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ABSTRACT 17 

Plant metabolites are important for plant breeders to improve nutrition and agronomic 18 

performance, yet integrating selection for metabolomic traits is limited by phenotyping expense 19 

and limited genetic characterization, especially of uncommon metabolites. As such, developing 20 

biologically-based and generalizable genomic selection methods for metabolites that are 21 

transferable across plant populations would benefit plant breeding programs. We tested genomic 22 

prediction accuracy for more than 600 metabolites measured by GC-MS and LC-MS in oat 23 

(Avena sativa L.) seed. Using a discovery germplasm panel, we conducted metabolite GWAS 24 

(mGWAS) and selected loci to use in multi-kernel models that encompassed metabolome-wide 25 

mGWAS results, or mGWAS from specific metabolite structures or biosynthetic pathways. 26 

Metabolite kernels developed from LC-MS metabolites in the discovery panel improved 27 

prediction accuracy of LC-MS metabolite traits in the validation panel, consisting of more 28 

advanced breeding lines. No approach, however, improved prediction accuracy for GC-MS 29 

metabolites. We tested if similar metabolites had consistent model ranks and found that, while 30 

different metrics of ‘similarity’ had different results, using annotation-free methods to group 31 

metabolites led to consistent within-group model rankings. Overall, testing biological rationales 32 

for developing kernels for genomic prediction across populations, contributes to developing 33 

frameworks for plant breeding for metabolite traits.  34 

  35 
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INTRODUCTION 36 

Plant metabolites contribute to human health, food flavor, and plant resistance to stresses, and 37 

thus are important traits for plant breeders (Kumar et al., 2017; Zhu et al., 2019). While selection 38 

for some metabolites is possible through correlated traits, like color, many metabolites are 39 

phenotyped through metabolomics approaches like chromatography and mass spectrometry 40 

(Fernie & Tohge, 2017). Some key challenges in plant breeding for metabolites are the diversity 41 

of plant metabolites, with hundreds of thousands predicted (Afendi et al., 2012), a generally 42 

limited knowledge of the genetic architecture of metabolite traits (Soltis & Kliebenstein, 2015), 43 

and expense in generating metabolomics data. As our capacity to measure and identify plant 44 

metabolites grows (Fernie & Tohge, 2017), developing biologically-based and generalizable 45 

selection methods that are transferable across plant populations would benefit plant breeding 46 

programs. 47 

 Most knowledge of the genetic bases of metabolite variation in crops comes from models 48 

like tomato, maize, and rice, and nutritional metabolites, such as vitamin precursors (Luo, 2015; 49 

Fernie & Tohge, 2017; Wager & Li, 2018). While this work encompasses biochemical pathways 50 

that are largely conserved, there is also a growing body of work on specialized metabolites, 51 

metabolites that contribute to ecological interactions and are generally restricted to few lineages, 52 

for instance, alkaloid production in tomato (Zhu et al., 2018) and benzoxazinoid production in 53 

maize (Zhou et al., 2019). Together, these studies have shaped our understanding of the genetic 54 

architecture of plant metabolite traits: while some specialized metabolites have oligogenic 55 

genetic architecture (Diepenbrock et al., 2017, 2021), many loci contributing to metabolite 56 

variation have small effects, and there are multiple examples of balancing selection for 57 

metabolites (Soltis & Kliebenstein, 2015). Given the typically complex genetic architecture and 58 
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small-effect loci that underpin metabolite traits, techniques like genomic prediction and selection 59 

would be particularly useful methods to implement in plant breeding programs (Heffner et al., 60 

2009; Heslot et al., 2015).  61 

Genomic prediction and selection studies have shown that metabolomic traits are viable 62 

candidates for genomic selection. For instance, genomic selection on color (a proxy for 63 

provitamin A) in winter squash (Cucurbita moschata) fruit, led to significant population 64 

improvement over four cycles of selection (Hernandez et al., 2020). In addition, average 65 

genomic prediction accuracy for measured vitamin metabolites was 0.43 for provitamin A in 66 

maize kernels (Owens et al., 2014), and 0.49 for vitamin E in fresh sweet corn kernels (Baseggio 67 

et al., 2019). Recently, others have also tested strategies for incorporating multiomic information 68 

in prediction of metabolites. For instance, computing relationship matrices from metabolomics 69 

data (Campbell et al., 2021a) or metabolomics and transcriptomics data (Hu et al., 2021) led to 70 

high average prediction accuracies (r > 0.4) for fatty acid traits in oat (Avena sativa) seed. These 71 

studies have demonstrated that genomic prediction is effective for a few to tens of biochemically 72 

similar metabolites traits. Expanding to consider more metabolites would allow for an 73 

understanding of the generalizability of the results. Further, as with much work involving 74 

multiomic datasets, connecting genomic prediction results to biological mechanisms is a 75 

challenge.  76 

One approach to elucidate and incorporate biological bases into genomic prediction has 77 

been through tests of genomic partitioning where, if the partitioned SNPs are enriched for causal 78 

variants, prediction accuracy could be improved (Sarup et al., 2016). Recent work in genomic 79 

prediction of 65 free amino acid metabolite traits in Arabidopsis seeds partitioned genomic SNPs 80 

using annotations from 20 biochemical pathways, and found that inclusion of pathway SNPs as a 81 
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kernel in a multikernel BLUP model improved prediction ability (Turner-Hissong et al., 2020). 82 

In other examples, genomic prediction with pathway SNPs alone was equivalent to genome-wide 83 

prediction for provitamin A compounds (carotenoids) in maize kernels (Owens et al., 2014), but 84 

biosynthetic pathway SNPs performed worse than genome-wide SNPs for prediction of vitamin 85 

E (tocochromanols) in fresh sweet corn kernels (Baseggio et al., 2019). These differences could 86 

be due to the degree to which markers were in LD with causal variants (Baseggio et al., 2019) or 87 

may point to causal variation being attributable to regulation (local or distal), or factors like 88 

metabolite transport (Soltis & Kliebenstein, 2015). Finally, while integrating prior information 89 

about biochemical pathways has promising but mixed success, its application remains limited to 90 

organisms with well annotated genomic, transcriptomic and metabolomic resources. 91 

Strategies to conduct genomic partitioning without incorporating prior biosynthesis 92 

information have also been tested. In oat (Avena sativa L.), a hexaploid with a recently available 93 

whole genome sequence, (Campbell et al., 2021b) leveraged untargeted metabolomics data with 94 

over 1600 metabolites to conduct factor analysis to uncover genomic regions that influence 95 

metabolite composition. Using a multi-kernel approach, incorporating a kernel using GWAS 96 

results of factors improved prediction accuracy of lipid and protein traits across populations 97 

(Campbell et al., 2021b). In this analysis, factors were most commonly enriched for lipids which 98 

perhaps contributed to increased prediction accuracy of fatty acids (a type of lipid), but it would 99 

be intriguing to understand if this result is generalizable across more types of metabolites that 100 

were less represented in the factor data set.  101 

We sought to expand upon the work of (Campbell et al., 2021b) to test prediction models 102 

for the entire oat seed metabolome and develop generalized genomic prediction method 103 

frameworks. Oat seeds contain multiple healthful metabolites such as unsaturated fatty acids, 104 
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beta-glucans, fiber as well as antioxidants (Stewart & McDougall, 2014), and fatty acid traits 105 

have been a target of GWAS (Carlson et al., 2019) and genomic prediction (Campbell et al., 106 

2021b; a; Hu et al., 2021). Using this well-studied germplasm, we examined more than 600 107 

metabolites in oat seed measured by GC-MS and LC-MS and tested genomic prediction accuracy 108 

using two-kernel models. Our objectives were to characterize the measured metabolome by 109 

metabolite GWAS (mGWAS), leverage mGWAS results to select loci for two-kernel genomic 110 

prediction models to test hypotheses about the most informative, biologically-based genome 111 

partitioning methods of metabolomics data, and to evaluate prediction accuracy of these models 112 

in a separate germplasm panel. To this end, we conducted mGWAS in a discovery panel and 113 

generated kernels from significant mGWAS SNPs for any metabolite, or of metabolites 114 

identified by structure as lipids or belonging to specific biosynthetic pathways thereof (terpenoid 115 

biosynthesis pathways). Genomic prediction accuracy was evaluated in a validation germplasm 116 

panel using K-fold cross validation. We hypothesized that kernels encompassing metabolome-117 

wide information would increase prediction accuracy for many metabolites, while kernels for 118 

specific metabolite types or pathways would result in the highest prediction accuracy of their 119 

own metabolites. We also hypothesized that similar metabolites would have similar genomic 120 

prediction results (in terms of model rank), and defined metabolomic ‘similarity’ in three ways: 121 

high-confidence annotations, structural annotations, or by an annotation-free method. Broadly, as 122 

plant breeders target larger numbers and more diverse (less well known) metabolites, developing 123 

frameworks for structuring genomic prediction models is important. This work tests different 124 

biological rationales for incorporating information into genomic prediction, and transferability 125 

across populations.  126 

 127 
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MATERIALS and METHODS 128 

Oat metabolome discovery phenotypes 129 

Whole metabolome phenotypes were measured from mature seeds using untargeted LC-MS and 130 

GC-MS in a diverse oat germplasm panel of 375 inbred lines. These phenotypes have been 131 

previously described (Brzozowski et al., 2021; Campbell et al., 2021b; a; Hu et al., 2021). For 132 

each metabolite phenotype, measured as relative signal intensity, deregressed best linear 133 

unbiased predictors (drBLUPs) could be calculated for 1067 of the LC-MS and 601 of the GC-134 

MS signals as in (Campbell et al., 2021b). 135 

We characterized the metabolites by information provided by the Proteomics and 136 

Metabolomics Facility at Colorado State University (Fort Collins, CO, USA) (Table 1). The 137 

metabolites were annotated by comparison to an in-house spectral library RAMSearch 138 

(Broeckling et al., 2016) and MSFinder (Tsugawa et al., 2016), and details of measurement and 139 

annotation of this dataset are provided in (Brzozowski et al., 2021; Campbell et al., 2021b; a; Hu 140 

et al., 2021). To further characterize the metabolites, we examined the continuous variables of 141 

retention time (a measure of polarity, where, using a reverse phase column, a lower retention 142 

time indicates greater polarity), molecular mass, and genomic heritability (de los Campos et al., 143 

2015). We also used the provided categorical variables of instrument type (LC, GC), and 144 

multiple levels of metabolite type as identified by ClassyFire (Djoumbou Feunang et al., 2016) 145 

by superclass, class and subclass. ClassyFire was run in the ClassyFire Batch Compound 146 

Classification web server (https://cfb.fiehnlab.ucdavis.edu/) on July 1, 2021.  147 

 148 

Genomic analysis of discovery panel metabolome 149 
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All analyses were conducted in the R programming environment (R Core Team, 2016). We 150 

obtained genotyping-by-sequencing (GBS) data from T3/Oat (https://oat.triticeaetoolbox.org/) 151 

for 342 individuals in a diverse panel of oat genotypes as described in (Campbell et al., 2021b). 152 

The GBS data was filtered (less than 40% missingness, minor allele frequency greater than 0.02) 153 

and imputed with glmnet (Friedman et al., 2010). Of these 73,527 markers, the 54,284 that could 154 

be anchored to the genome (PepsiCO OT3098v1; 155 

https://wheat.pw.usda.gov/GG3/graingenes_downloads/oat-ot3098-pepsico) were used. A 156 

principal component (PC) analysis was conducted using the centered and scaled matrix of allele 157 

dosages with the function ‘prcomp’, and percent variance explained by each PC was found using 158 

the ‘fviz_eig’ function. By examination of the scree plot, the first five PCs (accounting for 21.8% 159 

of the variance) were chosen for use in analysis. A kinship matrix was calculated using the 160 

‘A.mat’ function, and genomic heritability was calculated using variance components extracted 161 

from the ‘kin.blup’ function, both in the R package rrBLUP (Endelman, 2011).  162 

 163 

Genome wide association study in discovery panel 164 

A single-trait genome-wide association study was conducted for all metabolites (mGWAS) in the 165 

statgenGWAS package (Rossum & Kruijer, 2020) using the kinship matrix and using five PCs as 166 

covariates. A false discovery rate correction was used on p-values for each metabolite, and a 167 

result was considered significant if pFDR < 0.05.  168 

 169 

Defining metabolite kernels from discovery panel 170 

We defined sets of SNPs that may broadly shape the measured seed metabolome (“general” 171 

kernels), and those that are more specific to lipids (“lipid” kernels) (Table 2). For general 172 
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kernels, we selected SNPs that were significant mGWAS results for: (1) three or more LC or GC 173 

metabolites ( “Any3”), (2) at least one LC metabolite and at least one GC metabolite 174 

(“LCGC2”), (3) four or more LC metabolites (“LC4”), or (4) two or more GC metabolites 175 

(“GC2”). The different criteria used to construct LC4 and GC2 were chosen to compare a similar 176 

proportion of metabolites per instrument (0.37% and 0.33%, respectively). To determine if these 177 

kernels represented more SNPs than expected by chance, we used a Poisson model to determine 178 

the probability of observing the same significant SNP for multiple metabolites to the rate of SNP 179 

inclusion in a kernel using the ‘ppois’ function in R.  180 

We defined lipid kernels by significant mGWAS results of LC-MS lipids based on a 181 

hierarchy of pathway specificity. First, we defined a kernel of significant mGWAS results shared 182 

by two or more metabolites classified as ‘Lipids and lipid-like molecules’ superclass (“Lipid”). 183 

We also created two terpenoid biosynthesis pathway kernels of significant mGWAS results from 184 

metabolites classified as (1) the subset of terpenoids predominantly produced by the Mevalonate 185 

Acid pathway (“MVA”; subclasses of ‘Triterpenoids’ and ‘Sesquiterpenoids’), and (2) the subset 186 

of terpenoids predominantly produced by the Methylerythritol Phosphate pathway (“MEP”; 187 

subclasses of ‘Diterpenoids’ and ‘Tetraterpenoids’). Again, criteria for including SNPs were 188 

modified by kernel to create kernels of similar size.  189 

We visualized genome location by plotting the number of significant mGWAS results in 190 

10Mb bins. For all further analyses we added all other SNPs in strong linkage disequilibrium LD 191 

(r2>0.5) to each set of SNPs. We used the most recent transcriptome annotations (Hu et al., 2020) 192 

and noted SNPs that were within, or up to 2.5kb upstream of genes. 193 

 194 

Descriptive analyses of metabolite kernels 195 
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We examined if metabolite characteristics were explanatory for the GWAS results identified. 196 

First, we tested if there was a relationship between metabolite heritability and retention time, 197 

molecular mass, or metabolite superclass. For retention time and molecular mass, we used a 198 

linear model with the ‘lm’ function with heritability as the response variable, and tested effect 199 

significance by ANOVA. We also calculated mean heritability for metabolites by ClassyFire 200 

superclass.  201 

 We tested if focal superclass categories were enriched or depleted in each of the kernels 202 

using the ‘phyper’ function in R. We also calculated the mean Euclidean distance between 203 

metabolites in the kernels, using a matrix with metabolites in rows and oat lines in columns and 204 

the cells containing their scaled and centered drBLUPs with the ‘dist’ function with the 205 

‘euclidean’ method in R. To compare distance between metabolites contributing to the kernel to 206 

metabolites not contributing to the kernel, we used the Mann-Whitney U test implemented with 207 

the ‘wilcox.test’ function in R. 208 

 209 

Oat metabolome validation phenotypes 210 

We used a validation germplasm panel to test the transferability of kernels between populations. 211 

This population is described by (Brzozowski et al., 2021). Briefly, a panel of 235 inbred lines 212 

was evaluated in three Midwest production environments (Minnesota, “MN”; South Dakota, 213 

“SD” and Wisconsin, “WI”). For this analysis, we removed lines that overlapped with our 214 

discovery (diverse) panel, leaving 212 lines in MN and SD and 208 lines in WI. The relationship 215 

between the discovery and validation panels are described in (Hu et al., 2021), named as 216 

‘discovery’ and ‘elite’ panels, respectively.  217 
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Deregressed BLUP (drBLUP) were calculated as in (Campbell et al., 2021b) where data 218 

was cube-root transformed, and there were 397 LC and 243 GC metabolites (640 total) for which 219 

drBLUPs could be calculated. Metabolite heritability and percent variation described by kernels 220 

were calculated as above. Spearman’s rank correlation of metabolite heritability across 221 

environments was evaluated with the ‘cor.test’ function in R. In addition to examining the 222 

metabolome as a whole, we also evaluated outcomes for the specialized metabolites, 223 

avenanthramides, avenacins and avenacosides as described in (Brzozowski et al., 2021). 224 

Metabolite drBLUPs and annotations are provided as Supporting Data. 225 

 226 

Genomic prediction in the validation panel 227 

We conducted genomic prediction for metabolites (n=640) and genotypes (n=189) measured in 228 

the validation panel separately in all environments. We then fit a two-kernel GBLUP model 229 

using the selected SNPs to construct Gaussian kernels as described in (de Los Campos, 2018) 230 

and (Cuevas et al., 2020) in the R package ‘BGLR’ (Pérez & de los Campos, 2014) with 20000 231 

iterations and a burn in of 5000. We conducted five-fold cross validation with 50 replicates, 232 

where folds were consistent between metabolites and environments, and report the correlation (r) 233 

between predicted and observed values.  234 

 235 

Evaluation of genomic prediction results in the validation panel 236 

We evaluated if the two kernel metabolite models had significantly higher or lower prediction 237 

accuracies than GBLUP. First, we used paired one-sided Wilcoxon rank-sum tests using the 238 

mean prediction accuracy per metabolite and model. We also tested if mean prediction accuracy 239 

varied between environments using a Kruskal-Wallis test. Finally, we conducted paired tests 240 
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between the two-kernel metabolite models and GBLUP by models and metabolites using 241 

accuracy of each of fifty replicates to understand which were significantly different from 242 

GBLUP. In both cases, we report significant results as pBONF< 0.05.  243 

We partitioned genetic variation from the two kernels (metabolite kernel, rest-of-genome 244 

kernel) to assess the  percent variation that was explained by the metabolite kernels. We 245 

compared the metabolite kernels described above to kernels constructed from random draws of 246 

loci with significant mGWAS results that were not included in metabolite kernels (n=4238 247 

SNPs). We had 10 random draws of 20, 50, 100, 500, 900 and 1800 SNPs, and added SNPs in 248 

LD as above to span the size range of kernels (Table S3). The genetic variation explained by 249 

these null kernels relative  to metabolite kernels was evaluated as well as the impact of  kernel 250 

size on genetic variation explained.  251 

To examine differences between environments, we created matrices of prediction 252 

accuracies with models in rows and each metabolite in columns by environment. We then 253 

calculated the distance between models (by metabolites of each instrument) and performed 254 

hierarchical clustering within an environment and compared groupings of models.  255 

Finally, we tested if similar metabolites have similar model ranks, measured by 256 

Spearman’s rank correlation. We defined ‘similar’ in three ways. First, we examined results for 257 

seven specialized metabolites important for human health, or plant resistance to disease for 258 

which we have high-confidence annotations: the avenanthramides, avenacins and avenacosides 259 

(Brzozowski et al., 2021). Second, we used finer scale structural descriptions (‘Class’ 260 

description) of metabolites of the ‘Lipid and Lipid-like compounds’ ClassyFire Superclass 261 

(n=91). Third, we attempted an annotation-free method where we computed the mean Euclidean 262 

distance between metabolites in the kernels with metabolites in rows and oat lines in columns 263 
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and the cells containing their scaled and centered drBLUPs with the ‘dist’ function with the 264 

‘euclidean’ method in R. We then performed hierarchical clustering to define 10 groups of 265 

metabolites for each of the environments using the ‘hclust’ function both in R. 266 

 267 

RESULTS 268 

Oat seed metabolome of the discovery panel 269 

Using untargeted metabolomics, we detected 1067 LC-MS and 601 GC-MS metabolites for 270 

which deregressed BLUPs could be calculated, and characterized the metabolites by chemical 271 

properties as well as retention time and molecular mass. The LC-MS metabolites had greater 272 

genomic heritability (mean, h2=0.23) than GC-MS metabolites (mean, h2=0.13) (Figure 1a). For 273 

both LC-MS and GC-MS metabolites, we found that heritability was greater at lower retention 274 

times (greater polarity) and for larger molecular masses, even when the lowest heritability 275 

compounds were excluded (Figure S1). The LC-MS metabolites were more densely annotated 276 

than the GC-MS metabolites, and lipids were the most common classification (49%) of LC-MS 277 

metabolites (Table 1). While we did not observe any relationship between heritability and 278 

metabolite structural characteristics, annotated GC-MS metabolites had higher heritability than 279 

unannotated metabolites (Table S1).  280 

A metabolite genome-wide association study mGWAS was conducted for all metabolites, 281 

and 368 metabolites had at least one significant SNP (pFDR < 0.05) and 8415 unique SNPs 282 

(15.5% of total SNPs) were implicated. Of these, there were 282 LC-MS (5728 unique SNPs, 283 

10.6% of total SNPs), and 86 GC-MS (3544 unique SNPs, 6.5% of total SNPs) metabolites with 284 

a significant association. The metabolites with significant associations tended to have higher 285 

heritability than those without for both LC-MS and GC-MS metabolites (Figure 1b; Figure S2).  286 
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 287 

Defining kernels for whole genome regression 288 

Using the mGWAS results, we defined kernels to capture loci that broadly shape the metabolome 289 

(“general”), and loci specific to metabolite structures or pathways. We hypothesized that the 290 

general kernels would broadly improve metabolite prediction, while kernels customized to 291 

specific lipids would improve prediction of their respective metabolites (Table 2).   292 

The kernels included 493-1800 and 109-917 significant mGWAS SNPs from 60-274 and 293 

9-78 metabolites for the general and specific kernels, respectively (Table S2), with some 294 

metabolites and SNPs contributing to multiple kernels (Figure S3). Correlations between kernel 295 

off-diagonal elements ranged from r=0.12 - 0.83, and the two kernels relying on mGWAS from 296 

GC-MS (‘LCGC2’ and ‘GC2’) were the most distinct from other kernels (Figure S4). 297 

In evaluating if kernels were enriched for mGWAS loci from particular metabolites, we 298 

found that LC-MS metabolites contributing to metabolite kernels were significantly depleted for 299 

lipids (Figure 2). GC-MS metabolites were more sparsely annotated than LC-MS compounds, 300 

but metabolites with mGWAS results were enriched for annotated compounds (Figure 2). We 301 

also evaluated the pairwise Euclidean distance between metabolites to test in an annotation-free 302 

way if more similar metabolites had similar mGWAS results. The GC-MS metabolites 303 

contributing to kernels had significantly reduced distance between metabolites compared to all 304 

GC-MS metabolites, but there was no reduced distance of LC-MS metabolites contributing to 305 

kernels (Figure S5).  306 

We compared the rate of SNPs meeting criteria for inclusion in a kernel (e.g., significant 307 

mGWAS result shared by three metabolites) to the empirical rate of mGWAS results in this oat 308 

population. Compared to a random draw from a Poisson distribution, there were more SNPs 309 
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meeting criteria than expected (‘Any3’, λ=0.16, p= 5.5e-04; ‘LCGC2’, λ=0.16, p= 1.2e-04; 310 

‘LC4’, λ=0.11, p= 4.8e-06; ‘GC2’, λ=0.07, p=0.002). The SNPs for the general kernels were 311 

identified on most chromosomes but clustered within chromosomes (Figure S6). The lipid-312 

related kernels had the most SNPs on chromosome 5A and 5C (Figure S7). Finally, kernels had 313 

a range of gene density, with a maximum 11% of SNPs in the ‘MVA’ kernel being in a gene and 314 

a minimum of 6.7% in ‘LCGC2’ (Table 3).  315 

 316 

Oat seed metabolome of the validation panel 317 

We tested if kernels developed in the discovery panel improved prediction accuracy for 318 

metabolites in a validation panel evaluated in three environments (Minnesota, “MN”; South 319 

Dakota, “SD” and Wisconsin, “WI”) that had 397 LC-MS and 243 GC-MS metabolites. 320 

Although the measurements do not allow for direct comparison of all individual metabolites to 321 

those in the discovery panel (due to currently no robust method to map all untargeted metabolites 322 

from one panel to another and quantify them accurately, Hu et al. 2021), the metabolite 323 

classification parameters were consistent across the two panels. Like the discovery panel, LC-324 

MS metabolites had greater mean heritability (h2: MN=0.30, SD=0.17, WI=0.17) than GC-MS 325 

metabolites (h2: MN=0.10, SD=0.09, WI=0.14) and heritability was positively correlated across 326 

environments (Table S4). Metabolite classifications were available for the LC-MS metabolites 327 

only, and lipids were the most common annotation (23%), but there were no trends in heritability 328 

by metabolite type (Table S5). Finally, except for LC-MS metabolites in MN, there were 329 

significant negative relationships between heritability and retention time (Figure S8, Table S6).  330 

 331 

Genomic prediction in the validation panel 332 
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Mean prediction accuracy of two-kernel (metabolite kernel and rest-of-genome kernel) genomic 333 

prediction models from five-fold cross validation ranged from 0.24-0.34 for LC-MS and 0.13-334 

0.17 for GC-MS metabolites, where prediction accuracy was highest for LC-MS metabolites in 335 

MN and lowest for GC-MS metabolites in MN and SD (Table 4). The ‘LC4’ kernel improved 336 

and the ‘GC2’ kernel reduced prediction accuracy of LC-MS metabolites over GBLUP in all 337 

three environments (Figure 3a). The ‘Any3’ kernel also improved prediction accuracy of LC-338 

MS metabolites over GBLUP in two environments, as did the ‘MVA’ kernel, contrary to our 339 

expectation that the ‘MVA’ kernel specificity would not result in improved prediction accuracy 340 

for a broad range of metabolites (Figure 3a). No kernel improved prediction accuracy of GC-MS 341 

metabolites over GBLUP, but the ‘LCGC2’ kernel decreased accuracy in two environments 342 

(Figure 3b).  343 

Individual metabolites with higher genomic heritability had greater prediction accuracy 344 

(R2
adj =0.61-0.79; Figure S9). Using paired tests to compare the two kernel metabolite models to 345 

GBLUP for each metabolite, the most metabolites (LC-MS and GC-MS) with significant 346 

improvements in accuracy were for the ‘MVA’, ‘LC4’ and ‘Any3’ kernels, while the most 347 

metabolites with significant reductions in accuracy where for ‘GC2’ and ‘MEP’ kernels for LC-348 

MS metabolites, and no clear patterns for GC-MS metabolites (Table 5). On average, 37% and 349 

26% of LC-MS and GC-MS metabolites, respectively had higher prediction accuracy with any of 350 

the two-kernel metabolite models than GBLUP, and 47% and 28% had lower prediction 351 

accuracy with any of the two-kernel metabolite models than GBLUP. Of all metabolites 352 

identified to have significant changes in accuracy compared to GBLUP, two-thirds were unique 353 

to one environment (Figure S10).  354 
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Using the metabolite kernel and the rest-of-genome kernel to partition genetic variation, 355 

we found that the metabolite kernels consistently accounted for almost half of total heritability 356 

(Figure 4). The ‘Any3’ and ‘LC4’ kernels accounted for more percent heritability for LC-MS 357 

than GC-MS metabolites in two environments, and the ‘GC2’ kernel accounted for more percent 358 

heritability explained for GC-MS than LC-MS metabolites in all environments (Figure 4a). 359 

Percent heritability explained was generally lower in MN than SD and WI for LC-MS 360 

metabolites (Figure 4b), and there were differences observed between environments for GC-MS 361 

metabolites for the ‘LCGC2’ and ‘GC2’ kernels (Figure 4c). There were weak negative 362 

relationships between metabolite genomic heritability and percent heritability explained by the 363 

kernel (R2
adj =0.05 – 0.15; Figure S11), but no relationship between percent heritability 364 

explained by the kernel with kernel size (Table S7).  365 

We compared genetic variation attributed to metabolite kernels to random kernels of 366 

similar sizes, constructed from SNPs that were significant (pFDR < 0.05) mGWAS results that 367 

were not included in kernels, and found that, for LC-MS metabolites, the ‘Any3’, ‘LC4’, ‘Lipid’ 368 

and ‘MVA’ kernels explained more genetic variance but the ‘LCGC2’ and ‘GC2’ kernels 369 

explained less (Table S7). In contrast, metabolite kernels never explained more percent genetic 370 

variation than random mGWAS kernels for GC-MS metabolites (Table S7). 371 

To better understand the effect of the environment on relative model outcomes, we 372 

calculated the rank correlation of metabolite prediction accuracy between models and performed 373 

hierarchical clustering of the Euclidean distance between ranks. For all metabolites, the ‘Any3’ 374 

and ‘LC4’ and the ‘LCGC2’ and ‘GC2’ kernels grouped in all environments (Figure 5).  375 

 376 

Grouping metabolites by similarity 377 
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We evaluated if similar metabolites had similar model rankings, where we defined metabolite 378 

similarity by: (1) known annotations, (2) structural characteristics as classified by ClassyFire, 379 

and (3) Euclidean distance between phenotypes.  380 

For seven oat specialized metabolites where high-confidence named annotations are 381 

available (avenanthramides, avenacins, avenacosides), there were 24 instances (of the 147 trait, 382 

model and environment combinations) where including a metabolite kernel significantly changed 383 

prediction accuracy compared to GBLUP (Table S8). We found that similar metabolites had 384 

similar ranks of kernels by prediction accuracy in two environments (MN, WI) (Figure 6).These 385 

results indicate that when we have access to high-confidence named annotations to define similar 386 

metabolites, the similar metabolites have similar prediction results. 387 

We assessed LC-MS metabolites structurally classified as lipids (n=91), and particularly 388 

prediction accuracy of the ‘Lipid’ compared to others. While the ‘Lipid’ two-kernel model 389 

significantly outperformed GBLUP in only one environment (SD), it generally had higher 390 

prediction accuracy than most other kernels besides ‘MVA’ in two environments (MN, SD) 391 

(Figure 7). Other kernels accounted for more heritability than the lipid kernel in only two 392 

instances (Figure 7). We defined lipids as ‘similar’ by ‘Class’ descriptor (e.g. steroids, or fatty 393 

acyls), and anticipated similar model rankings by lipid class. We found lipid Class was not 394 

predictive of the model rank (Figure 8), suggesting that structural classifications may not 395 

provide effective metabolite groupings. 396 

Finally, without using annotations, we computed the distance between metabolites and 397 

performed hierarchical clustering to define 10 metabolite groups per environment. Most of the 398 

groups had significantly higher correlations of model rank within group compared to metabolites 399 

out of the group (Figure 9). We found that the groups were largely defined by retention time. 400 
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Groups with strong within-group correlation had smaller coefficients of variation in retention 401 

time (CV<20) than other groups, but the trends in genomic heritability were not consistent 402 

between groups (Table 6). These groups also had less variation in retention time than the lipid 403 

Classes (CV> 20; Table S9).  404 

 405 

DISCUSSION 406 

Our work tests generalizable frameworks for genomic prediction of a diverse array of plant 407 

metabolites. Using a discovery germplasm panel, we identified loci by mGWAS that represent 408 

different biological bases – loci that affect multiple types of metabolites to metabolites from 409 

specific biochemical pathways. Building kernels from significant mGWAS loci that affect 410 

multiple LC-MS metabolites and specific pathways thereof increased prediction accuracy over 411 

GBLUP in a validation panel for LC-MS metabolites. No model tested improved prediction of 412 

GC-MS metabolites over GBLUP, and kernels from GC-MS metabolites reduced prediction 413 

accuracy in some cases. mGWAS-defined kernels accounted for ~45% of genetic variation, and 414 

rank of kernel performance was consistent between environments. An ongoing challenge in 415 

developing generalized genomic prediction frameworks is defining metabolite ‘similarity’. We 416 

found that grouping metabolites by high-confidence named annotations and computationally 417 

derived groupings (without annotations) had similar outcomes from the models tested, while 418 

metabolites delineated by structural features alone did not. Overall, this work builds from efforts 419 

to predict tens of biochemically similar metabolites to metabolome-wide genomic prediction.  420 

 421 

Characterizing the oat metabolome by mGWAS 422 
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We evaluated over 2000 metabolites measured by LC-MS or GC-MS in mature oat seed and 423 

found that, on average, metabolites had low to moderate genomic heritability (mean h2=0.09 to 424 

0.30), with LC-MS metabolites being more heritable than GC-MS metabolites. Other analyses of 425 

untargeted metabolites (n=900-7000 metabolites) report wide ranges of broad-sense (not 426 

genomic) heritability (H2), from a uniform distribution (Zhou et al., 2019), to right (Zhu et al., 427 

2018) and left (Chen et al., 2016) skews. While some differences in heritability between studies 428 

could be attributed to the tissue and developmental specificity of metabolites (Soltis & 429 

Kliebenstein, 2015), we also found that metabolite heritability covaries with column retention 430 

time (related to metabolite polarity). While retention time was not evaluated, (Zhou et al., 2019) 431 

found that less common features tended to have lower heritability that they attributed to machine 432 

artifact. This suggests that parameters such as specific extraction (e.g., if the extracting solvent 433 

more efficiently extracts polar or non-polar compounds), or signal processing methods may 434 

affect error variation.  435 

 By conducting mGWAS for the 1668 metabolites in the discovery panel, we found that a 436 

greater proportion of LC-MS than GC-MS metabolites had significant mGWAS results, even 437 

when controlling for heritability differences, suggesting that more LC-MS metabolites have an 438 

oligogenic genetic architecture. Overall, primary metabolites (measured by GC-MS) tend to be 439 

dominantly inherited (Schauer et al., 2008; Fernie & Tohge, 2017), and variation is determined 440 

by multiple small effect loci (Soltis & Kliebenstein, 2015). In contrast, specialized metabolites 441 

(measured by LC-MS) generally arise from variation in primary metabolism (Moghe & Last, 442 

2015; Maeda, 2019) including enzyme neofunctionalization (Pichersky & Gang, 2000; Fernie & 443 

Tohge, 2017). Nonetheless, selection type (e.g., direction or stabilizing) in crops is more 444 

important in predicting loci effects than type of metabolite per se (Soltis & Kliebenstein, 2015). 445 
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There are multiple examples of balancing selection for metabolite concentration (e.g., as 446 

defensive metabolite, or regionally preferred crop aesthetic or flavor) (Soltis & Kliebenstein, 447 

2015), and (Campbell et al., 2021b) proposed that optimizing or stabilizing selection pressures 448 

predominately shape the oat seed metabolome.  449 

Another factor that may contribute to the differences between the mGWAS results for 450 

GC-MS (primary) and LC-MS (specialized) metabolites is that metabolites were measured in 451 

mature seed. Primary metabolites decreased in Arabidopsis seed during reserve accumulation, 452 

but then increased during seed desiccation (putatively for availability for germination energy) 453 

(Fait et al., 2006). In contrast, primary metabolites in rice consistently decrease beginning at 454 

desiccation (Hu et al., 2016). In a time-series transcriptome-wide analysis of developing oat 455 

seed, expressed genes had enriched GO terms for photosynthesis until 23 days after anthesis 456 

(DAA), followed by an enrichment of GO terms for nutrient reservoir activity beginning at 28 457 

DAA (Hu et al., 2020). These results suggest that the metabolomic dynamics in developing oat 458 

seed may be similar to those of rice, and point to a need for multiple metabolome measures 459 

during seed development.  460 

 461 

Potential for generalizable approaches for genomic prediction of metabolites 462 

We used multiple criteria for constructing metabolite kernels to test hypotheses of which 463 

biological partition may be the most enriched for causal SNPs. We developed kernels to 464 

encompass general metabolome-wide information from both or single LC-MS and GC-MS 465 

instruments (‘Any3’, ‘LCGC2’, and LC4’, ‘GC2’, respectively), or metabolites structurally 466 

identified as lipids (‘Lipid’), and pathways thereof (‘MVA’, ‘MEP’) for two-kernel genomic 467 

prediction. Importantly, to make our results relevant for plant breeding programs, we selected 468 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469870doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469870


 

22 

 

SNPs from a diverse ‘discovery’ panel, and evaluated prediction accuracy in another more elite 469 

population evaluated in multiple environments.   470 

 Metabolite kernels accounted for a high percent of trait genetic variation, and the ‘Any3’, 471 

‘LC4’, and ‘MVA’ kernels consistently increased prediction accuracy over GBLUP for LC-MS 472 

metabolites. While the ‘MVA’ kernels included the highest number of SNPs in genes of any of 473 

the kernels, high gene richness did not always translate to high prediction accuracy (e.g., the 474 

‘Lipid’ kernel), indicating that gene richness alone does not account for our results.  475 

 The general kernels likely include loci that affect multiple metabolites, as loci with 476 

pleiotropy and epistatic interactions are common for metabolites (Soltis & Kliebenstein, 2015), 477 

and we hypothesized that using these kernels would increase prediction accuracy of the most 478 

metabolites. The ‘Any3’ and ‘LC4’ kernels improved prediction accuracy, and the ‘LC4’ kernel 479 

more so, where the ‘LC4’ kernel is a subset of the ‘Any3’ kernel. Our approach can be compared 480 

to factor analysis recently used in genomic prediction of several oat fatty acids (Campbell et al., 481 

2021b). In both cases (results from individual mGWAS and result from GWAS of factors), 482 

multi-kernel models improved prediction accuracy. Nonetheless, many factors extracted from oat 483 

metabolomic data were enriched for lipids (Campbell et al., 2021b), while our ‘Any3’ and ‘LC4’ 484 

kernels were depleted for lipids, indicating that we are capturing different information than the 485 

factor analysis. Overall, these results suggest that distilling results from the entire metabolome 486 

identifies SNPs that affect multiple metabolites and improves prediction accuracy.  487 

 Contrary to our expectations, the ‘MVA’ kernel that incorporated only a specific branch 488 

of terpenoid biosynthesis (e.g., triterpenoids and sesquiterpenoids) improved prediction accuracy 489 

of LC-MS metabolites metabolome-wide as much as the general ‘LC4’ and ‘Any3’ kernels. 490 

While the ‘MEP’ kernel representing another terpenoid biosynthetic pathway (e.g., diterpenoids 491 
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and carotenoids) did not improve accuracy, these pathways function largely independently, and 492 

sometimes antagonistically (Rodríguez-Concepción & Boronat, 2015). Increased prediction 493 

accuracy from the ‘MVA’ kernel suggests that loci governing variation in specific pathways may 494 

translate across populations for metabolome-wide prediction. Alternatively, this result could be 495 

specific to terpenoids: (Turner-Hissong et al., 2020) reported that a terpenoid gene kernel 496 

improved prediction of a free amino acid, isoleucine, in Arabidopsis seed where the terpenoids 497 

are unrelated to isoleucine biosynthesis. It would be intriguing to test if terpenoid-related kernels 498 

improve prediction accuracy of seemingly unrelated metabolites in other non-seed tissues (with 499 

lower oil content) to assess if energetic tradeoffs are responsible for this observation.  500 

 A kernel derived from mGWAS results from LC-MS metabolites structurally identified 501 

as lipids (‘Lipid’) in the discovery panel, did not improve prediction accuracy metabolome-wide, 502 

or for lipids over GBLUP in the validation panel. (Campbell et al., 2021b) found that latent 503 

factors that were enriched for lipids did not significantly improve prediction accuracy of 504 

proteins, likely due to high negative genetic correlation between those traits and that factor 505 

loadings included more metabolites than just lipids. The ‘Lipid’ kernel here was also potentially 506 

too expansive of a categorization and may have led to kernels containing genomic regions with 507 

shared regulation but opposing effects. This result suggests that grouping metabolites by shared 508 

regulatory control may be more beneficial (e.g., ‘MVA’), and will become more feasible with 509 

improved genomic resources.  510 

 Finally, no method we tested improved prediction accuracy of GC-MS metabolites, and 511 

kernels from solely mGWAS results from GC-MS metabolites (‘GC2’) reduced prediction 512 

accuracy of LC-MS metabolites. This may be because GC-MS metabolites had lower heritability 513 

(potentially due to lower phenotypic variation in mature seed, constraints on potential genetic 514 
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variation), fewer mGWAS results, and thus provided less reliable information. Overall, these 515 

results highlight that combining multiple metabolomics datasets from different instruments may 516 

have limited efficacy, depending on, for instance, development stage sampled. 517 

 518 

Strategies for categorizing ‘similar’ metabolites 519 

In building generalized frameworks, it would be useful to have high-throughput methods for 520 

identifying similar metabolites to which to apply the same prediction method. A key challenge, 521 

however, is how ‘similar’ is defined. We tested three definitions of ‘similar’: high-confidence 522 

named annotations of known metabolites (difficult to obtain, high biological information), 523 

automated metabolite classification by chemical structure (moderate effort to obtain, some 524 

biological information), and by an annotation-free measure of similarity (easy to obtain, no 525 

biological information). Overall, groups of metabolites by named annotations and by the 526 

annotation-free measure, had consistent ranks of the models tested. In the annotation-free 527 

grouping, we found that retention time was an important predictor of group association. As 528 

metabolite annotations provide useful biological information, we look forward to more high 529 

confidence annotations as databases continue to grow (Afendi et al., 2012).  530 

Defining ‘similar’ by structural classification was the least successful method, perhaps 531 

because structural classifications do not broadly correspond to a biosynthetic pathway 532 

(Djoumbou Feunang et al., 2016). A caveat in examining relative model rankings is that we did 533 

not specifically design kernels to evenly represent the space of all potential kernels but, as the 534 

purpose of this study was to test different biological rationales, this analysis is informative for 535 

understanding differences between approaches.  536 

 537 
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CONCLUSIONS 538 

We are building towards a generalized framework for genomic prediction of metabolites by 539 

investigating how we can efficiently extract information from metabolomics data, integrate 540 

biology to find the most informative loci, and then test for which metabolites these strategies are 541 

most successful. Our work extends the foundational metabolomics work done in model 542 

organisms like Arabidopsis, tomato, maize (Fernie & Tohge, 2017) and on conserved 543 

biochemical pathways (Wager & Li, 2018), to provide strategies for genomic prediction of 544 

multiple, diverse metabolites in non-model crops. Overall, we show that integrating whole 545 

metabolome or specific pathway information improves genomic prediction accuracy and 546 

translates across populations within a species. This work also provides a framework for testing 547 

such models between closely related species by transfer learning (Wang et al., 2020).   548 
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FIGURES AND TABLES 744 

 745 

Figure 1. Genomic heritability (a) all metabolites (n=1668) and (b) metabolites with a significant 746 

GWAS (n=368) result from the discovery panel. The instrument class (LC-MS, or GC-MS) is 747 

denoted by color (blue, red, respectively). The solid line indicates the mean and dashed line 748 

indicates the median genomic heritability by instrument class.  749 

 750 

751 
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Figure 2. Distribution of metabolites by ClassyFire Superclass by general metabolite kernel in the discovery panel for (a) both LC-MS 

and GC-MS metabolites, (b) LC-MS metabolites only and (c) GC-MS metabolites only. Distributions of (d) LC-MS molecular mass, 

and (e) LC-MS and (f) GC-MS retention time (“RT”) are shown by kernel. Significance indicators identify instances of depletion 

where * p<0.05, and ** p<0.01 and *** p< 0.001. Abbreviations of metabolite superclass are given in Table 1. 
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Figure 3. Mean cross-fold validation accuracy (r) of all (a.) LC-MS (n=397) and (b.) GC-MS 

(n=243) metabolites by environment (Minnesota, “MN”; South Dakota, “SD” and Wisconsin, 

“WI”) and two-kernel metabolite model (see Table 2). The models were compared to GBLUP 

and significant difference indicators are given if the two-kernel metabolite model had higher 

accuracy than GBLUP at the top of the boxplot, and significance indicators of lower accuracy 

than GBLUP are given below. The * indicates a p-value less than the Bonferroni cutoff per plot, 

and ** and *** indicate p < 1e-4, and p<1e-6, respectively. 
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Figure 4. Percent genetic variation attributed to the metabolite kernel for LC-MS (n=397) and 

GC-MS (n=243) metabolites in all environments (Minnesota, “MN”; South Dakota, “SD” and 

Wisconsin, “WI”). (a) The difference in percent genetic variation attributed to metabolite kernel 

between LC-MS and GC-MS metabolites, where significance indicators above the boxplot 

represent if percent variation is greater for LC-MS metabolites and below the boxplot if percent 

variation is greater for GC-MS metabolites. The difference between environments for (b) all 

metabolite models for LC-MS and (c) all general models for GC-MS instrument. The * indicates 

a p-value less than the Bonferroni cutoff per plot, and ** and *** indicate p < 1e-4, and p<1e-6, 

respectively. 
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Figure 5. Dendrograms of distance in metabolite kernel performance for (a.-c.) LC-MS (n=397) 

and (d.-f.) GC-MS (n=243) metabolites by environment (Minnesota, “MN”; South Dakota, “SD” 

and Wisconsin, “WI”). Four hierarchical clusters are indicated by color and dashed box.  
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Figure 6. Correlograms of metabolite kernel prediction accuracy rank correlation for seven oat 

specialized metabolites by (a.) all environments together, and (b.-d.) by individual environment. 

A color indicator of correlation is shown for all correlations. The yellow boxes represent 

hierarchical clustering for n=3. The metabolite abbreviations are as follows: AVN_A, 

avenanthramide A; AVN_B, avenanthramide B; AEC_A1, AEC_A2, avenacin A1; AOS_A, 

avenacoside A; AOS_dA, 26-Desglucoavenacoside A; AOS_B, avenacoside B. 
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Figure 7. (a) Mean cross-fold validation accuracy (r) of, and (b) percent heritability (genetic 

variation) attributed to the metabolite kernel for, LC-MS lipid metabolites (n=91) by 

environment (Minnesota, “MN”; South Dakota, “SD” and Wisconsin, “WI”) and two-kernel 

metabolite model (see Table 2).The models were compared to ‘Lipid’ kernel and significant 

difference indicators are given if the two-kernel metabolite model had higher accuracy than 

‘Lipid’ at the top of the boxplot, and significance indicators of lower accuracy than ‘Lipid’ are 

given below. The * indicates a p-value less than the Bonferroni cutoff per plot, and ** and *** 

indicate p < 1e-4, and p<1e-6, respectively. 
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Figure 8. Correlograms of metabolite kernel prediction accuracy rank correlation by model for 

n=91 LC-MS lipids by (a.) all environments together, and by individual environment (b.-d.). A 

color indicator of correlation is shown for all correlations with p<0.05. The text label color 

indicates type of lipid. The yellow boxes represent hierarchical clustering for n=6. The name and 

color key for lipid type is given in Table S9. 
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Figure 9. Rank correlation of metabolite kernel prediction accuracy rank correlation by model 

for groups of LC-MS metabolites defined by hierarchical clustering of a distance metric by 

environment (Minnesota, “MN”; South Dakota, “SD” and Wisconsin, “WI”). There is no 

relationship between cluster names across environments. Clusters with 10 or more metabolites 

are presented with the metabolites within the cluster are shown in blue, and the metabolites not 

in the cluster are shown in red, and comparisons are made between the two sets by group. 

Significant difference indicators are given at the top of the boxplot if the metabolites within the 

group had stronger correlation than those not in the group, and vice versa for significance 

indicators below. The * indicates a p-value less than the Bonferroni cutoff per plot, and ** and 

*** indicate p < 1e-4, and p<1e-6, respectively. 
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Table 1. Metabolite classification of the discovery panel for categorical variables of ClassyFire 

superclass and class, and numeric metrics of retention time and molecular mass. The distribution 

of metabolite retention time and molecular mass are given in Figure S1. 

 

Classification LC GC Total 

ClassyFire Classification (count)    

Lipids and lipid-like molecules (“Lipids”) 527 6 533 

...Glycerophospholipids 123 1 124 

...Glycerolipids 87 0 87 

...Fatty Acyls 99 5 104 

...Steroids and steroid derivatives 83 0 83 

...Prenol lipids 102 0 102 

Organoheterocyclic compounds (“OgHc” 57 9 66 

Phenylpropanoids and polyketides (“Phe”) 67 2 69 

...Cinnamic acids and derivatives 13 1 14 

…Coumarins 11 0 11 

Organic acids and derivatives (“OgAc”) 70 26 96 

...Carboxylic acids and derivatives 41 22 63 

Organic oxygen compounds (“OgOx”) 68 20 88 

Other1 74 6 80 

Not classified (“None”) 204 532 736 

    

Numeric metrics (mean)    

Retention time (s) 515.4 731.6 593.3 

Molecular mass (g/mol) 669.8 NA NA 
1The ‘Other’ classification includes the nucleosides, nucleotides and analogues, and organic nitrogen compounds 

superclasses for all metabolites, and the alkaloids and derivatives, hydrocarbons, lignans, neolignans and related 

compounds, organic polymers and organosulfur compounds, and benzenoids superclasses for LC metabolites and 

homogenous non-metal for GC metabolites 
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Table 2. Description and prediction of performance of metabolite kernels. The groups “MEP” and “MVA” refer to the 

Methylerythritol Phosphate pathway and Mevalonate Acid pathway branches of terpenoid biosynthesis, respectively.  

 

Type Group Description Rationale Predictions 

General 

metabolome 

 

Any3 GWAS results shared by any 

three or more metabolites (LC 

or GC) 

Metabolites from either instrument, 

extraction method contribute equally to 

capturing broader metabolome variation 

Since both instruments are 

included, will perform best 

for a broad range of 

metabolites LCGC2 GWAS results shared by at 

least one LC and at least one 

GC metabolite  

Including metabolites from both 

instruments, extraction methods, is 

necessary to capture metabolome variation 

LC4 GWAS results shared by four 

or more LC metabolites  

Metabolites from a single instrument, 

extraction method, but not restricted to a 

specific class  

Will perform better for 

metabolites from respective 

instruments, but will still 

perform well for a broad 

range of metabolites 

 

GC2 GWAS results shared by two 

or more GC metabolites  

Metabolites from a single instrument, 

extraction method, but not restricted to a 

specific class  

Lipids 

 

 

Lipid GWAS results shared by two 

or more LC lipids  

Metabolites from a single instrument, 

extraction, restricted to lipids 

Will perform well for lipids, 

but increased specificity 

(MVA, MEP) will reduce 

performance for metabolites 

overall 

MVA,  and 

MEP 

GWAS results of any LC 

MVA- or MEP-derived 

terpenoids 

Metabolites from a single instrument, 

extraction method, restricted to specific 

biosynthetic pathways of terpenoids 
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Table 3. Number of genes associated with each metabolite kernel. Kernel size is given in Table 

S3. The total genes implicated (‘total genes’), the number of genes per SNP in the kernel (‘genes 

per SNP’), and percent of SNPs in kernel in a gene (‘Percent SNPs with a gene’) are shown.  

 

Kernel Total genes Genes per SNP Percent SNPs within gene 

MVA 127 0.127 11.01 

LC4 261 0.101 8.63 

Lipid 225 0.092 8.07 

Any3 455 0.086 7.72 

MEP 53 0.085 6.77 

GC2 150 0.072 6.80 

LCGC2 183 0.071 6.67 
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Table 4. Mean cross-fold validation accuracy (r) of all LC-MS (n=397) and GC-MS (n=243) 

metabolites by (Minnesota, “MN”; South Dakota, “SD” and Wisconsin, “WI”) and model (see 

Table 2). The color indicates relative value, where blue are highest values and red are lowest 

values, coded by instrument.  

 

Environment Model LCMS GCMS 

MN 

GBLUP 0.325 0.138 

General 

Any3 0.329 0.137 

LCGC2 0.313 0.132 

LC4 0.336 0.140 

GC2 0.303 0.137 

Lipid 

Lipid 0.326 NA 

MEP 0.314 NA 

MVA 0.334 NA 

SD 

GBLUP 0.268 0.138 

General 

Any3 0.280 0.135 

LCGC2 0.278 0.131 

LC4 0.278 0.141 

GC2 0.261 0.136 

Lipid 

Lipid 0.278 NA 

MEP 0.273 NA 

MVA 0.296 NA 

WI 

GBLUP 0.249 0.167 

General 

Any3 0.256 0.167 

LCGC2 0.251 0.163 

LC4 0.256 0.172 

GC2 0.239 0.168 

Lipid 

Lipid 0.248 NA 

MEP 0.250 NA 

MVA 0.250 NA 
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Table 5. Number of metabolites (of 397 LC-MS and 243 GC-MS metabolites) where the cross-

fold validation accuracy (r) of the given metabolite model (see Table 2) is significantly greater or 

less than the accuracy of GBLUP. The environments are: Minnesota, “MN”, South Dakota, “SD” 

and Wisconsin, “WI”. The color indicates relative value, where blue are highest values and red 

are lowest values, coded by column.   

 

Type Model Env 
LCMS   GCMS 

n_better n_worse   n_better n_worse 

General 

Any3 

MN 39 24   29 40 

SD 59 14   15 31 

WI 31 20   31 23 

LCGC2 

MN 7 158   31 33 

SD 61 16   12 18 

WI 36 22   26 18 

LC4 

MN 41 27   36 44 

SD 55 41   13 40 

WI 30 30   39 26 

GC2 

MN 6 122   16 39 

SD 9 41   19 17 

WI 8 62   16 35 

Lipid 

Lipid 

MN 20 22   NA NA 

SD 64 20   NA NA 

WI 18 27   NA NA 

MEP 

MN 20 104   NA NA 

SD 53 30   NA NA 

WI 40 43   NA NA 

MVA 

MN 44 29   NA NA 

SD 133 20   NA NA 

WI 32 36   NA NA 
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Table 6. Coefficient of variation (“CV”) in retention time (s) and genomic heritability (mean +/- one standard deviation) of LC-MS 

metabolites by metabolite group defined by hierarchical cluster. Note that there is no relationship between cluster name across 

environments. The number of metabolites in each group is given by ‘n’. Metabolite groups with ten or more metabolites that had 

higher within group correlation are indicated with a *.  

 

Group 
MN SD WI 

n RT-CV h2   n RT-CV h2   n RT-CV h2   

1 134 80.2 0.30 +/- 0.19   123 87.7 0.22 +/- 0.19   206 70.5 0.20 +/- 0.15   

2 90 11.2 0.39 +/- 0.07 * 29 2.8 0.09 +/- 0.06 * 84 13.4 0.11 +/- 0.06 * 

3 69 24.2 0.17 +/- 0.12   44 21.8 0.24 +/- 0.17 * 28 2.7 0.11 +/- 0.05 * 

4 54 3.2 0.42 +/- 0.04 * 47 2.7 0.10 +/- 0.03 * 26 3.2 0.08 +/- 0.04 * 

5 16 1.4 0.40 +/- 0.02 * 52 25.7 0.21 +/- 0.15   11 6.6 0.39 +/- 0.07 * 

6 12 10.1 0.08 +/- 0.07   54 15.8 0.12 +/- 0.06 * 31 24.7 0.18 +/- 0.14   

7 11 6.3 0.10 +/- 0.06 * 21 2.0 0.07 +/- 0.04 * 4 1.3 0.22 +/- 0.03 NA 

8 5 9.6 0.18 +/- 0.16 NA 11 6.6 0.26 +/- 0.04 * 3 7.4 0.20 +/- 0.06 NA 

9 3 7.4 0.14 +/- 0.08 NA 10 6.5 0.10 +/- 0.04 * 2 2.8 0.48 +/- 0.13 NA 

10 2 2.8 0.47 +/- 0.07 NA 5 1.3 0.19 +/- 0.06 NA 1 NA NA NA 
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