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Abstract 1 

Multiple distinct brain areas have been implicated in memory including the prefrontal cortex 2 

(PFC), striatum (STR), and ventral tegmental area (VTA). Information-exchange across these 3 

widespread networks requires flexible coordination at a fine time-scale. In the present study, 4 

we collected high-density recordings from the PFC, STR, and VTA of male rats during 5 

baseline, encoding, consolidation, and retrieval stages of memory formation. Novel sub-6 

regional clustering analyses identified patterns of spatially restricted, temporally coherent, and 7 

frequency specific signals that were reproducible across days and were modulated by 8 

behavioral states. Clustering identified miniscule patches of neural tissue. Generalized eigen 9 

decomposition (GED) reduced each cluster to a single time series. Amplitude envelope 10 

correlation of the cluster time series was used to assess functional connectivity between 11 

clusters. Dense intra- and inter regional functional connectivity characterized the baseline 12 

period, with delta oscillations playing an outsized role. There was a dramatic pruning of 13 

network connectivity during encoding. Connectivity rebounded during consolidation, but 14 

connections in the theta band became stronger, and those in the delta band were weaker. 15 

Finally, during retrieval, connections were not as severely reduced as they had been during 16 

encoding, and specifically theta and higher-frequency connections were stronger. Underlying 17 

these connectivity changes, the anatomical extent of clusters observed in the gamma band in 18 

the PFC and in both the gamma and delta bands in the VTA changed markedly across 19 

behavioral conditions. These results demonstrate the brain’s ability to reorganize functionally 20 

at both the intra- and inter-regional levels during different stages of memory processing.   21 

 22 

 23 

 24 

SIGNIFICANCE STATEMENT: 25 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469851doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469851
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

The brain is often thought of as a mosaic of areas each with static functions that activate or 1 

deactivate with task demands. Here, we used large-scale recordings (196 simultaneous 2 

electrodes) and developed a multivariate analysis approach to analyze data from all our 3 

recording locations simultaneously. This analysis revealed that the brain dramatically 4 

reorganized itself at both local and long-distance spatial scales during different stages of 5 

memory processing. These results demonstrate an extreme degree of flexibility in functional 6 

anatomy. Rather than thinking about the brain as a set of static mosaic tiles, it may better be 7 

characterized as a quickly moldable piece of clay where each part’s function changes as the 8 

whole is reshaped from moment to moment.    9 

 10 

 11 

 12 

 13 

 14 

INTRODUCTION 15 

 16 

The study of memory has long been guided by the goal of defining the functions of various 17 

brain regions (Squire and Dede, 2015; Lashley, 2020), yet it is increasingly recognized that 18 

the storage, retrieval, and active use of memory is supported by a distributed network including 19 

the prefrontal cortex (PFC), striatum/basal ganglia (STR), and hippocampus (HPC). For 20 

example, voxel-level analyses of fMRI data have revealed widely distributed semantic, 21 

episodic, and working memory representations (Huth et al., 2012; Rissman and Wagner, 22 

2012). Simultaneous physiological recordings from multiple areas in monkeys engaged in 23 

memory tasks have indicated complex inter-regional coordination (Constantinidis and Procyk, 24 

2004; Loonis et al., 2017), and optogenetic manipulations in rodents have demonstrated a 25 

clear interaction between the medial PFC and HPC for memory retrieval (Rajasethupathy et 26 

al., 2015). Beyond memory-specific studies, coordinated activity between brain regions is 27 
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widely believed to allow neural circuits to flexibly bind cell assemblies and efficiently 1 

orchestrate information transfer (Singer, 2009; Jensen and Mazaheri, 2010; Wang, 2010). 2 

 3 

The nature of interactions between regions varies as a function of task demands. In some 4 

cases, regions appear to cooperate (Turk-Browne et al., 2009; Wimmer and Shohamy, 2012), 5 

but in others, they appear to compete (Packard and McGaugh, 1996; Wimmer et al., 2014; 6 

Loonis et al., 2017). More generally, it is unclear how these interactions are mediated, and 7 

how interactions may be different at different times during memory formation and use.  8 

 9 

Dopamine (DA) has been strongly implicated in synchronization and network-level dynamics 10 

(Montaron et al., 1982; Williams et al., 2002; Costa et al., 2006; Dejean et al., 2012). DA stems 11 

from the ventral tegmental area (VTA) and substantia nigra, and projects widely to most of the 12 

brain, with the densest projections into the STR, PFC, and HPC (Otmakhova et al., 2013; 13 

Kafkas and Montaldi, 2018; Kaminski et al., 2018). The VTA is therefore positioned to facilitate 14 

the coordinated processing that allows the brain to generate a memory-guided action plan 15 

from moment to moment (Fujisawa and Buzsaki, 2011; Jo et al., 2013; Beeler and Kisbye 16 

Dreyer, 2019; Freedberg et al., 2020). 17 

 18 

Here, we utilized rats that had been implanted with high-density recording arrays in the STR, 19 

VTA, and PFC as part of a separate project studying reward-learning. We investigated how 20 

intra- and inter-regional dynamics varied as a function of behavioral state during a memory 21 

task. Rats were exposed to a simple novel-object memory paradigm, likely sensitive to lesions 22 

in the hippocampal system (Buffalo et al., 1999; Mumby, 2001; Aggleton and Brown, 2006). 23 

Given that previous research has associated theta frequency oscillations with influence from 24 

the hippocampus (Buzsáki and Draguhn, 2004; Buzsáki, 2006), we investigated whether 25 

network structure reflected increased influence from theta signaling during any phase of 26 

memory processing. More generally, we developed a mix of novel data-mining and 27 
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hypothesis-driven network analyses to increase our understanding of the mechanisms of inter-1 

regional connectivity.  2 

 3 

METHODS 4 

Analysis was primarily carried out using custom written MATLAB code. ANOVA tests and 5 

some figure generation was carried out in R.  6 

 7 

Experimental Design 8 

The experimental procedures have been described previously (Mishra et al., 2020). Briefly, all 9 

experimental procedures were performed in accordance with the EU directive on animal 10 

experimentation (2010/63/EU), and the Dutch nationally approved ethics project 2015-0129. 11 

All recordings were performed in the lab of MXC. We included five male Long-Evans TH:Cre 12 

rats (~3 months old, weight: 350-450 g at time of recordings). Non-overlapping findings from 13 

this dataset have been reported elsewhere (Mishra et al., 2020).    14 

 15 

Electrophysiological recordings were collected from the PFC, STR, and VTA. There were 64 16 

contacts per region. For target recording locations see Figure 2a. 64 electrodes covered an 17 

area of 1 x 2 mm with typical spacing of 225 𝜇m in each shank and 330 𝜇m between shanks 18 

in PFC. STR electrodes also covered an area of 1 x 2 mm with the same shank distance (330 19 

𝜇m). However, two shanks contained only tetrodes and two shanks had only single sites with 20 

typical spacing of 130 𝜇m between single sites and 660 𝜇m between tetrodes. VTA implants 21 

contained 8 shanks of 8 electrodes each and covered an area of 1.5 x 0.14 mm. 22 

 23 

After habituation, each experimental session consisted of four conditions. First, animals were 24 

placed in an open field. Second, a novel object (e.g., a cup or toy) was presented in the middle 25 

of the box. Third, the animal was alone in the open field again. Fourth, the same object 26 

presented in the second condition was presented again. Each condition lasted between five 27 

and six minutes. We termed these conditions, baseline, encoding, consolidation, and retrieval, 28 
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respectively. Rats moved freely throughout experimental sessions. There was no delay 1 

between conditions. A camera was placed above the box to track movement (Figure 1a-c). A 2 

maximum of one session per animal was recorded on a single day. There were 28 recording 3 

sessions in total. 4 

 5 

Using data from video recordings and DeepLabCut (Mathis et al., 2018), we created binary 6 

vectors indicating interaction with the object (during encoding and retrieval conditions) and 7 

movement. These were upsampled to 1000 Hz and aligned to LFP data.  8 

 9 

Statistical Analyses:  10 

Calculating memory strength 11 

For each session, the percentage of time spent interacting with the object was calculated for 12 

the encoding and retrieval periods. The percentage during retrieval was subtracted from the 13 

percentage during encoding. Positive values indicate that the rat spent more time exploring 14 

the object when it was novel.  15 

 16 

Local field potential data cleaning 17 

Data were notch filtered to remove 50 Hz line noise, ICA filtering was done and components 18 

that appeared to capture muscle and line noise were removed, channels that appeared to be 19 

contaminated with noise by visual inspection were removed. Finally, cross-channel covariance 20 

matrices were calculated in 2000 ms windows in steps of 100 ms. A mean covariance matrix 21 

was calculated. Epochs whose covariance matrices were more than 2 standard deviations 22 

from the mean were discarded from further analysis. Distance between epoch and mean 23 

covariance matrices was measured using matrix Euclidean distance.  24 

 25 

Identifying intra-regional clusters 26 

Data were filtered using 42 logarithmically spaced central frequencies between 2 and 150 Hz. 27 

After filtering, data from novel and repeat object periods were limited to periods of interaction 28 
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with the object. Electrode X electrode correlation matrices were calculated in non-overlapping 1 

2.5s epochs. These epochs were averaged together to create a single electrode X electrode 2 

correlation matrix (Figure 3a). In addition, the average correlation matrix was calculated 20 3 

additional times with an evenly-spaced sliding window of 10% of the data left out from each 4 

average. These 20 partial averages were used for validation. This was done for each 5 

behavioral condition independently.  6 

 7 

Clustering was done for each animal, condition, region, frequency, and validation fold 8 

independently. Before clustering, we first took the correlation coefficient of each row of the 9 

channel X channel matrix compared to each column of the matrix (Figure 3e-g). The resulting 10 

matrix was the same size as the input matrix, but now values in the matrix represented how 11 

the map of connectivity associated with one channel correlated with the map of connectivity 12 

associated with another channel (Liu et al., 2012). Finally, we took the squared Euclidean 13 

distance comparing each row to each column of the new matrix (Figure 3h). Squaring 14 

accentuates high similarities and forces all values to be positive, both of which facilitate 15 

clustering. This final matrix is referred to as the distance matrix.  16 

  17 

The DBscan algorithm (Ester et al., 1996) was applied to distance matrices. The DBscan 18 

algorithm requires two input parameters: K and epsilon. Epsilon is the search radius around 19 

each point. K is the number of points that must be found within that radius in order for a given 20 

point to be considered a central point in a cluster. We chose the value of k to be constant at 8 21 

for all clustering. This was done for two reasons. First, Ester et al. (Ester et al., 1996) noted 22 

that cluster discovery is largely invariant to the choice of K within a reasonable range. Second, 23 

we tested all values of K between 2 and 22 and visual inspection of resulting silhouette values 24 

of clustering schemes suggested that k=8 was reasonable (Extended data 2-1). 25 

 26 

The silhouette value is a measure both of how well a point fits into a particular cluster and how 27 

poorly it fits into any other cluster. A good cluster organization will yield clusters that maximize 28 
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the fit of all points to their respective clusters while minimizing the fits of points to other clusters 1 

(Rousseeuw, 1987; Tan et al., 2018). 2 

 3 

Our choice for the epsilon value was set dynamically for each run of DBscan. To do this, the 4 

8-distance values were calculated. 8-distance refers to the minimum epsilon value needed in 5 

order to reach 8 points from a given point to be clustered. When all 8-distances in a data set 6 

are sorted and these values are plotted, natural divisions in the cluster structure of the data 7 

can be identified at points of sharp steepness in the 8-distance plot (Figure 3i). Algorithmic 8 

identification of sharp steepness was identified using the running difference between sorted 9 

8-distance values (Figure 3j). The running difference between sorted 8-distance values 10 

approximates the first derivative of the curve, so peaks in the plot correspond to points of 11 

maximum steepness in the 8-distance values. We identified the first peak above a threshold 12 

for each clustering run. The threshold was the mean of the running difference plus 2 standard 13 

deviations. Threshold calculation excluded the maximum value and the surrounding 5 points 14 

on either side. The epsilon value corresponding to the detected peak was used for clustering 15 

(see vertical and horizontal lines in panels i and j of Figure 3).  16 

 17 

For each animal, condition, region, and frequency, clustering was performed on the correlation 18 

matrix calculated from the full recording and also on each of the 20 validation folds. Each 19 

cluster was examined across folds individually. For each fold, we asked what proportion of the 20 

channels in the cluster in the full data set were clustered together in the fold. We termed this 21 

value the agreement value. We further asked what proportion of the channels that were not a 22 

part of the cluster in the full data set were also given the same label as that which yielded the 23 

highest agreement value. We termed this value the outside value. The agreement value minus 24 

the outside value was termed the net agreement value, and clusters with an average net 25 

agreement value below .85 across folds were discarded as unstable (Figure 3d).  26 

 27 

Aggregating clusters 28 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469851doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=11790717,2681601&pre=&pre=&suf=&suf=&sa=0,0
https://doi.org/10.1101/2021.11.24.469851
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Normalized mutual information (NMI) was calculated for all pairs of cluster schemes within 1 

each region using equation 3 from Strehl and Ghosh (Strehl and Ghosh, 2002). NMI yields a 2 

measure of the similarity between two cluster schemes of the same data. It is robust to 3 

differences in arbitrary labels (e.g. cyan vs. mauve in Figure 5d) and to missing data (e.g. 4 

unclustered white electrodes in Figure 5d). NMI ranges from 0 to 1. Values near 0 represent 5 

completely different clustering schemes where channels grouped into the same cluster in one 6 

scheme are in different clusters in another scheme. An NMI of 1 indicates an identical cluster 7 

scheme. NMI was calculated between cluster schemes from within the same condition. NMI 8 

values were averaged across conditions within each region, yielding a frequency X frequency 9 

matrix of cluster similarity for each region. Based on visual inspection of these matrices (Figure 10 

5a-c), we decided to break frequency up into 5 bands. The breakpoints for these bands were 11 

chosen by a greedy search algorithm. The algorithm began with 4 breakpoints spaced evenly 12 

across logarithmic frequency space. For each breakpoint, the average NMI within all frequency 13 

bands and between all frequency bands was calculated. The between-NMI was subtracted 14 

from the within-NMI. This net NMI value was calculated for all possible positions of the current 15 

breakpoint such that it was at least 3 frequencies away from the two breakpoints (or ends) on 16 

either side of it. The breakpoint was moved to the position with the maximum net NMI value. 17 

This loop was repeated until no breakpoint moves were made. While increasing the number 18 

of breakpoints from 3 to 4 markedly increased the final net NMI, only a marginal increase was 19 

found by increasing to 5, confirming the use of 4 breakpoints to create 5 frequency bands.  20 

 21 

Next, cluster schemes were aligned within each frequency band for each rat, condition, and 22 

region independently. We used equation 5 from Strehl and Ghosh (Strehl and Ghosh, 2002) 23 

to calculate the average NMI (aNMI) between a candidate cluster scheme and all cluster 24 

schemes within a frequency band. The initial candidate cluster scheme was chosen by 25 

selecting the input cluster scheme that had the highest aNMI with the other cluster schemes 26 

within its frequency band. The initial candidate scheme was relabeled to meet two constraints: 27 

(i) λ1= 1; (ii) for all i =1, … , n − 1: λi+1 ≤ maxj=1, … , i  (λj) + 1 (Strehl and Ghosh, 2002). Here, λ 28 
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represents the cluster label of the electrode indicated by the subscript. Next, the algorithm 1 

looped over electrodes. For each electrode, the aNMI of the whole scheme was calculated 2 

with the electrode in question having each of the possible cluster labels available in the 3 

scheme. If the aNMI was higher for some other label than the electrode had at the start of the 4 

loop, then the electrode’s label was changed. Looping continued until no further changes were 5 

made. This yielded a single cluster scheme across the entire frequency band.  6 

 7 

Measuring changes in within-region functional structure 8 

aNMI was used to measure cluster similarity between conditions (within frequency) and 9 

between frequencies (within conditions). In both ways of doing the analysis, each rat was 10 

considered independently. In the between-conditions analysis, cluster schemes from all four 11 

conditions were considered for one region and one frequency at a time. For each of these four 12 

cluster schemes (one from each behavioral condition), the aNMI was calculated with respect 13 

to the other three conditions. On this metric, values near 0 would indicate that within a 14 

particular frequency band, the functional structure of a region observed during a particular 15 

condition was dramatically different from other conditions. By contrast, values near 1 would 16 

indicate a high degree of functional stability between conditions. The values obtained from 17 

individual rats were subjected to a within-subjects ANOVA with the factors frequency band 18 

and condition. For conditions, dummy variables encoding linear contrasts were used to 19 

compare baseline vs. consolidation,  encoding vs. retrieval, and periods with objects (encoding 20 

and retrieval) vs. periods without objects (baseline and consolidation). For frequencies, linear 21 

contrasts were used to compare delta vs. others, theta vs. others, low gamma vs. others, and 22 

high gamma vs. others.  23 

 24 

The between frequency analysis was similar. Cluster schemes from all five frequencies were 25 

considered for one region and one condition at a time. For each of these five cluster schemes 26 

(one from each frequency band), the aNMI was calculated with respect to the other four 27 
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conditions. Again, within-subjects ANOVA was used with the factors frequency band and 1 

condition. The same set of linear contrasts were used.  2 

 3 

Measuring changes in between-region functional connections 4 

To facilitate measuring connections between regions, we used generalized 5 

eigendecomposition (GED) to reduce the signals from electrodes within each cluster to a 6 

single time series. The goal of GED is to identify a component, defined as a weighted 7 

combination of the channel time series from within each cluster, that maximizes the power of 8 

narrowband activity to broadband activity: 9 

𝑎𝑟𝑔𝑚𝑎𝑥
‖𝑤𝑇𝑋‖

2

‖𝑤𝑇𝑌‖
2 10 

Where X is the narrowband-filtered data, Y is the broadband data, and w is the vector of 11 

channel weights. The solution to this optimization can be obtained from the GED on two 12 

covariance matrices: S=XXT and R=YYT (Parra et al., 2005; Cohen, 2021): 13 

SW = RWΛ                                                                 14 

W is the square matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues. After 15 

solving the GED for each cluster, the eigenvector associated with the largest eigenvalue was 16 

used to calculate a weighted combination of the narrowband signals from the cluster resulting 17 

in a single time series for each cluster that explained the maximum amount of variance 18 

between the electrodes. The largest eigenvalue was divided by the sum of all eigenvalues in 19 

order to estimate the proportion of variance explained by the single time series (Figure 4f).   20 

 21 

Connectivity between cluster time series was assessed using amplitude envelope correlations 22 

(Bruns et al., 2000). Time series were transformed into amplitude envelopes by taking the 23 

absolute value of the Hilbert transform. For every pair of cluster time series within a given rat 24 

and condition, correlations were calculated in non-overlapping 2.5 second windows. Windows 25 

with a correlation greater than 2 standard deviations from the mean were ignored. The 26 

remaining correlations were averaged together to obtain a connectivity strength for the pair of 27 
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clusters. To assess the significance of these connectivity strength values, the same amplitude 1 

envelope correlation analysis was carried out again with one of the time series offset such that 2 

the last X data points in the time series were cut from the end and placed at the beginning of 3 

the series where X was a random value. This recalculation was carried out 1000 times for 4 

each pair of connections. Connections whose original correlation was stronger than 950 or 5 

more of the comparison correlations were deemed significant.  6 

 7 

For graph-theoretic measurements, each cluster was treated as a node and significant 8 

connections were treated as weighted edges. Strength, betweenness centrality, clustering 9 

coefficient, and average path length were calculated using functions from the Brain 10 

Connectivity Toolbox (Rubinov and Sporns, 2010). These measures were combined across 11 

rats within each condition and sorted by strength (Figure 7l-o). The total strength within each 12 

combination of frequency band and region was summed and plotted as a heatmap for each 13 

condition (Figure 7p-s). Summed strength values were submitted to a series of within-subject 14 

ANOVAs with frequency band, region, and condition as factors. ANOVAs compared two 15 

conditions at a time: baseline vs. encoding, baseline vs. consolidation, baseline vs. retrieval. 16 

t-tests were used to assess changes in total strength in the delta and theta frequency bands.  17 

 18 

To visualize connectivity maps, connections were pooled across animals. First, we took each 19 

rat’s strongest significant connection between pairs of regions and frequency bands. Because 20 

of a limited number of significant connections involving high gamma, low and high gamma 21 

were combined for this analysis. Next, for connections that were significant for at least 4/5 22 

animals, the median connectivity strength across rats was calculated. This resulted in a group 23 

connectivity matrix that was 12 X 12 (3 regions X 4 frequency bands). For display, these 24 

connections were plotted on a schematic of the rat brain using line thickness to indicate 25 

connectivity strength (Figure 7a-d). In addition, the group 12 X 12 connectivity matrix for the 26 

baseline period was used as a reference, and plots were generated to display the subset of 27 

connections that increased in strength relative to baseline (Figure 7f-h) and decreased relative 28 
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to baseline (Figure 7i-k). Finally, the mean connectivity strength relative to baseline was also 1 

calculated between nodes within each frequency band (Figure 7e), and these relative changes 2 

in connectivity strength were compared to 0 using t-tests.  3 

 4 

We examined the relationship between connectivity strength and memory strength. To do this, 5 

amplitude envelope correlations were calculated on an individual session basis for 6 

connections that were significant in the group (significant at the individual level for 4/5 rats). 7 

The mean of these session-wise connectivity values was taken for each animal. In addition, 8 

each animal’s mean memory strength was calculated by taking the mean of its individual 9 

session memory strengths. Sessions with memory strength more than 2 standard deviations 10 

from the mean were discarded from this analysis (2/28 recording sessions). Correlations were 11 

calculated between mean memory strengths and mean connectivity strengths. This analysis 12 

yielded similar results when sessions were kept separate and correlations were calculated 13 

across all 26 sessions (after removal of 2 outlier sessions).  14 

 15 

Finally, we repeated the generation of pooled connectivity maps treating each region as a 16 

single large cluster. The same band divisions that were used in the main clustering analysis 17 

were used here. The goal of this analysis was to see whether similar connectivity patterns 18 

would be discovered if the clustering process was skipped.  19 

 20 

Data availability statement 21 

The data that support the findings of this study are available from the corresponding author 22 

upon reasonable request. 23 

 24 

Code accessibility 25 

Key custom functions are available on Github 26 

(https://github.com/adede1988/subNetworkDynamics.git). Full processing and analysis code 27 

is available from the corresponding author upon reasonable request.  28 
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 1 

 2 

RESULTS 3 

Behavior 4 

Animals were serially exposed to (1) an empty open field, (2) the same open field with a novel 5 

object, (3) the empty open field again, and finally (4) the open field with the same object. These 6 

conditions were termed baseline, encoding, consolidation, and retrieval, respectively (Figure 7 

1c). During the baseline and consolidation periods, rats tended to sit still (85% and 93% of the 8 

time, respectively; Figure 1f). During the encoding and retrieval periods, rats rested for 9 

somewhat less time (84% and 90% of the time, respectively). Rats spent more time interacting 10 

with the object in the encoding than retrieval period (16% vs. 9%, respectively), and 11 

subtracting the percent of time spent interacting with the object during the retrieval period from 12 

the corresponding percentage during the encoding period yielded a significant difference (after 13 

removal of outliers more than 2 SDs below mean t(25)=4; p<.001; Figure 1e).  14 

 15 

Local Field Potential Power Effects 16 

We calculated power spectra averaged across time and electrode for each behavioral 17 

condition and each brain region (Figure 2b-g). Repeated measures t-tests were used to 18 

compare each condition to baseline for each frequency individually. In general, spectral 19 

dynamics in all three regions were characterized by a 1/f-like decrease in power with 20 

increasing frequency, and a peak in the theta range (5-10 Hz). The only reliable difference in 21 

the spectral profiles between behavioral conditions was a relative increase in power around 4 22 

Hz in the STR during the encoding phase.  23 

 24 

Closer inspection of the individual power spectra per electrode revealed considerable inter-25 

electrode variability (Figure 2h-m). This suggests that the multielectrode arrays may have 26 

spanned multiple functionally distinct neural networks. We therefore proceeded to identify 27 

clusters of electrodes based on inter-electrode correlation matrices.  28 
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 1 

Identification of intra-regional clusters 2 

We identified clusters of channels based on similar patterns of inter-channel correlations of 3 

their LFP time series, which were identified using the DBscan algorithm.(Ester et al., 1996) 4 

The clustering method was applied separately per animal, brain region, task condition, and 5 

narrowband frequency between 2 and 150 Hz, and the robustness of clusters was confirmed 6 

using 20-fold cross-validation (see Methods for details and Figure 3). Correlation matrices had 7 

strong block-diagonal patterns both between- and within-region, and these patterns were 8 

successfully detected and emphasized using clustering analysis (Figure 3a-b). Most clusters 9 

exhibited high silhouette values (Rousseeuw, 1987)(Figure 2n). Across animals, there was a 10 

similar number of clusters detected for each condition (range 270-283 clusters over all 11 

frequencies), and the number of clusters per condition did not vary widely between animals 12 

(range 250-285). However, not all clusters survived 20-fold validity testing.  13 

 14 

Cluster Validity and descriptive statistics  15 

To ensure cluster validity, we assessed clusters in 20 validation folds. For each fold, we 16 

repeated the clustering analysis using only 90% of the data. Clusters that were not at least 17 

85% consistent across folds were discarded as unstable (see methods). This procedure led 18 

to the elimination of 13.8% of clusters. Although we did not explicitly use silhouette values as 19 

a criterion for thresholding, eliminated clusters had lower average silhouette values than 20 

accepted clusters (Figure 3d and n). After validation, there was still no marked difference in 21 

clusters per condition (range 229-247), but rat 1 exhibited fewer stable clusters than other 22 

animals (rat 1: 199; range excluding rat 1: 238-261). The group average number of clusters 23 

summed over conditions and frequencies was not markedly different across regions (PFC: 77; 24 

STR: 76; VTA: 85.6).  25 

 26 

Considering the narrowband signals used for clustering, the Pearson 𝞺 values comparing 27 

channels within the same cluster were higher than those obtained when comparing channels 28 
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from different clusters or that were unclustered (t-test on animal means: t(8)=10.7; p<.001; 1 

Figure 4a). The mean 𝞺 value within clusters was .38, and the mean value between clusters 2 

was -.11. For 97% of cases, the average within cluster correlation was larger than the average 3 

between cluster correlation (Figure 4b). For each animal X condition X region X frequency, 4 

1000 random cluster schemes were chosen with the same number of clusters and the same 5 

number of channels per cluster as those detected in our main analysis. Randomly chosen 6 

clusters did not exhibit a difference for within versus between cluster channel time-series 7 

correlations (Figures 4c-d).  8 

 9 

The high correlation between channels within clusters suggested that clustering successfully 10 

detected groups of electrodes influenced by the same signal. To explore this further, we 11 

calculated the variance in power between channels within each cluster divided by the variance 12 

in power between all channels within each cluster’s region (Figure 4e). For random samples 13 

from a normal distribution, variance is insensitive to sample size, so this ratio would be 14 

expected to equal 1. Indeed, for randomly chosen clusters with the same frequency, region, 15 

and channel count characteristics as those observed, the average value for this ratio was 0.99. 16 

However, for observed clusters, the average value for this ratio was 0.83. The distributions of 17 

these power variance ratios were different (Two-sample Kolmogorov-Smirnov test: D=.24; 18 

p<<.001). We also found that a sizable percent of the variance between channels within each 19 

cluster could be explained by a single generalized eigendecomposition (GED) component 20 

(group average between 13% and 17% across frequencies; Figure 4f). Interestingly, there was 21 

a visually apparent local maximum in variance explained by the first GED component in the 22 

theta range (6-10 Hz).   23 

 24 

Finally, the number of channels in any given cluster tended to be lower at higher frequencies, 25 

and correspondingly the number of clusters detected tended to be higher at higher frequencies 26 

(Figure 4g; 𝞺=-.72; p<<.001). This pattern suggests that the anatomical organization of higher 27 

frequency signals is more locally differentiated than that of low frequency signals.  28 
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 1 

Aggregating clusters  2 

In total, this procedure yielded a mean of 238.4 statistically reliable clusters per condition 3 

across animals. Visual inspection of electrode groupings revealed that clusters were largely 4 

stable across wide ranges of frequencies (e.g. Figure 5d). To assess this stability 5 

quantitatively, we calculated the normalized mutual information (NMI)(Strehl and Ghosh, 6 

2002) between cluster schemes at different frequencies and averaged the resulting NMI matrix 7 

across conditions and animals for each region (Figure 5A-C). Based on NMI, we utilized a 8 

greedy optimization algorithm to select divisions between frequency bands that maximized 9 

average NMI (aNMI) within bands and minimized aNMI between bands. We divided the 10 

frequency space into 5 bands for each region (dashed lines in Figure 5A-C; see methods). 11 

Remarkably, despite the algorithm being applied separately per region and without a priori 12 

constraints regarding the size or spectral extent of clusters, the resulting frequency bands 13 

were similar across regions and corresponded to canonical frequency bands. In the PFC and 14 

STR the clusters mapped onto canonical delta, theta, beta, low gamma and high gamma 15 

(Figure 5A-B). By contrast, in the VTA there was a separate band for alpha, and beta was 16 

combined with low gamma (Figure 5C). For ease of explanation, the same band labels will be 17 

used throughout the text (Table 1).  18 

 19 

Next, information from different cluster schemes within each band was used to create a single 20 

cluster scheme within each band for each animal, condition, and region. To do this, we again 21 

used a greedy optimization algorithm. This time, the algorithm selected a cluster scheme that 22 

maximized the aNMI calculated across the cluster schemes within each band (Figure 5d-23 

e).(Strehl and Ghosh, 2002) This procedure resulted in an average of 31.5 clusters per animal 24 

in each condition.  25 

 26 

Changes in within-region functional structure 27 
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Clusters were detected independently within-frequency and within-condition, and the steep 1 

drop-off in aNMI values away from the diagonals in Figures 5a-c indicates that cluster 2 

schemes were different in different frequency bands. To quantify cluster organization similarity 3 

across behavioral conditions and frequencies, we calculated the aNMI between pairs of cluster 4 

schemes detected either within a single frequency band but between different behavioral 5 

conditions (Figure 6a-f), or within a single condition but between different frequency bands 6 

(Figure 6g-m). An aNMI near 1 indicates that network structure is very stable across either 7 

frequency or condition, and an aNMI near 0 indicates that network structure is very different 8 

across either frequency or condition.  9 

 10 

In general, aNMI values were higher than would be expected by chance, but also consistently 11 

below 1, meaning that internal network structure in the PFC, STR, and VTA was neither 12 

completely remapped or completely stable either when looked at across different conditions 13 

(Figure 6a-f) or across different frequencies (Figure 6g-m). More specifically, for every paired 14 

combination of animal, condition, region, and frequency, we generated 1000 random pairs of 15 

cluster schemes where the total number of channels, the number of clusters, and the number 16 

of channels per cluster were held constant. aNMI between these pairs was calculated. The 17 

99th percentile of these random distributions is plotted in Figure 6 (dashed lines). Random 18 

restructuring led to a maximum aNMI of about 0.2 across all situations. Yet, we observed aNMI 19 

values that were consistently higher than this.  20 

 21 

To examine remapping between different conditions we calculated the aNMI of cluster 22 

schemes within frequency between different conditions. Separately for each condition, this 23 

analysis captures the average similarity of a condition with the other three conditions while 24 

holding frequency constant. For example, considering only clusters observed in the delta band 25 

in the VTA and averaging across animals, the NMI of the cluster organization observed during 26 

consolidation had similarities of 0.51, 0.25, and 0.35 with the clusters observed during 27 

baseline, encoding, and retrieval, respectively. Averaging these three values yielded 0.37 28 
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which is displayed in Figure 6e. aNMI values were submitted to a 5 (frequency bands) X 4 1 

(conditions) within subjects ANOVA for each region (the ANOVA numerical data are presented 2 

in Extended data Figure 6-1; here we highlight only the relevant significant results). In the PFC 3 

there was a main effect of frequency (Figure 6a-b). Visual inspection of Figure 6a indicated 4 

that this effect was driven by reduced cross-condition stability in high gamma, and this was 5 

confirmed by linear contrast. But it appears that a small number of data points drove the effect 6 

(Figure 6b). In the STR there was also a main effect of frequency (Figure 6c-d), and this was 7 

driven by relatively high stability in the low gamma band (Figure 6d) as well as low stability in 8 

the theta band (not shown). The effects in the PFC and STR were relatively modest (η²<.2). 9 

By contrast, the VTA exhibited dramatic remapping of its cluster structure in the delta band 10 

(Figure 6e-f; η²=.48). Taken together, the STR was generally stable across conditions in all 11 

frequency bands. The PFC exhibited moderate restructuring of its cluster structure in the high 12 

gamma band, and the VTA restructured dramatically across behavioral states, but this 13 

restructuring was limited to delta band signaling.  14 

 15 

To examine independence between different frequencies we again used aNMI. Separately for 16 

each frequency, this analysis captures the average similarity of cluster organization in one 17 

frequency band with the other four frequency bands while holding condition constant. These 18 

aNMI values were submitted to a 5 (frequency bands) X 4 (conditions) within subjects ANOVA 19 

for each region (for ANOVA table see Extended data Figure 6-2). In the PFC there were main 20 

effects of both frequency and condition (Figure 6g-i). These effects were driven by lower cross-21 

frequency cluster scheme similarity in behavioral periods with an object present (both 22 

encoding and retrieval; Figure 6h) and lower cross frequency similarity in the cluster structure 23 

of high gamma signaling relative to other frequency bands (Figure 6i). There were no 24 

significant effects in the STR (Figure 6j). In the VTA there were main effects of both frequency 25 

and condition (Figure 6k-m). As in the PFC, behavioral periods with objects had lower cross-26 

frequency cluster structure similarity than those without an object (Figure 6l). Also similar to 27 

the PFC, the cluster scheme for high gamma was dissimilar from the cluster schemes of other 28 
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frequency bands. In addition, and unlike the PFC, the cluster structure of delta signaling was 1 

dissimilar to other frequency bands in the VTA (Figure 6m).  2 

 3 

Taking these two analysis approaches together, PFC high gamma and VTA delta exhibited 4 

significant changes in cluster schemes. This indicates that these areas remap their internal 5 

structures with respect to signalling in these frequency bands across conditions (For single 6 

animal example see Figure 6q) and that the physical layout of signaling in these frequency 7 

bands is different from other frequency bands (for single animal example see Figure 6o). 8 

Furthermore, both regions exhibit more cross-frequency dissimilarity in the object periods, 9 

suggesting a greater degree of functional segregation between frequency-specific signal 10 

generators during object interaction. By contrast, the STR exhibited relatively high stability 11 

across conditions (for single animal example see Figure 6p). Finally, it is clear from visual 12 

examination of Figure 6 that cluster structures are generally more differentiated between 13 

different frequencies than across different conditions, suggesting independence of the neural 14 

substrates supporting signaling in different frequency bands. Averaging across animals, 15 

conditions, regions, and frequencies, within frequency aNMI values had a mean of .82 (Figure 16 

6a-f), but within condition aNMI values had a mean of .68 (Figure 6g-m)(p<<.001; CI: .12-.16; 17 

see histogram in Figure 6n). That said, it should be emphasized that the most striking intra-18 

regional cluster differences were observed within the delta frequency band in the VTA, 19 

suggesting that this structure remapped dramatically with respect to delta-band signal 20 

generation.   21 

 22 

Between-region network structure 23 

As mentioned above, using GED to reduce the dimensionality of cluster signals to a single 24 

time course generally yielded a component that explained a sizable portion of the variance 25 

between channels (Figure 4f). After converting each cluster into a single time course, we 26 

examined connectivity between clusters using amplitude envelope correlations (Bruns et al., 27 

2000). A bootstrapped null distribution was constructed for each connection (see methods). 28 
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Correlations were considered significant if they were stronger than 95% of their corresponding 1 

null correlations. The results of this procedure can be thought of as connectivity graphs for 2 

each animal in each condition. In these graphs, each node was a cluster with a specific region 3 

and frequency band, and edges were the correlations between nodes. Because there were 4 

often multiple clusters with the same region and frequency band, animals could sometimes 5 

have multiple connections along the same edge. In order to aggregate connections across 6 

animals, the strongest significant correlation between each frequency, region pair was taken 7 

for each animal. Any edge that did not have at least one significant connection for 4/5 rats was 8 

discarded. The medians of these maximum connection strengths across animals in each 9 

condition are plotted in Figure 7a-d. There were few significant connections including high 10 

gamma, so these connections were grouped with low gamma for this analysis. In general, the 11 

pattern of connectivity was dense in the baseline period, with 72% of all possible connections 12 

exhibiting significant coupling. Connectivity dropped during the encoding period, with 2% of all 13 

possible connections exhibiting significant strength. Connectivity then rebounded in the 14 

consolidation period to 52%, and then fell again during the retrieval period to 18%. In addition, 15 

while PFC delta was the node with the highest betweenness centrality in the first three 16 

behavioral conditions, PFC theta became the node with highest betweenness in the retrieval 17 

period (dot size in Figure 7a-d). 18 

 19 

In order to unpack these results further, we replotted the connectivity  as a function of change 20 

relative to connectivity strength during baseline (Figure 7f-h for increases; 7i-k for decreases). 21 

In general, connections in the theta band strengthened marginally during the consolidation 22 

and retrieval periods (Figure 7e; p’s<.07). In addition, there was also beta band connection 23 

strengthening in the consolidation period (p=.0503). In the retrieval period, a complex pattern 24 

of high frequency interactions involving the beta and gamma bands emerged (Figure 7h). 25 

Interestingly, decreases in specific delta band connections between regions were observed in 26 

all three conditions, but these were not significant in the aggregate (Figure 7e).  27 

 28 
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To check whether the aggregating process had biased the results, we performed an analysis 1 

of graph theoretic descriptive statistics on the full cluster X cluster connectivity matrices of 2 

significant connections derived for each rat. In general, nodes with high strength also had high 3 

betweenness, high clustering coefficients, and low path lengths (Figure 7l-o). We summed the 4 

strength of all clusters within each region and frequency band (Figure 7p-s). The results 5 

observed in the aggregated graphs were recapitulated. Overall strength reduced markedly in 6 

the object periods relative to the non-object periods. In addition, while strength was 7 

concentrated in the delta band during baseline (Figure 7p), theta band connections exhibited 8 

the most strength during the consolidation period (Figure 7r). These results were confirmed 9 

with a series of within-subject ANOVAs comparing pairs of conditions using frequency band, 10 

condition, and region as factors (for full ANOVA tables see Extended data Figures 7-1 to 7-3). 11 

Confirming the overall drop in strength during the encoding and retrieval periods, there was a 12 

main effect of condition in comparisons between baseline and encoding and between baseline 13 

and retrieval (Fs(1,281)>114; ps<<.001), but this main effect was absent when comparing 14 

baseline to consolidation (p=.8). Confirming the shift from delta to theta strength, there was 15 

an interaction between condition and frequency for comparisons between baseline and all 16 

three other conditions (Fs(4,281)>8.8; ps<<.001). Planned comparisons targeted at examining 17 

changes in relative delta/theta strength found that delta band connections were weaker in the 18 

consolidation period relative to baseline (t(58)=-3.3; p=.002), and connection strength in the 19 

theta band was marginally increased during the consolidation period relative to baseline 20 

(t(60)=1.9; p=.055).  21 

 22 

We considered whether inter-regional connections played a role in memory. To test for this, 23 

connectivity strength of all significant connections was calculated for each session 24 

independently. Memory strength for each session was assessed as shown in Figure 1e. For 25 

each animal, we took the mean connection strength  and memory strength values across 26 

sessions and then calculated the correlation between these values. Interestingly, during the 27 

consolidation period, theta connections between the VTA and STR and between the VTA and 28 
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PFC were significantly correlated with memory (p’s<.05; Extended data Figure 7-1). However, 1 

a correlation analysis with only 5 animals should be interpreted with an appropriate amount of 2 

caution.  3 

 4 

Finally, to check whether clustering had meaningfully contributed to our network connectivity 5 

findings at all, we repeated the GED and connectivity analysis considering entire regions as 6 

singular clusters (Extended data Figure 7-2). In general, this analysis found markedly fewer 7 

significant connections. In particular, only 3 connections were found in the retrieval period 8 

when entire regions were considered, compared to 26 connections observed using clusters. 9 

In other words, segregating the intra-regional activity into clusters was crucial to uncovering 10 

the memory-related functional dynamics. 11 

 12 

DISCUSSION 13 

 14 

Rats spent less time exploring previously encountered compared to novel objects (Figure 1), 15 

and this memory effect was associated with a complex and dynamic pattern of inter-regional 16 

functional connectivity (Figure 7). At baseline, we observed that the STR, PFC, and VTA were 17 

robustly coherent across multiple frequency bands, with delta oscillations playing an outsized 18 

role. There was a dramatic pruning of network connectivity when rats were exposed to a novel 19 

object. After the novel object was removed, connectivity rebounded, but the connectivity profile 20 

shifted away from being dominated by delta towards being dominated by theta. Finally, when 21 

animals were re-exposed to objects, connections were not as severely reduced as they had 22 

been during initial presentation, and specifically theta and higher-frequency connections were 23 

stronger than they had been during the novel object encoding period. Underlying these inter-24 

regional changes, functional organization of gamma frequency signals in the PFC and both 25 

gamma and delta signals in the VTA all changed markedly across behavioral conditions. 26 

 27 
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It is important to appreciate that these patterns were detectable only with the use of sub-1 

regional clustering analysis (supplemental Figure 3). Although there was considerable 2 

variability in the signals recorded at different electrodes (Figure 2), we found that sub-regional 3 

clusters of electrodes were stable across multiple sessions recorded on different days. These 4 

clusters were verified using 20-fold validation, silhouette value examination (Figure 3), and by 5 

comparing the statistics of observed clusters to those of randomly chosen clusters (Figure 4). 6 

In general, clusters covered between a quarter and a third of the space of our electrode arrays 7 

(mean cluster size 18-24 electrodes; Figure 4g). Thus, for the STR and PFC, clusters covered 8 

an area of approximately half a square millimeter, and in the VTA they covered less than a 9 

tenth of a square millimeter. These areas are smaller than the traditional demarcations 10 

between architectonically categorized brain regions (Paxinos and Watson, 2006). This 11 

highlights the rich pattern of fine-grained spatiotemporal dynamics that can be discovered only 12 

through large-scale recordings and multivariate data analyses. 13 

 14 

The idea that such small areas could act as functionally important units in long distance 15 

patterns of connectivity is consistent with principles of anatomy: Anatomical tract tracing 16 

studies have often found exquisite patterns such that regions lying only a single millimeter 17 

apart can have dramatically different profiles of connectivity (Schmahmann and Pandya, 18 

2006), and the patterns of connectivity between our three recording targets are no exception 19 

(Prensa and Parent, 2001; Gabbott et al., 2005; Geisler and Zahm, 2005; Hoover and Vertes, 20 

2007). Recent work has begun to reveal the functional importance of highly specific anatomy. 21 

For example, in rodents, specific fiber pathways are independently responsible for dopamine-22 

dependent learning about novel objects and social stimuli in the VTA (Gunaydin et al., 2014). 23 

In monkeys, connectivity between small cortical patches supports face perception (Grimaldi 24 

et al., 2016; Chang and Tsao, 2017; Moeller et al., 2017). In humans, distinct subfields within 25 

the VTA are important for novelty and reward detection, and each of these subfields exhibits 26 

a unique pattern of functional connectivity (Krebs et al., 2011). The present results help to 27 

generalize these findings further, showing how sub-regional patches of brain tissue form 28 
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changing patterns of long-distance connectivity during novel-object memory encoding, 1 

consolidation, and retrieval.  2 

 3 

In addition, we observed that signals at different temporal frequencies and signals measured 4 

during different behavioral conditions both had distinct cluster topographies (Figure 6). This 5 

suggests that frequency-specific signal generators are anatomically localized and can be 6 

activated or deactivated depending on task demands, resulting in a constantly shifting 7 

landscape of functional anatomy. This finding also builds on earlier work. For example, in 8 

humans the BOLD activation associated with semantic concepts changes across the entire 9 

cortical mantle in response to attentional goals (Çukur et al., 2013), and nodes of the default 10 

mode network become less connected during cognitively engaging tasks (Raichle, 2015). 11 

More generally, Honey et al. (Honey et al., 2007) used a computational model of biologically 12 

inspired brain signals and known anatomical connectivity of the macaque brain to simulate 13 

electrophysiology data. They found that functional connectivity simulated over a long time 14 

window (minutes) recapitulated patterns of anatomical connectivity, but on shorter time scales 15 

(seconds or less) patterns of functional connectivity deviated from the model’s set anatomy. 16 

The authors interpreted this finding to mean that the brain is capable of dynamically changing 17 

its functional connectivity in ways that would not be predicted from anatomy alone, and our 18 

results confirm this interpretation. However, Honey et al. (Honey et al., 2007) reported that 19 

functional connectivity exhibits regression towards the mean over relatively short periods of 20 

time (10s of seconds). By contrast, we observed sustained periods with dramatically different 21 

cluster structures and long-distance connectivity, implying that both local and global network 22 

states can be held far from any equilibrium for at least several minutes in response to 23 

environment/task changes. As discussed in Honey et al. (Honey et al., 2007), computational 24 

modelling efforts with explicit consideration of context may capture this phenomenon.  25 

 26 

Examining the specific pattern of connectivity changes exhibited in the present results, the 27 

lack of inter-regional connectivity during the encoding period is striking (Figure 7b and q). This 28 
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result is surprising considering the vigorous novelty response produced by dopamine neurons 1 

of the VTA in both cats and monkeys (Ljungberg et al., 1992; Horvitz et al., 1997), and the 2 

finding that dopamine antagonists can impair memory in rodents (O’Carroll et al., 2006). In 3 

humans, dopaminergic single-unit firing in the substantia nigra has been shown to predict 4 

subsequent memory for novel stimuli (Kaminski et al., 2018). The seeming paradox of the 5 

known importance of DA in memory formation, juxtaposed with our observation of a 6 

disconnected VTA, could be explained by a connection between the VTA and an area that we 7 

did not record from. Much work has implicated the interaction between the HPC and VTA in 8 

response to novelty and memory encoding (Otmakhova et al., 2013). For example, fMRI data 9 

have revealed a novelty signal in the VTA associated with connectivity to the HPC, nucleus 10 

accumbens, and V1 (Krebs et al., 2011). The primary role for the HPC in the early stage of 11 

novelty encoding is further supported by faster neural response times for memory-predicting 12 

firing in the HPC compared with the substantia nigra in humans (Kaminski et al., 2018). Our 13 

data extend this finding by showing that other connections involving the VTA and important 14 

memory structures are suppressed during novelty encoding, heightening the importance of 15 

any HPC-VTA connection.   16 

 17 

A second point of interest was the shift from delta (~4 Hz) connectivity during the baseline 18 

period to theta (~8 Hz) connectivity during the consolidation and retrieval periods (Figure 7e,p 19 

and r). There have been many reports highlighting coherent theta oscillations linking the HPC 20 

and PFC during declarative memory tasks (Benchenane et al., 2010; Otmakhova et al., 2013; 21 

Rajasethupathy et al., 2015; Kafkas and Montaldi, 2018; Kaminski et al., 2018), and putative 22 

DA cells in the midbrain of humans exhibit spiking coherence with PFC theta that is memory-23 

dependent (Kaminski et al., 2018). By contrast, during a stimulus-response association task, 24 

delta frequency synchrony between the HPC, PFC, and VTA was interpreted as influence from 25 

the STR (Fujisawa and Buzsaki, 2011). This interpretation was based on prior observations of 26 

delta oscillations in the STR during this type of task. Where Fujisawa and Buzsaki (Fujisawa 27 

and Buzsaki, 2011) demonstrated that the HPC can be influenced by delta oscillations in a 28 
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network involving the PFC and the VTA, our data demonstrate the reverse: the STR can be 1 

influenced by theta oscillations in a network involving the PFC and the VTA. We even 2 

observed some evidence that the theta connection between the VTA and the other two 3 

structures during consolidation was related to our behavioral measure of memory (Extended 4 

data Figure 7-1). Intriguingly, the largest changes in intra-regional cluster organization were 5 

observed for delta signaling in the VTA (Figure 6e). These changes may represent a state 6 

shift in the VTA from a delta- to a theta-influenced state. Indeed, it has recently been observed 7 

that theta and delta oscillatory modes in the HPC are orthogonal (Schultheiss et al., 2019), 8 

and our results indicate that these oscillatory modes may represent different network states 9 

beyond the HPC as well.  10 

 11 

Finally, we observed a complex pattern of higher frequency connections during the retrieval 12 

period that were not present during the encoding period. It is widely accepted that memory 13 

retrieval involves a network of activation, and this is particularly true of old memories (Dede 14 

and Smith, 2018). Our data indicate that some network connections needed to support 15 

retrieval can be formed within minutes of initial encoding.  16 

 17 

Three major limitations of this study are the need to relate the local clustering and global 18 

connectivity to single-unit firing, our lack of measurement of potentially involved structures 19 

beyond the STR, VTA, and PFC (primarily the hippocampus), and the need for more robust 20 

behavioral tests of memory. We believe these areas present important avenues for future work 21 

to extend the results presented here.  22 

 23 

 24 
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TABLES:  1 

Region Delta (δ) Theta (θ) Beta (β) Gamma low (γL) Gamma high (γH) 

PFC 2-4.6 4.6-12.0 12.0-34.3 34.3-79.4 79.4-150 

STR 2-4.6 4.6-8.7 8.7-38.2 38.2-79.4 79.4-150 

VTA 2-3.8 3.8-8.8 8.8-14.8 14.8-47.1 47.1-150 

Table 1. Divisions between frequency bands, values in Hz 2 

 3 
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Extended Data TABLES: 1 

PFC Df SumSq MeanSq F P eta2 partial 

condition 3.00 0.04 0.01 0.56 0.64  
frequency 4.00 0.35 0.09 4.13 0.00 0.18 

high gamma 1.00 0.28 0.28 13.36 0.00  
interaction 12.00 0.04 0.00 0.17 1.00  
Residuals 76.00 1.62 0.02       

       

STR Df SumSq MeanSq F P eta2 partial 

condition 3.00 0.03 0.01 0.36 0.79  
frequency 4.00 0.41 0.10 3.67 0.01 0.16 

theta 1.00 0.12 0.12 4.23 0.04  
low gamma 1.00 0.24 0.24 8.35 0.01  
interaction 12.00 0.06 0.00 0.17 1.00  
Residuals 76.00 2.14 0.03       

       

VTA Df SumSq MeanSq F P eta2 partial 

condition 3.00 0.10 0.03 1.56 0.21  
frequency 4.00 1.47 0.37 17.55 0.00 0.48 

delta 1.00 1.42 1.42 67.55 0.00  
interaction 12.00 0.14 0.01 0.54 0.88  

Residuals 76.00 1.59 0.02       

 2 

Extended Data Figure 6-1. Cluster stability across conditions within frequency 3 
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PFC Df SumSq MeanSq F P 

eta2 

partial 

condition 3.00 0.12 0.04 3.79 0.01 0.13 

Object periods 1.00 0.08 0.08 7.18 0.01  
frequency 4.00 0.18 0.04 4.19 0.00 0.18 

high gamma 1.00 0.15 0.15 13.94 0.00  
interaction 12.00 0.07 0.01 0.56 0.87  
Residuals 76.00 0.80 0.01       

       

STR Df SumSq MeanSq F P 

eta2 

partial 

condition 3.00 0.09 0.03 2.13 0.10  

frequency 4.00 0.13 0.03 2.20 0.08  
interaction 12.00 0.05 0.00 0.28 0.99  
Residuals 76.00 1.12 0.01       

       

VTA Df SumSq MeanSq F P 

eta2 

partial 

condition 3.00 0.27 0.09 9.48 0.00 0.27 

Object periods 1.00 0.23 0.23 24.57 0.00  
frequency 4.00 0.40 0.10 10.62 0.00 0.36 

delta 1.00 0.13 0.13 13.98 0.00  
beta/gamma 1.00 0.05 0.05 5.07 0.03  

high gamma 1.00 0.22 0.22 23.40 0.00  
interaction 12.00 0.16 0.01 1.42 0.18  
Residuals 76.00 0.72 0.01       

 1 

Extended Data Figure 6-2. Cluster stability across frequency within condition 2 
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Baseline vs. 

Encoding Df SumSq MeanSq F P 

eta2 

partial 

cond 1.00 4.52 4.52 114.26 0.00 0.29 

freq 4.00 16.72 4.18 105.76 0.00 0.60 

reg 2.00 0.30 0.15 3.82 0.02 0.03 

cond:freq 4.00 2.05 0.51 12.96 0.00 0.16 

cond:reg 2.00 0.16 0.08 1.99 0.14  
freq:reg 7.00 0.85 0.12 3.08 0.00 0.07 

cond:freq:reg 7.00 0.24 0.03 0.86 0.54  
Residuals 288.00 13.04 0.05       

 1 

Extended Data Figure 7-1. Strength changes baseline vs. encoding 2 
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Baseline vs. 

Consolidation Df SumSq MeanSq F P 

eta2 

partial 

cond 1.00 0.00 0.00 0.06 0.81  
freq 4.00 25.56 6.39 141.14 0.00 0.66 

reg 2.00 0.28 0.14 3.09 0.05 0.02 

cond:freq 4.00 1.59 0.40 8.79 0.00 0.11 

cond:reg 2.00 0.01 0.00 0.08 0.92  
freq:reg 7.00 1.78 0.25 5.62 0.00 0.12 

cond:freq:reg 7.00 0.52 0.07 1.63 0.13  
Residuals 288.00 13.04 0.05       

 1 

Extended Data Figure 7-2. Strength changes baseline vs. consolidation 2 
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Baseline vs. 

Retrieval Df SumSq MeanSq F P 

eta2 

partial 

cond 1.00 4.22 4.22 121.23 0.00 0.30 

freq 4.00 16.98 4.25 122.03 0.00 0.63 

reg 2.00 0.11 0.05 1.54 0.22  
cond:freq 4.00 2.10 0.53 15.10 0.00 0.18 

cond:reg 2.00 0.08 0.04 1.13 0.32  
freq:reg 7.00 1.05 0.15 4.31 0.00 0.10 

cond:freq:reg 7.00 0.10 0.01 0.41 0.90  
Residuals 283.00 9.84 0.04       

 1 

Extended Data Figure 7-3. Strength changes baseline vs. retrieval 2 
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FIGURE CAPTIONS:   1 

Fig. 1 Behavioral paradigm and behavior results. a Still image taken from video recording 2 

of an experimental session. The rat is exploring a white object. b Output of movement tracking 3 

results for the frame shown in panel a. c Example experimental session behavioral data. Stars 4 

indicate the presence of an object to explore (encoding and retrieval periods). During baseline 5 

and consolidation periods, there were no objects in the box. Different objects were used on 6 

different testing days. Within day, the same object was used in the encoding and retrieval 7 

periods. In the bottom of each panel is the path followed by the rat during the corresponding 8 

condition. Orange versus blue points differentiate locations with and without interaction with 9 

the object, respectively. d Median distribution of animal speed movement from all the 10 

recordings. The dashed line shows the motion speed threshold separating resting from 11 

movement. e Histogram depicts memory for the object in terms of the percentage of time spent 12 

interacting with the object during the encoding period minus the corresponding percentage 13 

during the retrieval period. In general, more time was spent interacting with the object when it 14 

was novel (after removal of outliers more than 2 SDs below mean t(25)=4; p<<.001). f Pie 15 

charts show percentages of time spent in different behavioral states during each of the 16 

behavioral conditions. 17 

 18 

Fig. 2 Power spectra do not differ reliably between conditions. a Recording locations are 19 

shown for the PFC (left), STR (middle), and VTA (Right). Scale bars indicate 2mm.  b-g Group 20 

mean relative power spectra are displayed. Power spectra were calculated for each channel. 21 

Channel spectra were averaged and normalized to the summed spectral power across 22 

frequencies within each animal and region.  Shaded regions indicate standard error of the 23 

group mean. h-m Relative power is shown for every channel individually, which highlights the 24 

variability in the spectra of individual channels. 25 
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Fig. 3 Clustering methods and validation. a Unsorted channel X channel correlation matrix 1 

for rat 5 during the baseline period constructed using data narrowband filtered at 5.2 Hz. b 2 

The same set of correlations after application of sorting pipeline. c Silhouette values 3 

associated with each channel. One cluster in the STR had low silhouette values, indicating 4 

poor clustering (this cluster was removed from subsequent analyses). d Clusters detected in 5 

“All Data” (far left column) and in each of 20 validation folds. Different pseudo-colors indicate 6 

different clusters. The channels comprising the cluster with low silhouette values are not 7 

always clustered together, indicating instability (pink with blue stripes) (note that an entire 8 

cluster can switch colors in different folds; the important metric is whether the color is 9 

homogeneous across channels within the cluster). e-m These panels display the clustering 10 

pipeline. e Each region’s correlation matrix is considered separately. The VTA is shown here. 11 

f The correlation between each row and column of the correlation matrix is calculated. 12 

Channels from electrodes 28 and 33 are displayed as examples. g These correlations are 13 

organized in a matrix that encodes similarities of connectivity profiles, rather than bivariate 14 

correlations. h This connectivity-profile correlation matrix was transformed into a Euclidean 15 

distance matrix to increase contrast and enforce positivity. i The k-distance for each channel 16 

represents how far (epsilon; y-axis) one would have to go in units of squared distance (panel 17 

h) in order to find k nearest neighbors. K is set to 8. Values are sorted from smallest to largest. 18 

j The derivative of the k-distances was approximated by taking the running difference between 19 

pairs of k-distances. The horizontal dashed line indicates the detection threshold for sharp 20 

discontinuity. The vertical solid line indicates a local peak. The arrow pointing back to panel i 21 

shows how the detected index in the derivative is used to select the corresponding epsilon 22 

value. This epsilon is used as input to the DBscan algorithm for clustering. k-m Correspond to 23 

the matrices shown in panels e,g, and h, but with channels sorted according to the result of 24 

the DBscan clustering. Cluster borders are indicated with dashed lines. n Mean silhouette 25 

values across channels in clusters that were stable across 20-fold validation (blue) and in 26 

clusters that were not stable across 20-fold validation (red). Stability was not determined using 27 
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silhouette value (see methods), and there was no mathematical necessity that stable clusters 1 

would be expected to have higher silhouette values.    2 

 3 

Fig. 4 Characteristics of clusters. a Histograms show distributions of correlations for pairs 4 

of channels that were within the same cluster (blue) or between channels from different 5 

clusters (red).  b The histogram shows the distribution of difference scores calculated by 6 

subtracting between-cluster correlations from within-cluster correlations. Subtractions carried 7 

out for correlation values from the same animal, region, condition, and frequency. c-d Similar 8 

to a and b, but clusters were chosen randomly. e Histograms show the distributions of variance 9 

in power between channels within a cluster divided by the variance in power between channels 10 

within the corresponding region.  Lower values indicate that there is less variance in power 11 

within a cluster than would be expected given the variance in its containing region. The red 12 

histogram shows the values calculated for observed clusters. The grey histogram shows the 13 

values calculated for random clusters. f The first component of a generalized 14 

eigendecomposition (GED) performed on the channels within each cluster generally explained 15 

between 13% and 17% of between channel signal variance. The y-axis displays variance 16 

explained by the first GED component. The x-axis displays frequency. Higher values indicate 17 

that the entire cluster is well-characterized by a single time-series. g There was a larger 18 

number of smaller clusters detected at higher frequencies. The left y-axis displays the number 19 

of channels grouped into each cluster. The right y-axis displays the total number of clusters 20 

detected. The x-axis displays frequency. For panels f and g, shaded regions indicate standard 21 

error of the group mean.    22 

Fig. 5 Defining frequency bands and combining clusters within bands. a-c Heat maps 23 

display the average normalized mutual information (aNMI) between cluster maps at different 24 

frequency bands. Averaging was done across rats and conditions. Dashed lines indicate the 25 

output of a greedy search algorithm that divided frequency space into bands. d-e Channel-by-26 
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frequency maps illustrating the aNMI-maximizing clustering results. The y-axis represents 1 

channel. The x-axis represents frequency. Pseudo colors indicate cluster groups. e A single 2 

cluster map has been constructed for all frequencies within the band such that aNMI between 3 

the final cluster map and the maps associated with the different frequencies within the band 4 

(panel d) has been maximized.  5 

Fig. 6 Intra-regional cluster stability. a-f Average normalized mutual information (aNMI) 6 

calculated across conditions but within frequency band. a PFC aNMI values (y-axis) are 7 

displayed for the four conditions (x-axis). Each line indicates results for a different frequency 8 

band (legend is next to panel j). Dashed lines indicate expected values in an analysis of 9 

random clusters. b PFC aNMI values were grouped by frequency band. Violin plots show 10 

aNMI values (y-axis) for condition similarity per frequency (x-axis). Each animal is represented 11 

by 4 dots (one for each condition) for each frequency. c-d Similar to a-b except for the STR. 12 

e-f Similar to a-b except for the VTA. Delta had lower aNMI than other frequency bands. g-m 13 

aNMI calculated across frequencies but within condition. g PFC aNMI values (y-axis) are 14 

displayed for the five frequency bands (x-axis). Each line indicates results for a different 15 

condition.  h PFC aNMI was grouped by condition. Violin plots show aNMI values (y-axis) for 16 

frequency similarity calculated within each condition (x-axis). Each animal is represented by 5 17 

dots (one for each frequency) for each condition. i PFC aNMI was grouped by frequency, 18 

generating a plot similar to b, except the underlying calculation here was within condition 19 

instead of within frequency. j Similar to panel g for data from the STR. k-m similar to g-i for 20 

data from the VTA. n Histogram shows aNMI in the between frequency (red) and between 21 

condition (blue) analyses. Between-frequency comparisons generally had lower aNMI. o-q 22 

Examples of cluster remapping. Anatomical location of recording array is shown to the left, 23 

and clusters are mapped to anatomical space in panels to the right. Pseudo colors indicate 24 

different clusters (unassigned channels have no color). o This example shows that high 25 

gamma in the PFC had a cluster scheme different from the other bands (see also lower aNMI 26 

values in panel i). p Clusters in the low gamma band in the STR. Note the stability in cluster 27 
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organization across conditions (see also panel d). q This example demonstrates the effect 1 

observed in panel e. Namely, delta in the VTA had an unstable cluster map across conditions. 2 

Stars indicate significant linear contrasts in an ANOVA model.  3 

Fig. 7 Dynamics of inter-regional connectivity across behavioral epochs. a-d Group 4 

mean correlations between signals derived from frequency-specific regional clusters are 5 

shown as line thickness. Solid lines range from ρ=.05 to ρ=.20. Dashed lines represent weaker 6 

connections (ρ>0.0). All visualized connections were significant at the individual level for at 7 

least 4/5 animals. Each animal contributed only its strongest single connection to each graph 8 

edge. Node size represents betweenness centrality. These connection strengths are reused 9 

in panels e-k. e Group mean change relative to baseline in connection strength for connections 10 

between nodes within different frequency bands. Inter-regional connections in the theta band 11 

had marginally increased strength in the consolidation and retrieval periods (t-test against 0, 12 

ps<.07). Connections in the beta band had increased strength in the consolidation period 13 

(p=.0503). f-h Specific connections that exhibited increased strength relative to baseline in the 14 

encoding (f), consolidation (g), and retrieval (h) periods. i-k Similar to f-h, but for decreased 15 

strength connections. Throughout f-k, solid lines represent connectivity changes of 16 

between  ρ=.0125 and ρ=.07. Dashed lines represent weaker connections (ρ>0.0). l-o Graph 17 

theoretic measurements of each animal’s connectivity matrix were calculated for all significant 18 

connections (rather than taking only each animal’s strongest edge between any two nodes). 19 

Metrics were z-scored for display on a single scale. Node-metrics from all animals were 20 

combined and sorted by strength for plotting. In general, nodes with high strength also had 21 

high betweenness centrality, high clustering coefficients, and low mean path lengths. p-s 22 

Summed strength values of all nodes in different regions (y-axis) and within different frequency 23 

bands (x-axis). Marginal histograms display the mean value of their respective rows or 24 

columns of the heatmap. Overall node strength was lower in the encoding and retrieval periods 25 

(panels q and s), and the frequency of peak nodal strength shifted from delta to theta when 26 

comparing baseline (panel p) to consolidation (panel r).  27 
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Extended data Fig 3-1 Choosing k for DBscan. a the mean silhouette value (y-axis) of 1 

clustering schemes calculated for all rats, regions, conditions, and frequencies using 2 

different values of k (x-axis). b The maximum silhouette value (y-axis) of clustering schemes 3 

calculated for different values of k (x-axis). c The proportion of silhouette values greater than 4 

.4 (y-axis) for different values of k (x-axis).  5 

 6 

Extended data Fig 7-1 Network connections related to memory. For significant 7 

connections (main text Fig. 7a-d), we assessed the correlation between session connection 8 

strength and session memory. Memory was calculated as the proportion of time spent 9 

exploring the object during the encoding period minus the similar proportion for the retrieval 10 

period. There were two outlier sessions with memory <-.2 (main text Figure 1e), which were 11 

excluded from this analysis. a-d Network maps depicting connections that exhibited a 12 

significant correlation with memory strength. e-l Scatter plots depict the individual data points 13 

that went into all significant correlations. Before calculating correlations, each animal’s mean 14 

connection strength across sessions and mean memory strength across sessions were 15 

calculated. These animal mean values were submitted to correlation analysis. This analysis 16 

was also done using data from individual sessions in the correlation analysis. In general, a 17 

similar set of significant correlations were discovered. Different colors/shapes of points 18 

indicate the individual sessions for different animals. The large black circles indicate animal 19 

means. The regression line of best fit is shown (all ps<.05).  20 

 21 

Extended data Fig 7-2 Network connections between clusters versus between 22 

regions. a-d Network maps are the same as panels a-d of Figure 7 (main text). e-h Network 23 

maps are calculated using all the same procedures as those in a-d, except each region was 24 

treated as a single cluster. Without considering the functional organization of signals within 25 

region (using clustering), many of the connections detected in panels a-d were missed in 26 

panels e-h. This is particularly evident during the retrieval period (panel h) where all of the 27 

complex high frequency interactions between regions have been missed. 28 
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