in detail in [12] and
[13], so here we only give a general description of the algorithm.

First, from the database, we select all cases of diseases (separately for
women and men) for one year – let’s say we want to select cases of female
retinoblastoma in 2000. We sort all cases for 2000 by age.

9
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Figure 3.1. Age distribution of retinoblastomas (real data) per 100,000
people for women (upper graph) and men (bottom graph) for the period
from 2000 to 2016.

We divide the number of cases for each age by the US population for that
age and gender (US Census Bureau data [14]). Next, we divide this result
by 0.28 because SEER data covers 28 percent of the US population. [15].
The resulting number is the incidence of retinoblastoma per one person of a
given age and gender. For each age (age is taken in 1 year increments) we
get a certain number.

We carry out similar actions for each of the next 16 years (each year
separately).

For each age, we summarize 17 incidence rates obtained for each year
(from 2000 to 2016). We divide the sum by 17 and multiply by 100,000. Thus,
we get the incidence for a given age per 100,000 people (separately for women
and men). The numbers (incidence cases) obtained for each age are plotted
on the general graph of the age distribution of incidence.

The resulting graphs of the real age distribution of retinoblastomas per
100,000 people (separately for women and men) are shown in Fig. 3.1.

10
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4. Complex mutational model

4.1. Age distribution functions

As a model of oncological disease, we use the mutational model presented
in [9]. According to the model’s definition, cancer occurs when a cell receives
a certain number of mutations (key events). We will consider age distributions
for the case of one mutation per cell, two mutations per cell, as well as a
composite distribution combining (in some ratio) cases with one mutation and
cases with two mutations per cell.

The theoretical equations for the age distribution functions are as follows:

D1 (t) = a NP N(t) exp
(︁
− a

∫︁ t

0
N(t) dt

)︁
( 4.1)

D2 (t) = a NP N1(t) exp
(︁
− a

∫︁ t

0
N1(t) dt

)︁
( 4.2)

DS (t) = 0.44 D1(t) + 0.56 D2(t) ( 4.3)

The function D1 (t) is the age distribution of retinoblastomas, built for the
case when the disease occurs after one mutation in the cell; D2 (t) function
is the age distribution constructed for the case when the disease occurs after
two mutations in the cell; DS (t) function is the composite age distribution
obtained for the composite function NS (t) (see below).

In these equations, a is the average frequency of specific mutations (the
average number of mutations occurring in a cell per unit of time). The con-
stant NP is the number of people in the group for which the age distribution
is constructed. N(t) function is the cell tissue growth function (the function
described in the previous section). The N1(t) function describes the number
of cells (in the considered anatomical tissue) that have one or more mutations.

DS (t) function reflects the case when the age distribution of retinoblas-
tomas is formed by two different groups of patients. The first group gets
cancer after one cell mutation (inherited form of retinoblastoma), the second
group gets the disease after two mutations in the cell (non-inherited form of
retinoblastoma). The proportion of patients in the first group is 44 percent,
the proportion of patients in the second group is 56 percent of the total size
of the group, for which the age distribution of retinoblastomas is constructed
(this is 44 and 56 percent, respectively, of NP constant).

We chose the percentage ratio between the two groups with different
numbers of mutations initiating the disease based on the data presented in
[16], where 918 cases of retinoblastoma were analyzed. According to the
results of the study, the proportion of diseases with documented hereditary
form of retinoblastoma was 44 percent. The authors note that the proportion
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of hereditary diseases was significantly higher than is usually indicated in
other scientific articles. Therefore, when identifying this ratio, it is important
to look at the total number of cases considered.

The function N1(t) (the case when a tumour is formed from two mutations
in a cell) is given by the equation:

N1(t) dt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c1 e−b t

(︁
1 − e−a t

)︁
if t ≤ t1(︃

R0
k0
− c3 e

−
k0
k3

t
)︃ (︁

1 − e−a t
)︁

if t > t1
( 4.4)

The functions N(t), N1(t) and NS (t) are piecewise functions that are given
by different equations on two different time intervals (from 0 to t1 and from
t1 to infinity). Therefore, after the time t1, the integration in formulas (4.12-
4.14) should be carried out separately for each time interval. For example,
for N1(t) function it will look like this:∫︁ t

0
N1(t) dt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫︀ t

0 N1(t) dt if t ≤ t1∫︀ t1
0 N1(t) dt +

∫︀ t
t1

N1(t) dt if t > t1
( 4.5)

N1(t) function on the interval [0; t1] and the N1(t) function on the interval
[t1;∞] are two different functions. Therefore, non-observance of this rule will
lead to a discontinuity of the function D1(t) at the point t = t1.

4.2. Approximation method

We perform an approximation of the real age distribution (Figure 3.1) using
theoretical functions (4.1), (4.2), (4.3).

In the real age distribution, cases of diseases are grouped into age groups
with a wide range of ages (the width of the group is one year or 12 months).
The theoretical age distribution function varies greatly within one year (we
usually consider the graph of the theoretical function in months, not years).
Therefore, for comparison with the real age distribution, we must present
your theoretical distribution in the form of a histogram (bar chart), where
each bar represents the total number of cases that fell into a given age group
from our age distribution. The age groups on our histogram will be wide -
the width is one year or more (for the zero group) - this corresponds to the
data of the real age distribution of retinoblastomas.

The height of the histogram bar is the integral of the theoretical age dis-
tribution function. For example, for the zero bar and the age distribution
function D1(t) we have:

H0 =

∫︁ 12+8.72

0
D1(t) dt ( 4.6)
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The height of the zero column of the histogram is the number of cases
of retinoblastoma that occurred in the considered group of people in the age
interval from 0 to 12 months. In this case, the time t (age) is counted from
the beginning of pregnancy. We assume that the pregnancy lasts 266 days
(38 weeks) from the time of fertilization of the mother’s egg, and therefore
the time of birth on the scale of months is t = 8.72. An infant 11 months
old falls into the H0 group of the histogram (since its age is 0 completed
years from birth).

The height of the first bar of the histogram is:

H1 =

∫︁ 24+8.72

12+8.72
D1(t) dt ( 4.7)

This age group includes infants between the ages of 12 and 24 months
(babies who are 1 full year old).

The height of the second bar of the histogram is:

H1 =

∫︁ 36+8.72

24+8.72
D1(t) dt , ( 4.8)

etc.
The height of the last bar of the histogram is:

Hn−1 =

∫︁ ∞

(n−1) 12+8.72
D1(t) dt , ( 4.9)

In our case, this column can be considered equal to zero, since retinoblas-
toma is a disease of an early age, and the number of cases of retinoblastoma
registered after 80 years is zero.

The age distribution of D2(t) (the case when the disease arises from two
mutations in the cell) and the histogram of this distribution are shown for
example in Fig. 4.1. Note that the graphs have different scales on the ver-
tical axis.

When constructing the graphs, we used the cell tissue growth function N(t)
(discussed above and built on the basis of real data on the size of the eyeball
in men) and the following parameters: a = 2.0·−5, NP = 8.5, TS = 0, z = 2.

The histogram of the age distribution of the incidence obtained by the
above method is used as a discrete approximation function to approximate
the real data set of the age distribution of retinoblastomas.

Choosing the optimal parameters a, NP, TS (parameters of the age dis-
tribution function used to construct the histogram), we minimize the error
function Er (least squares method):

Er (a,NP,TS ) =
1
n

⎯⎸⎷ n−1∑︁
i=0

(︁
Di − Hi

)︁2
( 4.10)
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Alexandr N. Tetearing Complex mutational model

Figure 4.1. Histogram Hi of age distribution of retinoblastomas (rectan-
gular bars, top graph) and real age distribution data (open circles, upper
graph); age distribution function D2(t) (bold curve line, bottom graph) for
the case when the disease occurs due to two mutations (key events) in
the cell.

Here Di is a value from the real age distribution; Hi is the value of the
i-th bar of the histogram built for the theoretical age distribution; n is the
number of points in the real dataset.

Together with the parameters a (the average number of mutations occur-
ring in the cell per unit of time) and NP (the number of people in the consid-
ered group, for which the age distribution is constructed), we also optimize
the parameter TS - this is the time shift between the onset of the disease
(the key event initiating the disease) and the detection of cancer (the latency
period of the disease). For example, if TS = 2, we shift the theoretical age
distribution function 2 months to the right in the timeline.

We carry out the approximation of the data set programmatically, using
the quasi-Newtonian method.

In addition to the absolute error function Er for the found optimal approx-
imation parameters, we calculate the relative error function Er%:
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Alexandr N. Tetearing Complex mutational model

Er% (a,NP,TS ) =
100
n

⎯⎸⎷ n−1∑︁
i=0

(︃
Di − Hi

Dmax

)︃2

( 4.11)

The function shows the relative root mean square error of approximation
as a percentage of the maximum value of Dmax from a set of real data.

4.3. Calculating the mean age at diagnosis

For the compound functions of the age distribution of morbidity (when the
group in question includes patients with hereditary and non-hereditary forms
of retinoblastoma), it would be interesting to determine the average age at the
time of diagnosis in order to compare the theoretical age with the real one.

If we know the age distribution function DS (t), then the average time (age)
of the diagnosis can be found as the projection onto the time axis of the point
that is the center of mass of the figure bounded by DS (t) function and time
axis. Here we assume that the mass of the figure is proportional to its area.

It is also necessary to take into account the fact that all cases of a dis-
ease that began before birth can be diagnosed only after birth (not earlier).
Therefore, we calculate the average age of the diagnosis td in two stages.
First, we find the projection of the center of mass of the figure, including
all cases of the disease for ages from t0 (time of birth) to infinity. This age
td0 is found from the equation:∫︁ ∞

t0
DS (t) (t − td0) dt = 0 ( 4.12)

Since we calculate age from the time of fertilization of the mother’s egg,
the time of birth t0 is 8.72 months.

Then we find the center of mass td of two material points with different
masses: the first point is located on the time axis at the point t = t0 and has a
mass equal to the sum of all cases of the disease that occur before birth, the
second material point has a mass equal to the sum of all cases that occur after
birth. This mass is located on the time axis at the point t = td0.

Thus, the point td (average age at diagnosis) is found from the equation:∫︁ t0

0
DS (t) (td − t0) dt =

∫︁ ∞

t0
DS (t) (td0 − td) ( 4.13)

It should be remembered that the mean age at diagnosis is not the time of
the maximum value of the age distribution (distribution peak time – the age
for which the maximum number of cases of the disease is recorded). Also,
the mean age at diagnosis is not the median age of the age distribution. (age
that divides the number of cases into two equal halves – the number of cases
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reported before the median age is equal to the number of cases reported after
the median age).

4.4. Results

For the mutational model of retinoblastoma (separately for men and
women), we performed software optimization of the model parameters for
cases when the disease develops as a result of one mutation (key event) in
the cell; for the case when the disease develops as a result of two mutation
in the cell; and for the composite case where 44 percent of patients (in the
group for which the age distribution is constructed) develop the disease as
a result of one mutation in the cell (hereditary retinoblastoma), and 56 per-
cent of patients develop the disease as a result of two mutations in the cell
(non-hereditary retinoblastoma).

As already mentioned, the specified percentage was selected based on the
data from [16].

The optimization results are presented in Table 4.1 for three cases with
different numbers of initiating mutations. The z parameter is the number of
mutations (key events) in the cell that initiates the disease. The parameter
z = 1.56 refers to the composite age distribution (44 percent of the group are
patients with one mutation, 56 percent of the group are patients with two
mutations.).

Table 4.1.

Optimal approximation parameters for mutational model of retinoblastoma.

Retinoblastoma TS a NP Er Er%

Female; z=1 1.6 6.3 · 10−9 9.1 3.41 · 10−3 0.09

Female; z=1.56 10.9 2.2 · 10−5 8.4 4.65 · 10−3 0.12

Female; z=2 0 2.1 · 10−5 7.8 12.58 · 10−3 0.32

Retinoblastoma TS a NP Er Er%

Male; z=1 0.4 5.4 · 10−9 9.6 7.18 · 10−3 0.18

Male; z=1.56 12.2 2.2 · 10−5 8.7 4.58 · 10−3 0.12

Male; z=2 0 2.0 · 10−5 8.0 16.75 · 10−3 0.42

The TS parameter is the latent period of the disease (the time from the
key event that initiates the disease to the diagnosis).
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The a parameter is the specific frequency of key events – the average
number of key events that occur in a group of cells per unit of time (month).

The parameters Er and Er% are absolute and relative mean square error.
The relative error is calculated as a percentage of the maximum value from
the set of real data on the age distribution of retinoblastomas.

The obtained functions with optimal approximation parameters are shown
in Figures 4.2, 4.3, 4.4, and 4.5.

Real data in the figures are shown with open circles. Real data points are
located along the time axis with one-year interval. The first point on the left
in the figure corresponds to the time of birth (age is 0 years), the second point
corresponds to the age of 1 year, and so on. The theoretical age distribution
functions are shown with a bold curve line. The histograms plotted for the
theoretical age distribution function are shown with rectangular bars. The
vertical dashed line in the figures indicates the time of birth of the child t = t0.

Figures 4.4 and 4.5 show bimodal age distributions for which the incidence
distribution function has two local maximums. The first peak of incidence
(left maximum) corresponds to the group of patients with hereditary form of
retinoblastoma, the second peak of incidence (right local maximum) corre-
sponds to the group of patients with non-hereditary form of retinoblastoma.

An approximation for the case of two mutations (z = 2 in women and in
men) gives a negative latency period (diagnosis lag time, parameter TS in
Table 4.1). That is, if TS is negative, the value of the error function decreases.
A negative TS parameter means that we can diagnose the disease before the
key event that triggers the disease occurs. In practice, of course, this does
not happen, so we write the value TS = 0 into the table.

For the compound age distribution (derived as the sum of hereditary and
non-hereditary cases of retinoblastoma), we calculated the theoretical mean
age at diagnosis (see Equations 4.12 and 4.13).

For hereditary female retinoblastoma, the mean age at diagnosis is: td1 =
13.5 months; for non-hereditary female retinoblastoma, the mean age at di-
agnosis is: td2 = 32.6 months;

For hereditary male retinoblastoma, the mean age at diagnosis is: td1 =
14.9 months; for non-hereditary male retinoblastoma, the mean age at diag-
nosis is: td2 = 34.2 months.
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Figure 4.2. Age distribution of retinoblastomas, obtained for a complex
mutational model (women): a) histogram of D1(t) function, real data set
(open circles); b) D1(t) function of age distribution; c) histogram of D2(t)
function , real data set; d) D2(t) function of age distribution. Here z is
the number of cellular mutations required for the disease to occur. The
vertical dashed line marks the time of birth t = t0.
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Figure 4.3. Age distribution of retinoblastomas, obtained for a complex
mutational model (men): a) histogram of D1(t) function, real data set
(open circles); b) D1(t) function of age distribution; c) histogram of D2(t)
function , real data set; d) D2(t) function of age distribution. Here z is
the number of cellular mutations required for the disease to occur. The
vertical dashed line marks the time of birth t = t0.
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Figure 4.4. Composite age distribution of retinoblastomas, obtained for
a complex mutational model (women): a) histogram of DS (t) function,
real data set (open circles); b) DS (t) function of composite age distri-
bution; c) DS (t) function of composite age distribution is presented in
a different scale of the coordinate axes. Here z is the number of cellu-
lar mutations required for the disease to occur. The vertical dashed line
marks the time of birth t = t0.
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Alexandr N. Tetearing Third mutational model

Figure 4.5. Composite age distribution of retinoblastomas, obtained for
a complex mutational model (men): a) histogram of DS (t) function, real
data set (open circles); b) DS (t) function of composite age distribution;
c) DS (t) function of composite age distribution is presented in a different
scale of the coordinate axes. Here z is the number of cellular mutations
required for the disease to occur. The vertical dashed line marks the time
of birth t = t0.

5. Third mutational model

This is the third mutational model in our works. The first two mutational
models presented in [9] are called ”simple mutational model” and ”complex
mutational model”. The simple model does not take into account the growth
function of cell tissue and, for this reason, does not correspond to reality. The
complex mutational model takes into account the increase in the number of
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cells in the cell tissue, therefore, it more accurately describes the process of
obtaining of mutations. All mutational models assume that information about
the obtaining mutations is transmitted from the parent cell to the daughter
cells.

We have developed the third mutational model specifically for retinoblas-
toma. To avoid confusion in the names, we have named this model the ”third
mutational model”.

This model suggests that a key event in the cell damages only one allele
of the Rb gene, and that cancer in the cell is activated only if two alleles of
the Rb gene are damaged.

The third mutational model also suggests that the age distribution of
retinoblastomas is formed by two different groups of patients. The first group
has hereditary (inherited from one of the parents) Rb gene allele damage, and
in order to initiate the disease, any individual retinal cell must receive only
one mutation (allele damage). The second group of patients has two normal
alleles in each cell, and in order to cause disease, the cell must receive two
mutations (both alleles must be damaged).

As in the previous section, we consider the percentage of groups in the age
distribution to be 44/56, based on the data presented in [16].

Thus, in contrast to the complex mutational model discussed above, in this
model we believe that key events (mutations) occur not with the cell, but
with one of the two alleles in the cell. That is, the a parameter in this model
is the specific mutation frequency for one allele (the average number of key
events that occur in one allele per unit time). Since in a group of healthy
patients there are two normal alleles in the cell before the first mutation,
the specific frequency of the first mutation should be twice as high. In the
working equations, we assume that the frequency of the first mutation in
these patients is 2a.

5.1. Age distribution function

In the third mutational model, the age distribution function DS (t) looks
the same as the age distribution function in the complex mutational model:

DS (t) = 0.44 D1(t) + 0.56 D2(t) ( 5.1)

Here D1(t) and D2(t) functions are described by equations (4.1) and (4.2).
The factors 0.44 and 0.56 correspond to the case when 44 percent of pa-
tients have hereditary retinoblastoma. If the reader has good statistics with
a different percentage of these two patient groups, a different number (which
corresponds to a different percentage) can be substituted into the equation.
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The difference between the third mutational model and the complex mu-
tational model is the equation for the function N1(t) (the number of cells with
one or more mutations):

N1(t) dt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c1 e−b t

(︁
1 − e−2a t

)︁
if t ≤ t1(︃

R0
k0
− c3 e

−
k0
k3

t
)︃ (︁

1 − e−2a t
)︁

if t > t1
( 5.2)

Note the double exponent power (before the last bracket in equations).

5.2. Approximation method

We approximate the real age distribution (Fig. 3.1) using the theoreti-
cal function (5.1). Function (5.1) corresponds to the case of a complex age
distribution, when in 44% of patients (in the considered group of people)
retinoblastoma occurs as a result of damage in one allele of Rb gene and in
56% of patients retinoblastoma occurs as a result of damage in both alleles.

Just as we did above, for the complex mutational model, we choose the
optimal parameters a, TS , and NP for this function.

For each set of parameters (a, TS , and NP) in the age distribution function,
we construct a histogram of the age distribution DS (t) (see Eq. 4.6-4.9) and
calculate the error function (see Eq. 4.10). We believe that the optimal set of
parameters gives the minimum value of the error function. The approxima-
tion is carried out programmatically, by the quasi-Newtonian method. For
the obtained optimal data set, we also calculate the relative root-mean-square
error (4.11).

5.3. Results

The approximation results are presented in Table 5.1 and Figures 5.1 and
5.2.

Table 5.1.

Optimal parameters of approximation for the third mutational model.

Retinoblastoma TS a NP Er Er%

Female 10.4 1.5 · 10−5 8.4 4.79 · 10−3 0.12

Male 11.8 1.5 · 10−5 8.7 4.81 · 10−3 0.12

The TS parameter is the latent period of the disease (the time from the
key event to the diagnosis).
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The a parameter is the specific frequency of key events – the average
number of key events that occur with one allele of Rb gene per unit of time
(month).

The parameters Er and Er% are absolute and relative mean square error.
The relative error is calculated as a percentage of the maximum value from
the set of real data on the age distribution of retinoblastomas.

Figure 5.1. Composite age distribution of retinoblastomas, obtained for
third mutational model (women): a) histogram of DS (t) function, real
data set (open circles); b) DS (t) function of composite age distribution;
c) DS (t) function of composite age distribution is presented in a different
scale of the coordinate axes. Here z is the number of cellular mutations
required for the disease to occur. The vertical dashed line marks the time
of birth t = t0.
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The obtained age distribution functions DS (t) with optimal approximation
parameters, the histograms plotted for these functions, and real data sets are
shown in Figures 5.1 (women) and 5.2 (men).

Figure 5.2. Composite age distribution of retinoblastomas, obtained for
third mutational model (men): a) histogram of DS (t) function, real data
set (open circles); b) DS (t) function of composite age distribution; c)
DS (t) function of composite age distribution is presented in a different
scale of the coordinate axes. Here z is the number of cellular mutations
required for the disease to occur. The vertical dashed line marks the time
of birth t = t0.

Real data in the figure are shown with open circles. Real data points
are located along the time axis with an interval of 1 year.The first point
on the left in the figure corresponds to the time of birth(age 0 years), the
second point corresponds to the age of 1 year, and so on. The theoretical age
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distribution functions are shown by the bold curve. The histograms plotted
for the theoretical age distribution function DS (t) are shown with rectangular
bars. The vertical dashed line in the figures marks the time of birth t = t0.

For the resulting composite age distribution (the sum of hereditary and
non-hereditary cases of retinoblastoma), we calculated theoretical mean age
at diagnosis (see Eq. 4.12 and 4.13).

For hereditary female retinoblastoma, the mean age at diagnosis is: td1 =
13.1 months; for non-hereditary female retinoblastoma, the mean age at di-
agnosis is:: td2 = 32.8 months;

For hereditary male retinoblastoma, the mean age at diagnosis is:
td1 = 14.4 months; for non-hereditary male retinoblastoma, the mean
age at diagnosis is:: td2 = 34.4 months.

6. Retinoblastoma model with a sequence of key
events

6.1. Mathematical model

In this model, we assume that a sequence of some (identical) key events
that act on a group of cells leads to oncological disease. The number of cells
in a group is ng.

In this model, instead of the cell tissue growth function N(t), we use the
growth function of the number of cell groups Ng(t). The Ng(t) function is
obtained by dividing the original cell tissue growth function by the number
of cells in the group:

Ng(t) =
N(t)
ng

( 6.1)

In this model, in contrast to the mutational model, information about key
events (events that happened to the cell) is not transmitted from the parent
cell to the daughter cells. Consequently, the equations describing the number
of cells that have undergone a certain number of events (two, three, or more)
are different from the equations for the mutation model. For the case of one
key event, the equations are the same as for the mutation model with one
mutation.

In this model, if a cell that has received a certain number of key events
dies of old age, information about key events in the cell is lost, the number of
cells with key events decreases, and these losses must be taken into account
in the model equations.

In the case of retinoblastoma, we can ignore cell death from old age, and
our equations will be relatively simple. It is assumed [5] that tumour cells
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of retinoblastoma originate from progenitor cells of the cones (light-sensitive
cells of the retina of eye), and the cones live long enough. The lifespan of the
cones is comparable to the lifespan of the human body.

First, we find the number of N0g cell groups that have not received a
single key event:

N0g (T ) = Ng(0) e−a T + e−a T
∫︁ T

0
N ′g (t) e a tdt ( 6.2)

We obtained a similar formula in [9], when constructing a simple muta-
tional model. In this case, a new term Ng(0) e−a T is added to the formula,
since at the point t = 0 the function Ng(t) is not equal to zero. Very often we
can neglect this term, since at the initial moment of time the cell population
consists of one cell, but in this case we include this term in the equation.

Here a is the specific frequency of key events (the average number of key
events occurring with one cell group per unit time); t and T are the same
time variable (different notation is used to avoid confusion with the limits of
integration); N ′g (t) is the time derivative of the function Ng(t).

The number of cell groups that received one key event (or more) is:

N1g (t) = Ng(t) − N0g(t) ( 6.3)

The number of cell groups that received exactly one key event (no more) is:

N1*g (T ) = e−a T
∫︁ T

0
N1 ′g(t) e a tdt ( 6.4)

The number of cell groups that received two key events (or more) is:

N2g (t) = N1g(t) − N1*g(t) ( 6.5)

The number of cell groups that received exactly two key events (no more)
is:

N2*g (T ) = e−a T
∫︁ T

0
N2 ′g(t) e a tdt ( 6.6)

The number of cell groups that received three key events (or more) is:

N3g (t) = N2g(t) − N2*g(t) ( 6.7)

etc.

Acting in a similar way, we can obtain equations for functions describing
the number of cell groups (in a given anatomical tissue) with any number
of key events we need. We will need these formulas to construct the age
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distribution of oncological diseases.

For example, if we use equations (2.2) for the growth function of cell
tissue, taking into account (6.2) we can write:

N0g(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩Ng(0) e−a t + e−a t
∫︀ t

0 N ′g (t) e a t dt if t ≤ t1

Ng(t1) e−a (t−t1) + e−a (t−t1)
∫︀ t
t1

N ′g (t) e a t dt if t > t1

And N1g(t) function looks like this:

N1g(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩Ng(t) − N0g(t) if t ≤ t1

Ng(t) − Ng(t1) e−a (t−t1) − e−a (t−t1)
∫︀ t
t1

N ′g (t) e a t dt if t > t1

N1g(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a c1
ng

(e b t − e−a t)
(a + b)

if t ≤ t1

1
ng

[︃
R0
k0
− c3 e

−
k0
k3

t
− c1 e−t1 −

c3 k0
(︁
e−a (t−t1) e

−
k0
k3

t1
− e
−

k0
k3

t )︁
k0 − a k3

−

−
b c1 e−a t

(︁
e (a+b) t1 − 1

)︁
(a + b)

]︃
if t > t1

( 6.8)

In the case of retinoblastoma, we will consider a sequence of no more than
two key events, so we do not need N2g(t) and N3g(t) functions.

The functions Ng(t), N0g(t), and N1g(t) are shown in Fig. 5.1 (in two scales
of the coordinate axes). The time t1 is indicated in the figures with a vertical
dashed line. When plotting the graphs, we used the following parameters:
c1 = 1630.92; R0 = 5.08 · 105; k1 = 1; k0 = 0.058; k3 = 0.472; ng = 1; t1 = 2.87;
a = 0.5.

As well as for the mutational model of retinoblastoma, we will consider
the case when the age distribution of the incidence is formed by two groups
of people: in the first group of patients for the onset of the disease, it is
required that one key event occurs in the group of cells of anatomical tissue,
in the second group of patients for the onset of the disease, two key events
are required per group of cells.

Let the proportion of patients with one key event be 44 percent of the size
of considered group (for which the age distribution is constructed); the pro-
portion of patients with two key events is 56 percent. That is, the percentage
of groups is the same as we used earlier for the mutational model.
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This ratio defines the formula for the compound age distribution (see be-
low).

Figure 6.1. Functions: Ng(t); N0g(t); N1g(t) (the number of cell groups in
the cell tissue; the number of cell groups that did not receive key events;
the number of cell groups that have one or more key events). Identical
functions are shown in the upper and bottom figures at different scales
of the coordinate axes.

6.2. Age distribution functions

Using the equations obtained in [9], we can write down the functions D1(t)
and D2(t), which describe the age distributions of retinoblastomas. The D1(t)
function corresponds to the case when a disease in a cell group occurs after
the cell group receives one key event. The D2(t) function corresponds to the
case when a disease in a group of cells occurs after two key events.

D1(t) = NP
d
(︁
1 − exp

(︀
− a

∫︀ t
0 Ng(t) dt

)︀)︁
dt

( 6.9)

Here the constant NP is the number of people in the group for which the
age distribution is constructed; Ng(t) is a function that describes the growth
of the number of cell groups in the anatomical tissue.
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Figure 6.2. Composite age distribution of retinoblastomas, obtained for
the model with a sequence of key events for different ng parameter (the
number of cells in a cell group affected by a common oncogenic event).
The vertical dashed line marks the time of birth t = t0.

It should be remembered that the growth function (in our description)
is the piecewise function Ng(t), which is given by different equations at two
different time intervals (before t1 and after t1). Therefore, after the time t1,
the integration should be carried out separately for each time interval:

∫︁ t

0
Ng(t) dt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫︀ t

0 Ng(t) dt if t ≤ t1∫︀ t1
0 Ng(t) dt +

∫︀ t
t1

Ng(t) dt if t > t1
( 6.10)

The function D2(t) (age distribution for the case when the disease occurs
after two key events in a group of cells) is as follows:
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D2(t) = Np
d
(︁
1 − exp

(︀
− a

∫︀ t
0 N1g(t) dt

)︀)︁
dt

( 6.11)

Also, do not forget about the integration of the piecewise function:

∫︁ t

0
N1g(t) dt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫︀ t

0 N1g(t) dt if t ≤ t1∫︀ t1
0 N1g(t) dt +

∫︀ t
t1

N1g(t) dt if t > t1
( 6.12)

The composite age distribution DS (t) (constructed for two functions D1(t)
and D2(t), taken in the ratio 44/56) is:

DS (t) = 0.44 D1(t) + 0.56 D2(t) ( 6.13)

Examples of the function of the composite age distribution DS (t) are shown
in Fig. 6.2. The figure shows the functions for a different number of cells in
a cell group (a group of cells that is affected by a common oncogenic event).
When plotting the graphs, we used the following parameters: R0 = 2.78 · 10 5,
k0 = 0.30, k1 = 1, k3 = 0.22, k = 5.87 · 10 5, t1 = 2.8, a = 0.003, Np = 8.3.

6.3. Approximation method

The approximation of the real age distribution (Figure 3.1) is carried out
using the theoretical functions (6.10), (6.12), (6.14). Function (6.10) corre-
sponds to the case when retinoblastoma occurs after one carcinogenic event
(which happened to a group of cells). Function (6.12) corresponds to the case
when retinoblastoma occurs after two carcinogenic events (which happened to
one group of cells). Function (6.12) corresponds to the composite case, when
in 44 percent of patients (from the considered group of people) retinoblastoma
occurs after one carcinogenic event (that happened to a group of cells), in 56
percent of patients retinoblastoma occurs after two carcinogenic events (that
happened to one group of cells).

Just as we did it for the mutational model, we choose the optimal param-
eters a, TS , and NP for these functions.

Also in this model we optimize the additional parameter ng (number of
cells in the group where the carcinogenic event occurs).

For the case of one key event (z = 1), the parameters a and ng enter the
equations as the ratio a/ng. When approximating, the change in the a param-
eter can be compensated by the change in the n parameter, and we cannot
separate these parameters (we cannot calculate these parameters separately,
but we can only calculate the ratio a/ng). Therefore, only for this case, we
consider that the parameter ng is equal to one.

For ng = 1, the equations for D1(t) function are identical to the equations
for the case of one key event in the complex mutational model (for which we
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optimized the parameters in the previous section). Therefore, the data in the
results table for the case z = 1 (one key event) coincides with the data in table
4.1 (first line).

As well as for the mutational model, for each set of parameters ng, a, TS
and NP in the age distribution function, we construct a histogram of the age
distribution (see formulas 4.6-4.9) and calculate the error function for it:

Er (ng, a,NP,TS ) =
1
n

⎯⎸⎷ n−1∑︁
i=0

(︁
Di − Hi

)︁2
( 6.14)

We believe that the optimal set of parameters gives the minimum value
of the error function. The approximation is carried out programmatically, by
the quasi-Newtonian method.

For the obtained optimal data set, we also calculate the relative root-mean-
square error:

Er% (ng, a,NP,TS ) =
100

n

⎯⎸⎷ n−1∑︁
i=0

(︃
Di − Hi

Dmax

)︃2

( 6.15)

The function shows the relative root mean square error of approximation
as a percentage of the maximum value of Dmax from a set of real data.

6.4. Results

The approximation results are presented in Table 6.1.
The z parameter is the number of key events (in a group of cells) that

initiate the disease. The parameter z = 1.56 refers to a composite case (44
percent of the group are patients with one mutation, 56 percent are patients
with two mutations).

The ng parameter is the number of cells in one cell group (the group af-
fected by the common carcinogenic event).

The TS parameter is the latency period of the disease (time from the key
event that initiates the cancer to the diagnosis).

The a parameter is the specific frequency of key events – the average
number of key events that happen to a group of cells per unit of time (month).

The parameters Er and Er% are absolute and relative mean square er-
ror. the maximum value from the set of real data on the age distribution
of retinoblastomas.

The first lines in Tables 6.1 (for women and men) coincide with the first
lines in Tables 4.1, because for one key event (z = 1) with ng = 1, the theo-
retical equations for this model coincide with the equations for the mutational
model with one mutation.
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The obtained age distribution functions with optimal approximation pa-
rameters, histograms constructed for these functions, as well as real data
sets are shown in Figures 6.2, 6.3, 6.4, and 6.5.

Table 6.1.

Optimal approximation parameters for the model with sequence of key events.

Retinoblastoma ng TS a NP Er Er%

Female; z=1 1 1.6 6.3 · 10−9 9.1 3.41 · 10−3 0.09

Female; z=1.56 7.5 · 10 5 3.6 1.8 · 10−2 8.8 1.83 · 10−3 0.05

Female; z=2 9.2 · 10 6 0 1.1 · 10−1 8.2 9.92 · 10−3 0.25

Retinoblastoma ng TS a NP Er Er%

Male; z=1 1 0.4 5.4 · 10−9 9.6 7.18 · 10−3 0.18

Male; z=1.56 1.3 · 10 5 8.5 8.5 · 10−3 8.9 3.98 · 10−3 0.12

Male; z=2 9.2 · 10 6 0 1.1 · 10−1 8.2 13.94 · 10−3 0.35

Real data in the figures are shown by open circles. Real data points are
located along the time axis with an interval of 1 year. The first point on the
left in the figure corresponds to the time of birth (age 0 years), the second
point corresponds to the age of 1 year, and so on. The theoretical age distri-
bution functions are shown by the bold curve. The histograms plotted for the
theoretical age distribution function are shown with rectangular bars. The
vertical dashed line in the figures marks the time of birth t = t0.

For the resulting composite age distributions (the sum of hereditary and
non-hereditary cases of retinoblastoma), we calculated theoretical mean age
at diagnosis (see Eq. 4.12 and 4.13).

For hereditary female retinoblastoma, the mean age at diagnosis is: td1 =
14.8 months; for non-hereditary female retinoblastoma, the mean age at di-
agnosis is: td2 = 33.6 months;

For hereditary male retinoblastoma, the mean age at diagnosis is:
td1 = 16.0 months; for non-hereditary male retinoblastoma, the mean
age at diagnosis is: td2 = 34.7 months.
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Figure 6.3. Age distribution of retinoblastomas, obtained for the model
with a sequence of key events (women): a) histogram of D1(t) function,
real data set (open circles); b) D1(t) function of age distribution; c)
histogram of D2(t) function, real data set (open circles); d) D2(t) function
of age distribution. Here z is the number of mutations in one cell group
required for the cancer to occur. The vertical dashed line marks the time
of birth t = t0.
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Figure 6.4. Age distribution of retinoblastomas, obtained for the model
with a sequence of key events (men): a) histogram of D1(t) function,
real data set (open circles); b) D1(t) function of age distribution; c)
histogram of D2(t) function, real data set (open circles); d) D2(t) function
of age distribution. Here z is the number of mutations in one cell group
required for the cancer to occur. The vertical dashed line marks the time
of birth t = t0.
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Figure 6.5. Composite age distribution of retinoblastomas, obtained
for the model with a sequence of key events (women): a) histogram of
DS (t) function, real data set (open circles); b) DS (t) function of com-
posite age distribution; c) D1(t) function of age distribution (hereditary
retinoblastoma). d) D2(t) function of age distribution (non-hereditary
retinoblastoma). Here z is the number of key events in a group of cells
required for cancer to occur. The vertical dashed line marks the time of
birth t = t0.
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Figure 6.6. Composite age distribution of retinoblastomas, obtained for
the model with a sequence of key events (men): a) histogram of DS (t)
function, real data set (open circles); b) DS (t) function of composite age
distribution; c) D1(t) function of age distribution (hereditary retinoblas-
toma). d) D2(t) function of age distribution (non-hereditary retinoblas-
toma). Here z is the number of key events in a group of cells required for
cancer to occur. The vertical dashed line marks the time of birth t = t0.
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7. Model of single carcinogenic event with two dif-
ferent latencies

To have an objective understanding of the mechanisms of development of
retinoblastoma, we must also consider a disease model for the case of one key
event, but with two different groups of patients, each of which has a different
latency period of the disease.

It can be assumed that in patients with bad heredity (genes obtained
from a parent who had retinoblastoma) the disease develops faster (short
latency period), and, on the contrary, in patients with good heredity the dis-
ease (which arose also accidentally, as in the first group) develops slower.
(longer delay period).

In this section we consider such a model of retinoblastoma.

7.1. Age distribution function

In this oncological model, we assume that the oncological disease is initi-
ated by one key event, but in two different groups of patients the disease has
a different latency period (the time between the initiating key event and the
diagnosis of the disease). One group (44 percent of the group of people for
which the age distribution is constructed) has a latency period TS 1, the other
group (56 percent) has a latency period TS 2. Here we assume that TS 1 < TS 2.

As mentioned earlier, we selected this percentage based on the data pre-
sented in [16] (918 hereditary and non-hereditary cases of retinoblastoma).

The function DS (t) of the composite age distribution for this model has
the following form:

DS (t,TS 1,TS 2) = 0.44 D1 (t,TS 1) + 0.56 D2 (t,TS 1) ( 7.1)

The compound age distribution function depends on the time t and on
two parameters: TS 1 and TS 2. The function D1 (t,TS 1) is the age distribution
D1 (t), shifted to the right along the horizontal time axis by TS 1. The function
D1 (t) is given by equation (6.10), which we used earlier for the case when a
cancer is initiated by one key event in a cell or group of cells.

Similarly, the function D1 (t,TS 2) is the function D1 (t), shifted to the right
along the time axis by TS 2.

7.2. Approximation method

The approximation of the real age distribution (Fig. 3.1) is carried out
using the theoretical function (7.1).

We optimize the function parameters: a, TS 1, TS 2, and NP. Here a is
the specific frequency of key events (the average number of key events that
happen to a group of cells per unit of time); TS 1 and TS 2 are disease latencies
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for two groups of patients (hereditary and non-hereditary retinoblastoma);
NP is the number of people in the group for which the age distribution of
retinoblastomas is constructed.

When approximating the data, we assume that the parameter ng (the
number of cells in the group with which a carcinogenic event occurs) is equal
to one, because, for the case when cancer is initiated by one key event, the
parameters a and ng always enter the equations in the form of the ratio a/ng,
and an increase in one parameter can be exactly compensated by an increase
in another parameter. Both parameters are currently unknown to scientists,
since no practical measurements of these parameters have been carried out.

As before, for each set of parameters: a, TS 1, TS 2, and NP in the age
distribution function, we construct a histogram of the age distribution DS (t)
(see Eq. 4.6-4.9) and calculate the error function Er (least squares method):

Er (a,NP,TS 1,TS 2) =
1
n

⎯⎸⎷ n−1∑︁
i=0

(︁
Di − Hi

)︁2
( 7.2)

Here Di is the i-th value from the real age distribution; Hi is the value of
the i-th bar of the histogram built for the theoretical function DS (t) of the
age distribution; n is the number of points in the real dataset.

We believe that the optimal set of parameters gives the minimum value
of the error function. The approximation is carried out programmatically,
by the quasi-Newtonian method. For the obtained optimal dataset, we also
compute the relative root-mean-square error Er%:

Er% (a,NP,TS 1,TS 2) =
100

n

⎯⎸⎷ n−1∑︁
i=0

(︃
Di − Hi

Dmax

)︃2

( 7.3)

The function shows the relative root mean square error of approximation
as a percentage of the maximum value of Dmax from a set of real age distri-
bution data (the real age distribution is shown in Fig. 3.1).

7.3. Results

The approximation results are presented in table 7.1.
In this case, the number of key events (in a cell or group of cells) initiating

a disease is equal to one (parameter z = 1).
The TS 1 parameter is the latent period of the disease (the time from the

key event initiating the disease to the diagnosis) in a group of patients with
hereditary retinoblastoma. The TS 2 parameter is the latent period of the
disease in a group of patients with a non-hereditary form of retinoblastoma.
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The a parameter is the specific frequency of key events – the average
number of key events that happen to a cell or a group of cells per unit of
time (month).

The parameters Er and Er% are the absolute and relative root mean square
error. The relative error is calculated as a percentage of the maximum value
from the set of real data on the age distribution of retinoblastomas.

Table 7.1.
Optimal approximation parameters for a model of a single carcinogenic event

with two different latencies.

Retinoblastoma TS 1 TS 2 a NP Er Er%

Female; z=1 0.6 1.0 6.1 · 10−9 9.1 3.24 · 10−3 0.08

Male; z=1 0.1 0.3 5.4 · 10−9 9.5 7.17 · 10−3 0.18

The obtained age distribution functions with optimal approximation pa-
rameters, histogram plotted for these functions, as well as real data sets are
shown in Figure 7.1.

Real data in the figures are shown with open circles. Real data points
are located along the time axis with an interval of 1 year. The first point
on the left in the figure corresponds to the time of birth (age 0 years), the
second point corresponds to the age of 1 year, and so on. The theoretical age
distribution functions are shown by the bold curve. The histograms plotted
for the theoretical age distribution function are shown with rectangular bars.
The vertical dashed line in the figures marks the time of birth t = t0.

The age distribution function in Fig. 7.1 has one maximum, although
it is a composite distribution that is the sum of two distributions for two
patient groups (hereditary and non-hereditary retinoblastoma). The highs
(tops) of two different distributions are close to each other and merge into
one common maximum.

For the resulting composite age distribution (sum of inherited and non-
inherited cases of retinoblastoma), we calculated the theoretical mean age at
diagnosis (see Eq. 4.12 and 4.13).

For hereditary female retinoblastoma, the mean age at diagnosis is: td1 =
25.9 months; for non-hereditary female retinoblastoma, the mean age at di-
agnosis is: td2 = 26.5 months;

For hereditary male retinoblastoma, the mean age at diagnosis is:
td1 = 27.5 months; for non-hereditary male retinoblastoma, the mean
age at diagnosis is: td2 = 28.2 months.
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Figure 7.1. Composite age distribution of retinoblastomas, obtained
for the model of single carcinogenic event with two different latencies:
a) histogram of DS (t) function (women), real data set (open circles); b)
DS (t) function of composite age distribution (women); c) histogram of
DS (t) function (men), real data set (open circles); d) DS (t) function of
composite age distribution (men). The vertical dashed line marks the
time of birth t = t0.
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8. Discussion

The approximation of real data, performed in this article, makes it possible
to determine the following parameters of retinoblastoma:

– the number of key events (mutations) per cell (per one allele of Rb gene
for the third mutational model) required for cancer to occur (z parameter);

– the average specific frequency of key events (mutations) per unit time
(month) per cell (per one allele of Rb gene for the third mutational model)
in the considered cell tissue (this is a parameter in the presented tabular
results);

– the latent period of the disease (time interval between the appearance
of the first cancer cell and detection of cancer) (TS parameter in the pre-
sented tabular results);

– theoretical mean age at diagnosis (for compound age distributions) for
hereditary and non-hereditary forms of retinoblastoma (parameters td1 and
td2);

The NP parameter in the table shows what proportion of people from the
considered group develop cancer (during their lifetime). Since retinoblastoma
is a childhood disease, there is no need to construct an age distribution
function to calculate the NP parameter. We can find the NP parameter by
summing all cases of the disease in the considered group of patients. Recall
that some cases of cancer in older people are not recorded in the incidence
statistics (due to the death of patients from old age), and, in this case, the NP
parameter can only be computed using the age distribution function.

For a model with a sequence of key events (for composite age distribution),
the approximation allows calculating the optimal parameter ng (the number
of cells in the group affected by the total carcinogenic event). For the female
form of retinoblastoma, ng = 750,000. For the male form of retinoblastoma,
ng = 130, 000. Thus, from the point of view of this model, one oncogenic event
affects not a single cell, but several hundred cells.

The maxima of all considered theoretical uni-modal age distributions lie
in the age range from 1 to 2 years (here we do not take into account models
with a bimodal distribution, for which the distribution function has two local
maxima, widely spaced along the time axis).

Not all considered models demonstrate, when optimized, the presence of a
clearly expressed minimum of the age distribution function for TS parameter
(latent period of the disease). In four cases, the minimum of the error func-
tion is reached when TS is negative. A negative TS means we can diagnose
cancer before the key event that triggers the disease has occurred. Therefore,
in such cases, we enter the value TS = 0 into the results table.
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A negative time TS appears for two key events (z = 2) in a complex
mutation model and in model with a sequence of key events (for female and
male retinoblastoma). This, in particular, tells us that there is no need to
consider models in which the number of key events is more than two – for
them the time TS will also be negative.

The best approximation accuracy (for male and female forms of retinoblas-
toma) is shown by a model with a sequence of key events (see Table 6.1, lines
with z = 1.56). Unlike mutational models, this model has four free parameters
for optimization (here we also optimize ng parameter). By using more free pa-
rameters, we can more accurately fit the approximation function to real data.

It is noteworthy that this model appears to be the best for both female and
male forms of retinoblastoma (the second place in the accuracy of approxi-
mation for female and male retinoblastoma is taken by different models).

This model shows the following parameters TS (theoretical latent period of
the disease) TS = 3.6 months for female retinoblastoma; TS = 8.5 months for
male retinoblastoma. The TS parameter gives us the minimum possible age
at diagnosis. The minimum possible age at diagnosis is TS minus the duration
of pregnancy (8.72 months). Thus, for male and female retinoblastoma, the
model assumes that the disease can be detected at birth – for both hereditary
and non-hereditary retinoblastoma.

The mean age at diagnosis for this model is: 14.8 months (hereditary
retinoblastoma) and 33.6 months (non-hereditary retinoblastoma) for female
retinoblastoma. For male retinoblastoma, the theoretical mean age at diag-
nosis is 16.0 months months (hereditary retinoblastoma) and 34.7 months
(non-hereditary retinoblastoma). We consider the age from the moment of
fertilization of the mother’s egg (this is age from birth plus 8.72 months of
pregnancy).

The second place in terms of approximation accuracy is taken by the
model of one carcinogenic event with two different latencies for female
form of retinoblastoma and the complex mutational model for male form of
retinoblastoma.

The first of these models (the female form of retinoblastoma), according
to the results of approximation, gives very close theoretical values of the
mean age at diagnosis for hereditary and non-hereditary forms of the disease
(25.9 and 26.5 months respectively). In practice, hereditary retinoblastoma
is found at an earlier age.

It should be understood here that when calculating the theoretical mean
age of diagnosis, we assume that the frequency of medical examinations of
patients is approximately the same for any age. In reality, of course, this is
not the case. Both doctors and parents today know that if the parents have
retinoblastoma, the child will get the disease with about 50% probability.
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That is, the risk of illness in a child is very high. Therefore, for hereditary
cases, ophthalmologic examinations begin at a very early age and are carried
out more frequently. Therefore, the mean age at diagnosis should be biased
towards the time of birth (relative to the theoretical value).

As drawbacks of the second of the above models (complex mutational
model with compound age distribution (male form of retinoblastoma), we can
note the following facts.

First, this model assumes that key events occur in the cell, and not with
one of the two alleles of Rb gene (which are in the cell). For the case of
two alleles, we built a special model of retinoblastoma – the third mutational
model, which (contrary to expectations) shows worse results compared to
a complex mutational model (for both female and male forms of retinoblas-
toma). This fact may tell us that the key events leading to cancer are not
mutations of Rb gene allele.

Secondly, for the male form of retinoblastoma, a complex mutational
model gives a latency period, which is TS = 12.2 months. This means that
the earliest age we can diagnose retinoblastoma is 3.48 months – before
this age (according to the obtained model data) there can be no cases of
retinoblastoma (we count the patient’s age from the time of fertilization of the
mother’s egg, so the time of birth is t0 = 8.72 months; the minimum possible
age for registration of retinoblastma is 12.2 − 8.72 = 3.48 months). This is
contrary to practical observation – cases of retinoblastoma are also recorded
in one-month-old children.

Based on the above, from all considered theoretical models of retinoblas-
toma, we must choose a model with a sequence of key events, which gives
the best accuracy of approximation of real data. But it is also necessary
to additionally check all the described models on other sets of real data on
retinoblastoma available in the databases of large international cancer reg-
istries (European, English, Chinese and other cancer registries).

Also, when modeling age distribution, it is desirable to consider separately
hereditary and non-hereditary forms of retinoblastoma. This will allow us to
more accurately match theoretical models with real data.

It would be useful and interesting if scientists from other countries with
access to national cancer statistics would carry out theoretical studies of this
kind.

Saint Petersburg
2021
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