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Abstract 26 

Animals regulate their diet in order to maximise the expression of fitness traits that often 27 

have different nutritional needs. These nutritional trade-offs have been experimentally 28 

uncovered  using the Geometric framework for nutrition (GF). However, current analytical 29 

methods to measure such responses rely on either visual inspection or complex models 30 

applied to multidimensional performance landscapes, making these approaches subjective, or 31 

conceptually difficult, computationally expensive, and in some cases inaccurate. This limits 32 

our ability to understand how animal nutrition evolved to support life-histories within and 33 

between species. Here, we introduce a simple trigonometric model to measure nutritional 34 

trade-offs in multidimensional landscapes (‘Nutrigonometry’). Nutrigonometry is both 35 

conceptually and computationally easier than current approaches, as it harnesses the 36 

trigonometric relationships of right-angle triangles instead of vector calculations. Using 37 

landmark GF datasets, we first show how polynomial (Bayesian) regressions can be used for 38 

precise and accurate predictions of peaks and valleys in performance landscapes, irrespective 39 

of the underlying structure of the data (i.e., individual food intakes vs fixed diet ratios). Using 40 

trigonometric relationships, we then identified the known nutritional trade-off between 41 

lifespan and reproductive rate both in terms of nutrient balance and concentration. 42 

Nutrigonometry enables a fast, reliable and reproducible quantification of nutritional trade-43 

offs in multidimensional performance landscapes, thereby broadening the potential for future 44 

developments in comparative research on the evolution of animal nutrition. 45 

 46 

 47 

  48 
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Introduction 49 

Animals often require different nutrient blends to maximize concurrent life-history traits, 50 

creating the potential for a conflict between nutrient allocation (Simpson and Raubenheimer 51 

2012; Raubenheimer and Simpson 2020). When the optimum nutrition for several traits 52 

cannot be achieved simultaneously, a compromise in feeding decisions must exist in order to 53 

support the expression of one trait over another (‘nutritional trade-off’) (Lee et al. 2008; 54 

Maklakov et al. 2008). Previous research has identified nutritional trade-offs between 55 

lifespan and reproduction or between immunity and reproduction across many different taxa 56 

including D. melanogaster (Lee et al. 2008; Ponton et al. 2015), tephritid fruit flies (Fanson 57 

and Taylor 2012; Fanson et al. 2012), crickets (Maklakov et al. 2008; Rapkin et al. 2018; Guo 58 

et al. 2021; Treidel et al. 2021) and mice (Solon-Biet et al. 2014) [see also reviews by 59 

(Ponton et al. 2011; Schwenke et al. 2016)]. Even traits related to different aspects of the 60 

same life-history can vary in nutritional requirements during the lifetime of an animal, as 61 

seen for pre- and post-mating traits related to reproduction of many insect species such as 62 

sperm number and viability (Bunning et al. 2015), fertilization success across sperm 63 

competitive contexts (Morimoto and Wigby 2016), cuticular hydrocarbons, courtship song 64 

and sperm viability (Ng et al. 2018) as well as size and numbers of eupyrene and apyrene 65 

sperms (Gage and Cook 1994). Thus, nutritional trade-offs are likely ubiquitous and impose 66 

significant constraints on the feeding behaviour of individuals. 67 

 68 

Measuring nutritional trade-offs can be challenging because of the interactive effects of 69 

nutrient ratios and concentrations on the expression of life-histories (Stearns 1992; Roff 70 

2002; Hunt et al. 2004; Simpson and Raubenheimer 2012). In the last decades, however, a 71 

method known as Geometric Framework of Nutrition (GF) has emerged as a powerful 72 

unifying framework capable of disentangling the multidimensional effects of nutrients (both 73 
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ratios and concentrations) on life-history traits and fitness (Simpson and Raubenheimer 74 

1993a). The GF has been applied to a diverse range of nutritional studies across species such 75 

as flies (Lee et al. 2008; Reddiex et al. 2013; Jensen et al. 2015; Ponton et al. 2015; 76 

Morimoto and Wigby 2016; Kutz et al. 2019) (Fanson and Taylor 2012; Fanson et al. 2012) 77 

(Barragan-Fonseca et al. 2018, 2021), crickets (Ng et al. 2018) (Rapkin et al. 2018) 78 

(Maklakov et al. 2008), cockroaches (Bunning et al. 2015), domestic cats and dogs (Hewson-79 

Hughes et al. 2011, 2013), and mice (Solon-Biet et al. 2014; Morimoto et al. 2019), being 80 

paramount for advancing our understanding of complex physiological and behavioural 81 

processes across ecological environments and even human health (Simpson et al. 2017). As a 82 

result, developing a simple, intuitive, and accurate quantitative method for quantifying 83 

nutritional trade-offs has become a key issue for comparative nutrition, which will allow new 84 

avenues of research for insights into the evolution of physiological and behavioural 85 

modulation of nutritional responses (Morimoto and Lihoreau 2020). 86 

 87 

Recent initiatives have been made but these are complex to navigate and therefore studies 88 

continue to be published with visual inspection or with inaccurate methods to quantify the 89 

strength of nutritional trade-offs in GF landscapes [e.g., (Polak et al. 2017; Ng et al. 2018, 90 

2019; Kutz et al. 2019; Ma et al. 2020; Barragan-Fonseca et al. 2021)]. Why is it so difficult 91 

to measure nutritional trade-offs in GF multidimensional fitness landscapes? The 92 

fundamental limitation in all models so far is identifying and delimitating the region of 93 

interest (i.e., peaks and, to a lesser extent, valleys) for comparisons of distances between 94 

peaks of different traits (or same trait between species). For instance, (Rapkin et al. 2018) 95 

proposed the use of regression slopes (rather than the coordinates of the optimum) nutrients 96 

onto the fitness trait i as coordinates of a vector ��� . From this, the angle �� between vectors ���  97 

and ���  for traits i and j, respectively, can be calculated as the estimate of the strength of the 98 
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nutritional trade-off. However, in this approach, the domain of each vector coordinate is all 99 

real numbers � even though the domain of the fitness landscape is constrained to all positive 100 

real numbers ��. Consequently, this violates the domain constraints of the nutritional space 101 

upon which GF is performed, which in turn result in overestimation of the strength of 102 

nutritional trade-offs (Morimoto and Lihoreau 2019). To address this limitation, we proposed 103 

to use the coordinates of the peak (or valley) from the nutritional space as vector coordinates 104 

for the position vector ��� , from which the angle � between position vectors ���  and ��� for traits 105 

i and j, respectively, can be estimated as measure of the strength of the nutritional trade-off. 106 

This overcomes the violation of domains between vector coordinates and the nutritional 107 

space [in (Rapkin et al. 2018)] and therefore ensures that the estimate of � is calculated in the 108 

same domain of the GF fitness landscapes. However, this Vector of Positions approach relies 109 

on the peak estimates from a SVM machine learning model which is computationally 110 

expensive particularly in n dimensions, where n > 3, and sensitive to the characteristics of the 111 

input data (e.g., if the data contains food intakes as in (Lee et al. 2008; House et al. 2015; 112 

Jensen et al. 2015; Morimoto and Lihoreau 2019) or a grid of fixed diet ratios as in (Kutz et 113 

al. 2019)], identifying local as well as global peaks that introduce noise into the analysis 114 

(shown here). Albeit useful, the Vector of Positions approach can be cumbersome to 115 

implement across different datasets, computationally expensive to obtain estimates of peaks 116 

(or valleys), and as a result can generate inaccurate estimates of the strength of nutritional 117 

trade-offs. Thus, to date, there are no proposed solutions that address the above limitations, 118 

which creates a significant bottleneck in studies of nutrition that limits the multidimensional 119 

power of the GF framework.  120 

 121 

Here, we address the limitations of current models by proposing a simpler framework 122 

(Nutrigonometry) upon which the strength of nutritional trade-offs can be calculated in 3D 123 
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fitness landscapes, irrespective of the structure of the nutritional data to analyze. Using 124 

landmark GF datasets, we first investigated the performance of different ‘off-the-shelf’ 125 

machine learning models in predicting the peak in the fitness landscapes, in order to find the 126 

most accurate and computationally inexpensive model. We achieved this by integrating 127 

several measurements of predictive error, variance in predicted peak area, and topological 128 

characteristics of the predicted peak region. Next, we used simple trigonometric functions 129 

and relationships to estimate the strength of nutritional trade-offs both in terms of nutrient 130 

balance as well as nutrient concentration, or both. Our approach opens new avenues of 131 

research in multidimensional nutrition, and allows for physiological and comparative studies 132 

to be performed in a consistent and reproducible way from which insights onto the evolution 133 

of animal nutrition can be gained across the tree of life.  134 

 135 

Material and Methods 136 

Nutrigonometry 137 

Studies using GF define the food components (typically macro-nutrients) that will be 138 

investigated, which together compose the ‘nutritional space’. For example, in studies where 139 

protein and carbohydrate effects are investigated, there is a 2D nutritional space (one 140 

dimension for each nutrient) onto which the performance landscape of the trait is mapped. 141 

This rationale can be extended to n number of nutrients (Simpson and Raubenheimer 1993b), 142 

albeit to date, studies with two nutrients are the most common (Morimoto and Lihoreau 143 

2020). If we consider this 2D nutritional space as a rectangular space in which an infinite 144 

number of nutritional rails (i.e., imaginary lines that pass through the origin with arbitrary 145 

positive slope) exist that divides the space in right-angle triangles, then it is possible to use 146 

simple trigonometric functions to estimate the angle ��  and the hypothenuse of the triangle, 147 

for all fitness traits mapped onto the nutritional space. The angle �� is the angle of the 148 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.25.469978doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.25.469978
http://creativecommons.org/licenses/by/4.0/


                                                  

 7

nutritional rail, relative from the x-axis, that passes through the peak in the landscape for the 149 

trait i, and the hypothenuse ��  of the triangle shows how far from the origin the peak in the 150 

landscape sits for the trait i (Fig 1a). ��  and ��  can be calculated using Pythagorean theorem 151 

and the relationship between the angle and the sides of right-angle triangles (i.e., sines and 152 

cosines), as shown in Fig 1a.  153 

 154 

Once ��  are known, we can estimate the angle � [as in (Morimoto and Lihoreau 2019)] which 155 

is the difference in the angle between nutritional rails that maximize two traits, i and j, and 156 

provides a measure of the strength of the nutritional trade-off that exists between traits i and j 157 

(Fig 1b). The larger the angle ��,�, the strongest the nutritional trade-off in terms of nutrient 158 

balance (and potentially nutritional compromise) between traits. Likewise, we can compare 159 

the difference ��,� in the estimates of the hypothenuse �� and ��  to quantify nutritional trade-160 

offs in relation to nutrient concentration (Fig 1b). These metrics allowed us to disentangle the 161 

following scenarios in which nutritional trade-off can occur:  162 

(I) When ��,�  is large but ��,� is small (‘Strong nutritional trade-off in terms of 163 

nutrient balance’) 164 

(II) When ��,�  is small but ��,� is large (‘Strong nutritional trade-off in terms of 165 

nutrient concentration’),  166 

(III) When ��,� and ��,� are large (‘Strong nutritional trade-off in terms of both 167 

nutrient balance and concentration’) 168 

(IV) When ��,� and ��,� are small (‘Weak or no nutritional trade-off’) (Fig 1c).  169 

 170 

Here when applying this model for empirical datasets (see below), inferences on the strength 171 

of nutritional trade-offs were made using confidence intervals for ��,� and ��,�, whereby 172 

nutritional trade-offs were stronger when confidence intervals did not overlap zero and the 173 
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magnitude of the difference was large. Estimates are presented in the units of the nutrient 174 

space in which the data was collected (e.g., mg), while angles are presented in degrees. 175 

Confidence intervals for both ��,� and ��,�  were calculated using the significance threshold of 176 

0.05 and the quartiles of a t-distribution. All analyses and plots were done in R version 3.6.2 177 

(R Core Team 2019).  178 

 179 

Predicting peak (or valley) location and size 180 

As with previous approaches, the model presented here depends on accurate estimates of the 181 

coordinates for the peak in the multidimensional performance landscape. Without this, 182 

estimates of ��,� and � are inaccurate which in turn affects the ability of the model to estimate 183 

the strength of nutritional trade-offs. To overcome this, the basic algorithms underpinning the 184 

identification of peak regions in multidimensional fitness landscapes were designed as 185 

following: 186 

1) Empirical data was split into training (75%) and test (25%) datasets; 187 

2) A machine learning model was fitted to the training set using 10-fold cross-validation, 188 

with the fitness trait as dependent variable and the nutrient intakes (or fixed ratios) as 189 

independent variables. The model included main and interactive effects of protein and 190 

carbohydrate, as well as quadratic effects of each nutrient (for non-linear 191 

relationships);  192 

3) The model’s predictive performance was evaluated with root-mean-square-error 193 

(RMSE) with respect to the observed values of the test dataset; 194 

4) A set of 500 random points corresponding to (protein, carbohydrate) coordinates were 195 

generated covering the nutritional space, and the model of step 2 was used to predict 196 

the value of the fitness value for each point; 197 
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5) A quantile threshold was used to crop the data to the specific region of interest. For 198 

instance, for peaks in the nutritional landscape, the default value used throughout this 199 

study was set to 0.95 (i.e., the highest 5% predicted fitness values are subset, from 200 

which coordinates of protein and carbohydrate are used).  201 

6) Steps 4-5 were repeated 100 times. 202 

We then made statistical inferences on peak area from 95% confidence intervals using the ‘ci’ 203 

function of the ‘Rmisc’ package (Hope et al. 2013) whereby we resampled with replacement 204 

the selected random points obtained from steps 5 and 6 above. To test the performance of 205 

nutrigonometry in estimating nutritional trade-offs, we used the most commonly used models 206 

to test relationships between traits in behavioral ecology (e.g., general linear model), machine 207 

learning models used in regression models in ecology and evolution [e.g., Random Forest, 208 

(Rabinovich 2021)], as well as models that have been specifically used to analyse 209 

multidimensional performance landscapes in GF studies (e.g., SVM, GAMs) (Ponton et al. 210 

2015; Morimoto and Lihoreau 2019). In particular, we tested the performance of Bayesian 211 

linear regression (Bayes), general linear regression (LM), k-nearest neighbors (KNN), 212 

Gradient boost (GBoost), random forest (RF), support vector machine (SVM) with radial 213 

basis function as well as generalized additive models (GAMs) with both smooth term or 214 

tensor product term. With the exception of GAMs that were fitted using the ‘mgcv’ package 215 

(Wood and Wood 2015), all other models were fitted using the ‘tidymodels’ package of the 216 

tidyverse (Wickham et al. 2019). For the Bayesian regression, we used the flexible Cauchy 217 

prior from the ‘rstanarm’ package for all analysis (Goodrich et al. 2020). Fitness landscapes 218 

were estimated using the ‘Tps’ function of the ‘fields’ package (Nychka et al. 2017). All plots 219 

were done using the ‘ggplot2’ package (Wickham 2016). All models were fitted to a training 220 

set (75% of the data) and model performance (i.e., RMSE) was calculated from the 221 

performance of the models in the remaining test dataset (25%).  222 
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 223 

Goodness-of-estimate of the models 224 

In addition to RSME, we estimated the area (in squared units in which the data is collected) 225 

of the polygon delimited by the estimated predicted peak region (‘Area’) and the horizontal 226 

(protein) and vertical (carbohydrate) spread of the datapoints of the predicted peak region 227 

(‘Nutrient spread’) as proxies of the goodness-of-estimate of the models (Fig 1d). The smaller 228 

the RMSE, the better is the model in predicting the fitness value of the peak region (the z-229 

axis). Furthermore, the smaller the area and nutrient spread, the more compact the prediction 230 

of the peak region in the nutritional space. Note that RMSE values do not interfere with 231 

accuracy of estimates of ��,� and �, and thus the estimates of nutritional trade-offs, because 232 

the z-axis is not used in the calculation of angles and hypothenuses (Fig 1d). A model can 233 

have high RMSE and still be the best predictive model as long as the predicted peak correctly 234 

matches with the observed peak in the landscape.  235 

 236 

Topological structure of the estimated peak  237 

Even in cases where area and nutrient spread of the predicted peak region are small, it is 238 

important to have evenly-spaced datapoints within the predicted peak region. This is because 239 

predictions of regions which contain holes can lead to mis-estimation of the strength of 240 

nutritional trade-offs by potentially adding noise to the set of protein and carbohydrate 241 

coordinates used to calculate ��,� and �. We measured the topological structure of the 242 

predicted peak region using the concept of persistence homology (PH), which in simple 243 

terms, allows us to investigate the overall structural organisation of the data [see Text S1 and 244 

(Zomorodian and Carlsson 2005; Weinberger 2011) for details of the concept] (Fig 1d). PH 245 

was estimated using the ‘TDAstats’ package (Wadhwa et al. 2018). Together, the estimates of 246 
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RMSE, area, nutrient spread, and PH provided a comprehensive suite of metrics to assess the 247 

quality of model predictions for the peak region in fitness landscapes. 248 

 249 

Datasets used for model application 250 

We demonstrate the applications of the Nutrigonometry framework using two datasets, which 251 

vary in structure. The first dataset is a landmark dataset which contains Drosophila 252 

melanogaster individual adult nutrient intake as well as the consequences of nutrient intake to 253 

lifespan and reproduction (Lee et al. 2008). This dataset was previously used to test the 254 

Vector of Position approach and therefore has important benchmark status in the field 255 

(Morimoto and Lihoreau 2019). We also investigate the effect of data structure on 256 

Nutrigonometry estimates of peak and valley regions. In GF, data can be divided into two 257 

structures: intake data and fixed ratio data. Intake data is ideal in GF studies because it allows 258 

for exploration of realized nutritional effects, that is, nutritional effects exerted upon traits 259 

given by the amount of nutrient eaten (Simpson and Raubenheimer 1993b). However, 260 

collecting intake data can be cumbersome or challenging, and recent approaches have 261 

adapted GF experiments to draw landscapes of traits based on the fixed ratio of the nutrients 262 

in the diets (Kutz et al. 2019). To date, however, we still do not know how this adaptation 263 

influence estimates of nutritional trade-offs in multidimensional performance landscapes. 264 

Here, to test whether the structure of the data is important for model predictions, we used Lee 265 

et al., (2008) dataset with individual intakes (‘intakes’) as well as with fixed ratios (‘fixed’). 266 

Using this data and for the purpose of the demonstration of Nutrigonometry, we estimated the 267 

nutritional trade-off between lifespan and reproductive rate which are known to trade-off in 268 

this species. We also used a second dataset from (Kutz et al. 2019), which studied how 269 

temperature modulates nutritional responses of larval development and adult fitness in D. 270 

melanogaster, as an additional proof-of-application of our model in fixed ratio datasets (see 271 
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Fig S1). Lastly, we demonstrated how the best performing models in our peak analysis can be 272 

used to predict valley regions (Fig S2 and Fig S3). 273 

 274 

Comparison with intake target  275 

Drosophila melanogaster balance their nutrient intake to a P:C ratio of 1:4 when given the 276 

possibility to self-select multiple nutritionally complementary foods (Lee et al. 2008). We 277 

then used the peak predictions of the Nutrigonometry framework to test whether the observed 278 

P:C ratios that maximized lifespan and reproductive rates coincided with the P:C ratio of 1:4 279 

reached by flies in choice situations. To achieve this, we calculated the 95% confidence 280 

interval as described for the peak area but in this case, for the P:C ratio of each trait. 281 

Whenever the confidence interval overlapped 1:4, we inferred that the estimate of peak ratio 282 

did not statistically differ from the intake target of 1:4.  283 

 284 

Results 285 

Simple (Bayesian) linear regressions outshine machine learning models when predicting 286 

peak region in multidimensional landscapes 287 

All models generated predictions of peak region in nutritional landscapes irrespective of data 288 

structure although the accuracy and topology of the predicted regions varied (Fig 2 and Fig 289 

3). In general, GAMs with tensor product and smooth function as well as Bayes and LM 290 

linear models generated peak predictions for both lifespan and reproductive rate that were 291 

significantly more accurate (narrower in area) than other models when the structure of the 292 

data was composed of food intakes (Fig 2, Table S1 and Table S2). When the data structure 293 

changed to fixed ratios, LM, GAM with tensor product, Bayes, and KNN predicted peaks 294 

with smaller area for lifespan and all but KNN perform within similar scales for the peak 295 

prediction of reproductive rate (Fig 2, Table S1 and Table S2). In comparison, GAM smooth 296 
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did not perform well in predicting peak region that was homogenous and accurate to the 297 

performance landscape, particularly when the data structure was fixed ratio. The performance 298 

of the models was independent of patterns in the estimates of RMSE and nutrient spread 299 

which showed no clear pattern of performance with the exception of LM and Bayes that 300 

displayed consistently lower spread when the structure of the data were intakes (Fig 3 and Fig 301 

4; Table S2). Interestingly, machine learning models consistently underperformed, predicting 302 

peak regions that were wider and less accurate and homogenous (Fig 2 and 3, Table S1 and 303 

S2). The underlying reason for this is unclear, but similar patterns were observed when 304 

predicting the peak region of (Kutz et al. 2019) dataset (see Fig S1 and Table S3). Bayes, 305 

GAMs (both smooth and tensor product) and LM also performed well when predicting valley 306 

regions (see Fig S2 and S3). These results indicate that simple (Bayesian) linear regression 307 

provide consistently the best models to estimate the region of the peak of fitness landscapes 308 

irrespective of the structure of the data, and that GAMs with tensor product (and to a smaller 309 

extent, smooth function) can be used when the data are individual intakes.  310 

 311 

Better models lead to accurate estimates of known nutritional trade-offs in 312 

multidimensional landscapes 313 

GAMs (both smooth and tensor product), Bayes, LM, and KNN models were the only models 314 

that correctly identified the nutritional trade-off measured by � between lifespan and 315 

reproductive rate for data with individual intakes (Table 1). Given the variability in the area, 316 

spread, and topology of the predicted region, estimates of ��,� and � were more accurate 317 

(narrower confidence intervals) for GAMs (smooth and tenor product), Bayes and LM 318 

compared with KNN. GAMs, Bayes and LM were the only ones that identified a trade-off on 319 

the hypothenuse estimate ��,� for data of individual intakes, while KNN was the only model 320 

that identified this trade-off in data with fixed ratio. GAM smooth was the only model that 321 
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failed to identify this trade-off when the data was composed of fixed ratios (Table 1). Thus, 322 

overall, simpler models are more suitable to generate peak predictions that accurately 323 

describe nutritional trade-offs in multidimensional performance landscapes for data of 324 

different structures. 325 

 326 

Comparing trait optimum with intake target 327 

We then used the estimated peak regions for lifespan and reproductive rate (both individual 328 

intake and fixed ratio data structures) to estimate the optimum P:C ratio that maximises each 329 

trait as well as whether or not these optima coincided with the P:C ratio obtained when 330 

individuals are allowed to balance their diet (i.e., 1:4). All models predicted a significantly 331 

lower P:C ratio for the optimum that maximizes reproductive rate relative to lifespan as 332 

expected from the original visual comparison of landscapes (around 1:2 for reproductive rate 333 

and >1:9 for lifespan) (Table 2). However, none of the estimates overlapped 1:4, suggesting 334 

that D. melanogaster females likely have to compromise the nutrient intake to maximise 335 

either lifespan or reproductive rate, but not both simultaneously.  336 

 337 

Discussion 338 

We proposed a new simple analytical framework to analyse nutritional trade-offs in 339 

multidimensional fitness landscapes. Nutrigonometry uses trigonometric relationships from 340 

right-angle triangles to identify and compare peaks (or valleys) in 3D fitness landscapes 341 

between traits. Using landmark GF datasets with different structures, we demonstrated the 342 

accuracy and performance of standard (machine learning) models in finding the peak regions 343 

in these multidimensional landscapes and subsequently quantifying the strength of nutritional 344 

trade-offs between traits. As with the Vector of Positions approach (Morimoto and Lihoreau 345 

2019), the Nutrigonometry strictly considers coordinates in the real positive region of the 346 
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nutrient space, whereby the true separation between key regions (peaks and valleys) are 347 

quantified within the correct domain in which the fitness landscapes exist. However, contrary 348 

to previous methods (Rapkin et al. 2018; Morimoto and Lihoreau 2019), the Nutrigonometry 349 

does not rely on vector calculations but instead harnesses the trigonometric relationships of 350 

right-angle triangles to estimate nutritional trade-offs. This is a major advance of the model 351 

as it considerably simplifies the framework both in conceptual and computational terms. 352 

Nutrigonometry thus significantly advances our ability to generate reliable and reproducible 353 

estimates of nutritional trade-offs within and between species, facilitating quantitative 354 

(comparative studies) of animal nutrition.  355 

 356 

Multidimensional studies of nutrition through the GF have been increasingly used to gain 357 

insight into animal and human nutrition (Lee et al. 2008; Behmer 2009; Felton et al. 2009; 358 

Simpson and Raubenheimer 2012; Hewson-Hughes et al. 2013; Gosby et al. 2014; Solon-359 

Biet et al. 2014). Likewise, the complexity of the applications has also increased, ranging 360 

from studies with few nutrients (e.g., protein and carbohydrates, salts) through to high-361 

dimensional studies investigating individual fatty acids and amino acids (Simpson et al. 2006; 362 

Grandison et al. 2009; Arien et al. 2015; Arganda et al. 2017; Piper et al. 2017). This means 363 

that analytical frameworks that are simple and robust must be developed to support the 364 

development of the field. Nutrigonometry provides such foundation, by demonstrating the 365 

best approach to investigate nutritional trade-offs in 3D fitness landscapes. Because 366 

Nutrigonometry uses trigonometric relationships of right-angle triangle, it is applicable to n 367 

dimensions. However, given the often counter-intuitive geometrical effects of high 368 

dimensionality [e.g., (Milman 1998; Watanabe 2021)], such expansion to higher dimensions 369 

requires further investigation as the topic of future developments. Nevertheless, given the 370 

broad use of 3D fitness landscapes in GF studies (Morimoto and Lihoreau 2020), 371 
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Nutrigonometry readily enables important quantifications of nutritional trade-offs that were 372 

otherwise absent or cumbersome to produce.  For instance, using a range of models, 373 

Nutrigonometry uses right-angle triangles to compare the ratio of nutrients that maximise 374 

lifespan and reproductive rate along with the strength of nutritional trade-offs between these 375 

traits in a landmark paper in the field (Lee et al. 2008). Moreover, Nutrigonometry is capable 376 

of comparing the nutrient ratio which maximises lifespan and reproductive rate with the 377 

nutrient ratio that is balanced by individuals when given a choice, providing important 378 

insights into the dietary choices underpinning nutritional compromises.  Such quantification 379 

can bring new fundamental insights into our understanding of nutritional trade-offs such as 380 

strength and the direction of the trade-offs (e.g. nutrient balance vs concentration, see Fig. 1), 381 

as well as how much animals actually resolve these trade-offs when they have the opportunity 382 

to do so and whether, for instance, they favour one trait of another (distance between optimal 383 

trade-off and observed nutrient intake target, see Table 2). 384 

 385 

An important trend in the field of multidimensional nutrition is the study of nutritional effects 386 

across physiological pathways and across levels of biological organization (Lihoreau et al. 387 

2014; Simpson et al. 2015). These studies generate multiple 3D landscapes that are often 388 

compared visually, without rigorous analytical methods to measure nutritional trade-offs. For 389 

example, eleven 3D-landscapes of the expression of genes involved in the Insulin/IGF 390 

pathway were visually compared to provide insights into how a key endocrine pathway is 391 

regulated based on nutrient intake, and how gene expression can underlie expression of life-392 

histories (Post and Tatar 2016; McDonald et al. 2021). Likewise, twelve 3D-landscapes with 393 

gut microbial diversity or abundance were visually compared to better understand how 394 

nutrient composition can modulate host-microbe interactions (Ng et al. 2019). Similar visual 395 

comparisons have been made to understand the effects of nutrition on host-endosymbiont 396 
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relationship (Ponton et al. 2015). The analytical framework proposed here will allow 397 

researchers to move beyond visual comparisons to quantitatively assess how landscapes 398 

differ using a rigorous and reproducible framework. As a result, Nutrigonometry yields 399 

considerable advances to the status quo in the field, enabling a deeper understanding of the 400 

role of nutrition in host-microbial interactions as well as animal physiology, behaviour and 401 

ecology. 402 
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Table caption 583 

 584 

 585 

Table 1. Nutrigonometry quantification of nutritional trade-offs between lifespan and 586 

reproduction. Estimates of ��,� (in degrees) and ��,� (in mg) for the nutritional trade-off 587 

between lifespan and reproductive rate. Analysis from the data presented in Lee et al. (2008). 588 

Confidence intervals overlapping zero implies no difference in the peaks. Magnitude of the 589 

estimates indicate the strength of nutritional trade-offs (i.e., larger magnitudes indicate 590 

stronger nutritional trade-offs). Note that ��,� is bound between 0 and 90 degrees (i.e., 0 and 591 

�

�
). 592 

 
593 

 594 

Table 2. Nutrigonometry estimates of nutritional compromises. Estimates of optimal 595 

intake that maximises lifespan and reproductive rate based on the predicted peak region. 596 

Comparison made with the visual peak ratio from Lee et al. (2008). Note that all models 597 

show that the estimated peak ratio between traits do not overlap and thus, corroborate the 598 

inference of a nutritional trade-off between traits, leading to a nutritional compromise. Note 599 

also that all but one model (i.e., GAM smooth for fixed ratio reproductive rate data) predicted 600 

peak region ~1:4, which is the ratio that individuals balance when given the ability to balance 601 

their diet (‘choice’). All other models suggest that a P:C ratio of 1:4 is lower than the ratio 602 

needed to maximise lifespan but higher than that for reproductive rate, further supporting the 603 

concept of a nutritional compromise.   604 

 605 
 

606 

 607 

 608 

 609 

 610 
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Figure caption 611 

Figure 1. Nutrigonometry framework. (a) Considering an infinite number of nutritional 612 

rails that divide the nutritional space into right-angle triangles, the angle  and the 613 

hypothenuse can be calculated from trigonometric relationships. (b) Nutrigonometry 614 

applied to compare two traits is simple as it allows for the estimates of the strength of 615 

nutritional trade-offs in terms of nutrient balance (angle ) and nutrient concentration (the 616 

difference , given in absolute terms). (c) Plausible scenarios for the estimates of  and 617 

. (d) Metrics used to the peak prediction in the 3D landscape. RMSE was calculated as 618 

root-mean-square difference between the predicted and observed values of the trait (z-axis) in 619 

the peak region. Nutrient spread (both carbohydrate and protein) was calculated as the 620 

standard deviation of the predicted peak region. The area of the polygon that encapsulates the 621 

predicted peak region was also estimated as a proxy of prediction performance. Lastly, the 622 

topology of the predicted datapoints for the peak region was analysed using the concept of 623 

persistence homology (see Methods) to identify homogeneity in predicted point structure. 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 
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 633 

 634 

Figure 2. Nutrigonometry framework to predict peak region in lifespan and 635 

reproductive rate landscape with different data structure. (a) Lifespan landscapes with 636 

individual intake (top left panel) and fixed ratio (top right panel) from Lee et al. (2008) with 637 

the overlaid predicted peak regions. (b) Reproductive rate landscapes with individual intake 638 

(bottom left panel) and fixed ratio (bottom right panel) from Lee et al. (2008) with the 639 

overlaid predicted peak regions.  For the landscapes, red represents peaks while light green 640 

represents valleys. For the predicted region, dark blue represents points with lower predicted 641 

z-values whereas bright yellow represents points with higher predicted z-values. The shaded 642 

polygon was added to facilitate visualisation of the predicted peak region and the 643 

homogeneity of points within the predicted peak.  644 

 645 

 646 

 647 

 648 
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 650 
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 657 

Figure 3. Persistence Homology (PH) to investigate topological structure of the 658 

predicted peak region using Nutrigonometry. (a) PH plots for the topological analysis of 659 

the predicted peak region in lifespan of data containing the structure of individual intake (top 660 

left) and fixed intake data (top right). (b) PH plots for the topological analysis of the 661 

predicted peak region in reproductive rate with data of structure containing individual intake 662 

(bottom left) and fixed intake data (bottom right). Homogenous predicted peaks have red 663 

(dimension 0) and blue (dimension 1) points that are closer, as opposed to more 664 

heterogeneous predicted peaks upon which (some) points can be farther from each other. 665 

Note the different scales upon which the data is plotted (needed to aid visualisation of point 666 

clouds).  667 

 668 
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 683 

 684 

Figure 4. RMSE and peak area estimates in the Nutrigonometry peak region 685 

predictions. (a) RMSE and predicted peak area (i.e., area of the shaded polygon from the 686 

predicted region for lifespan and reproductive rate data), with structure containing individual 687 

intakes. (b) RMSE and predicted peak area (i.e., area of the shaded polygon from the 688 

predicted region for lifespan and reproductive rate data), with structure containing fixed 689 

ratios. Note that models with high RMSE can still be the best predictors of peak region. 690 

 691 

Supplementary Material 692 

Text S1. What is Persistence Homology (PH)? A brief introduction. 693 

 694 

Table S1. Area of the predicted peak region for all models. All values are given in unit 695 

squared of nutrient intake or diet composition (for fixed ratios). 696 
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 697 

Table S2. Nutrient spread of the predicted peak region for all models. All values are 698 

given in units of nutrient intake or diet composition (for fixed ratios). 699 

 700 

Table S3. Nutrigonometry quantification of nutritional trade-offs in developmental time 701 

between two developmental temperatures. Estimates of ��,� (in degrees) and ��,� (in g/L). 702 

Analysis from the data presented in Kutz et al. (2018). Confidence intervals overlapping zero 703 

implies no difference in the peaks. Magnitude of the estimates indicate the strength of 704 

nutritional trade-offs (i.e., larger magnitudes indicate stronger nutritional trade-offs). Note 705 

that ��,�  is bound between 0 and 90 degrees (i.e., 0 and 
�

�
). 706 

 
707 

Figure S1. (a) 3D landscape for developmental time at 25oC (top left) and 28oC (bottom left) 708 

(from Kutz et al., 2019) with the overlaid predicted peak regions. For the landscape, red 709 

represents peaks while light green represents valleys. For the predicted region, dark blue 710 

points represent points with lower predicted z-values whereas bright yellow represents points 711 

with higher predicted z-values. The shaded polygon was added to facilitate visualisation of 712 

the predicted peak region and the homogeneity of points within the predicted peak. (b) RMSE 713 

and predicted peak area (i.e., area of the shaded polygon in panel a) for the models of 714 

developmental time at 25oC (top right) and 28oC (bottom right) values of each model. Note 715 

that models with high RMSE can still be the best predictors of peak region. (c) Persistence 716 

homology (PH) plots for the topological analysis of the predicted peak region of the 3D 717 

landscape for developmental time at 25oC (top panel) and 28oC (bottom panel) (from Kutz et 718 

al., 2019). x and y- axes represent birth and death, respectively, of topological structures. The 719 

diagonal line represents the line in which the birth and death co-occur. Homogenous 720 

predicted peaks have red (dimension 0) and blue (dimension 1) points that are closer, as 721 

opposed to more heterogeneous predicted peaks upon which points are farther from each 722 

other.  723 

 724 

Figure S2. Prediction of the valley regions for lifespan using individual intake data from 725 

Lee et al. (2008). Note that we used the best performing models for the peak region (see 726 

Main text). 727 

 728 

Figure S3. Prediction of the valley regions for reproductive rate using individual intake 729 

data from Lee et al. (2008). Note that we used the best performing models for the peak 730 

region (see Main text). 731 

 732 

R Script. R script with functions for the implementation of the Nutrigonometry framework 733 

(separate file).  734 

 735 

 736 
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Table 1. Nutrigonometry quantification of nutritional trade-offs between lifespan and 
reproduction. Estimates of ��,� (in degrees) and ��,� (in mg) for the nutritional trade-off 
between lifespan and reproductive rate. Analysis from the data presented in Lee et al. (2008). 
Confidence intervals overlapping zero implies no difference in the peaks. Magnitude of the 
estimates indicate the strength of nutritional trade-offs (i.e., larger magnitudes indicate 
stronger nutritional trade-offs). Note that ��,� is bound between 0 and 90 degrees (i.e., 0 and 
�

�
). 

 

 

  Parameter Model Estimate Std LwrCI UprCI 

 
SVM 14.456 10.728 -6.574 35.485 

 
RF 14.508 8.109 -1.388 30.404 

 
GAM_tensor 16.128 4.984 6.358 25.897 

��,� GAM_smooth 16.166 4.962 6.438 25.893 

 
GBoost 17.063 9.575 -1.706 35.831 

 
LM 17.940 4.826 8.479 27.400 

 
Bayes 18.205 4.709 8.974 27.436 

Trade-off   KNN 21.203 6.181 9.088 33.318 
(intakes)   SVM 16.792 65.723 -112.038 145.622 

 
KNN 50.015 48.137 -44.343 144.373 

 
GBoost 52.851 75.218 -94.591 200.293 

��,� RF 58.561 66.066 -70.943 188.064 

 
LM 75.870 35.142 6.984 144.757 

 
Bayes 76.729 34.444 9.211 144.247 

 
GAM_smooth 120.245 29.406 62.604 177.886 

  GAM_tensor 124.533 27.930 69.784 179.282 

 
GAM_smooth 9.645 5.897 -1.916 21.205 

 
SVM 11.840 5.649 0.767 22.913 

 
RF 17.368 5.848 5.906 28.831 

 
GBoost 20.177 5.057 10.264 30.090 

��,� GAM_tensor 21.177 3.872 13.588 28.766 

 
Bayes 26.454 5.876 14.935 37.973 

Trade-off LM 26.499 5.903 14.928 38.070 
(fixed)   KNN 31.428 7.186 17.342 45.513 

 
SVM 2.381 68.888 -132.653 137.416 

 
RF 4.819 64.841 -122.283 131.921 

 
GBoost 9.377 65.605 -119.222 137.975 

��,� Bayes 41.461 34.912 -26.974 109.896 

 
LM 42.305 34.429 -25.182 109.791 

 
GAM_smooth 46.635 40.358 -32.475 125.745 

 
GAM_tensor 49.009 32.855 -15.394 113.412 

    KNN 82.516 30.388 22.949 142.083 
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Table 2. Nutrigonometry estimates of nutritional compromises. Estimates of optimal 
intake that maximises lifespan and reproductive rate based on the predicted peak region. 
Comparison made with the visual peak ratio from Lee et al. (2008). Note that all models 
show that the estimated peak ratio between traits do not overlap and thus, corroborate the 
inference of a nutritional trade-off between traits, leading to a nutritional compromise. Note 
also that all but one model (i.e., GAM smooth for fixed ratio reproductive rate data) predicted 
peak region ~1:4, which is the ratio that individuals balance when given the ability to balance 
their diet (‘choice’). All other models suggest that a P:C ratio of 1:4 is lower than the ratio 
needed to maximise lifespan but higher than that for reproductive rate, further supporting the 
concept of a nutritional compromise.   
 
Data Trait Model Mean Upr CI Lwr CI Target (Visual) 

GBoost 5.235 5.205 5.265 
RF 5.533 5.508 5.557 

SVM 5.864 5.836 5.892 
Lifespan LM 9.084 9.048 9.120 16 

Bayes 9.154 9.118 9.190 
KNN 12.075 12.015 12.135 

GAM_smooth 13.055 12.997 13.114 
Peak   GAM_tensor 13.108 13.049 13.168 
Ratio (intakes) GBoost 1.858 1.853 1.864 

KNN 2.041 2.037 2.045 
RF 2.138 2.133 2.144 

Reproductive SVM 2.147 2.138 2.156 2 
rate Bayes 2.194 2.191 2.197 

LM 2.215 2.212 2.219 
GAM_smooth 2.644 2.639 2.650 

    GAM_tensor 2.661 2.656 2.667 
GBoost 13.078 12.987 13.170 

SVM 14.946 14.873 15.019 
RF 15.107 15.045 15.169 

Lifespan GAM_smooth 16.977 16.859 17.097 16 
GAM_tensor 20.623 20.536 20.710 

KNN 26.050 25.929 26.173 
Bayes 32.426 32.237 32.617 

Peak   LM 32.933 32.744 33.125 
Ratio (fixed) KNN 1.467 1.463 1.470 

LM 1.836 1.832 1.839 
Bayes 1.841 1.837 1.845 

Reproductive GBoost 2.171 2.168 2.174 2 
rate GAM_tensor 2.244 2.241 2.248 

RF 2.545 2.539 2.552 
SVM 3.527 3.516 3.538 

    GAM_smooth 4.280 4.265 4.296   
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