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Abstract

Evolved SARS-CoV-2 variants are currently challenging the efficacy of first-generation
vaccines, largely through the emergence of spike protein mutants. Among these variants,
Delta is presently the most concerning. We employ an ab initio quantum mechanical
model based on Density Functional Theory to characterize the spike protein Receptor
Binding Domain (RBD) interaction with host cells and gain mechanistic insight into
SARS-CoV-2 evolution. The approach is illustrated via a detailed investigation of the
role of the E484K RBD mutation, a signature mutation of the Beta and Gamma
variants. The simulation is employed to: predict the depleting effect of the E484K
mutation on binding the RBD with select antibodies; identify residue E484 as a weak
link in the original interaction with the human receptor hACE2; and describe
SARS-CoV-2 Wuhan strand binding to the bat Rhinolophus macrotis ACE2 as more
optimized than the human counterpart. Finally, we predict the hACE2 binding efficacy
of a hypothetical E484K mutation added to the Delta variant RBD, identifying a
potential future variant of concern. Results can be generalized to other mutations, and
provide useful information to complement existing experimental datasets of the
interaction between randomly generated libraries of hACE2 and viral spike mutants.
We argue that ab initio modeling is at the point of being aptly employed to inform and
predict events pertinent to viral and general evolution.

1 Introduction 1

Since SARS-CoV-2 infected the human host, its genome has undergone changes leading 2

to the emergence of variants [1]; among the most dangerous, Alpha, Beta, Gamma, and 3

Delta all show changes in the Spike Protein Receptor Binding Domain (RBD). Two 4

trends are prevalent in the evolution of the spike: i) selection towards improved 5

attachment to host cells [2] and higher infectivity; and ii) selection towards evasion of 6

neutralizing antibodies (nAbs) [3], leading to repeat infections [4] and reduced efficacy 7

of vaccinations [5]. The ability to predict the most dangerous spike variants before their 8

natural emergence would have allowed a head-start towards their containment, with 9

substantial societal benefits. The importance of research efforts to anticipate viral 10
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evolution has long been established in the scientific community [46] and, in light of 11

recent events, cannot be overstated. Here, among different factors that can drive viral 12

evolution, we will focus on the viral spike’s binding to ACE2 as its natural substrate 13

and to nAbs as one of the host’s countermeasures. 14

Presently, the main method to reveal potential interactions among spike variants and 15

substrates of clinical relevance is via high-throughput in vitro screening of mutants. 16

Two such studies have recently focused on the spike-hACE2 [6] and spike-antibody [7] 17

interactions. These screenings are highly effective at gathering information on a vast 18

chemical space. However, they provide aggregated data, with no direct focus on the 19

mechanisms that make a mutated protein more, or less, dangerous. 20

To gain mechanistic insight, computational modeling of molecule-molecule 21

interactions can complement wet-bench techniques. Models of inter-molecular 22

interactions have been employed for small molecules (about a hundred atoms) in drug 23

discovery and for protein-protein interactions [8, 9]. Modeling larger molecules remains 24

computationally challenging; nevertheless, several in silico approaches, with different 25

sets of assumptions and simplifications, have been successful. Molecular docking uses 26

geometrical constraints to assess how two objects interact with each other [10–12]. 27

Geometry is the main variable in molecular docking, making the method relatively fast 28

and apt at surveying, for instance, small-molecule candidates in drug discovery. 29

Alternatively, force-fields can be employed (FFs), provided an adequate 30

parameterization is found for the system under investigation [18]. FFs employment in 31

biomolecular modeling has over the years consistently brought remarkable 32

results [19,20]. Hybrid quantum mechanics/molecular mechanics (QM/MM) methods 33

are also common in describing enzyme-substrate systems [13], and can be applied 34

successfully to the characterization of SARS-CoV-2 [15,16]. QM/MM uses accurate 35

quantum mechanical (QM) simulations for a small fraction of the system, leaving the 36

remaining regions to be modeled with a less computationally demanding MM simulation, 37

driven by FFs. Determining the appropriate QM region for a hybrid model is far from 38

trivial, especially when the sites of interactions on each molecule are unknown [17]. 39

Different computational approaches have focused on the SARS-CoV-2 spike, and the 40

scientific community is actively working on the subject. For instance, coarse-grained 41

modeling was employed to characterize binding to ACE2 and antibodies [40,41], 42

molecular docking to predict molecular inhibitors [14,38,39], molecular dynamics to 43

design peptides against the spike [42], and normal mode analysis to explore 44

conformational states [47]. QM modeling using Density Functional Theory has been 45

employed to analyze functional domains of the Spike protein [44] and to simulate the 46

spike electronic structure to find hydrogen bonds determining its interactions. [43]. 47

A computational method able to perform ab initio QM simulations to model 48

interactors across the whole spike structure can complement previous approaches. By 49

focusing on the SARS-CoV-2 spike interaction with select substrates relevant to viral 50

fitness, such as host cell receptor ACE2 and nAbs, we characterize elements of the 51

spike’s evolutionary trajectory and offer predictions on how it will progress. Only 52

recently [21,34] has the progress in computing capabilities enabled QM simulations of 53

molecular interactions which include tens of thousands of atoms, capturing biological 54

processes involving several hundreds of amino acids. In turn, the SARS-CoV-2 pandemic 55

has recently and rapidly made available a plethora of state-of-the-art biochemical and 56

structural data, facilitating a full QM representation of specific molecular systems. 57

Notably, in the recent years, several full QM calculations of biological macro-molecules 58

of sizes large enough to represent relevant SARS-CoV-2 processes have been published 59

(see e.g. [21] for some examples). Here, we perform ab initio QM modeling of one such 60

case: the binding of the SARS-CoV-2 spike RBD with select substrates. 61

The QM model highlights the chemical hotspots of the viral spike and its interacting 62
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protein; we define these hotspots as amino acids with significant energetic contribution 63

to the inter-molecular interactions. The model also reveals the nature of such 64

contributions: chemical/short ranged or electrostatic/long ranged. This mechanistic 65

characterization highlights how mutations in the spike’s primary structure affect 66

binding. Starting from a set of fully atomistic 3D structural models, we employ the 67

BigDFT computer program [22], based on an ab initio Density Functional Theory 68

approach, to simulate large molecules with a computational cost manageable on modern 69

supercomputers. Here, BigDFT is applied to the analysis of a set of known cases of viral 70

adaptation, namely: i) the role of the E484K mutation in the evasion of nAbs C121 and 71

C144 [5]; ii) the role of the spike residue 484 in SARS-CoV-2’s affinity for the human 72

ACE2 receptor (hACE2); iii) the spike interaction with the bat host Rhinolophus 73

macrotis ACE2 (macACE2); and iv) the Delta variant spike interaction with hACE2. 74

Finally, we use the model to predict the effect of a hypothetical mutation of the 75

SARS-CoV-2 Delta variant spike RBD in the binding to human cells. 76

2 Methods 77

Computational approach Our study is performed via a full Quantum Mechanical 78

(QM) model, as implemented in the BigDFT computer program suite [31]. The 79

approach employs the formalism of Daubechies wavelets to express the electronic 80

structure of the assemblies in the framework of the Kohn-Sham (KS) formalism of 81

Density Functional Theory (DFT) [22]. The electronic structure is expressed by both 82

the density matrix and the Hamiltonian operator in an underlying basis set of support 83

functions – a set of localized functions adapted to the chemical environment of the 84

system. Such functions are expressed in Daubechies wavelets, typically using one to four 85

support functions per atom as the basis set. The electronic density matrices, as well as 86

the Hamiltonian expressed in the BigDFT basis set, are analyzed to provide quantum 87

observables of the systems. The code provides efficient and accurate QM results for full 88

systems of large sizes, delivering excellent performance on massively parallel 89

supercomputers. In the present study, we employ the PBE approximation corrected by 90

dispersion D3 correction terms [36]. Each of the calculations presented here requires 91

about 2 h of wall-time on 32 compute nodes of the IRENE-Rome supercomputer, at the 92

TGCC Supercomputing center in Saclay (Paris, France). A similar approach has been 93

previously used, in conjunction with the other atomistic techniques described in the 94

introduction, to investigate the interaction patterns of the SARS-CoV-2 main protease 95

with natural peptidic substrates and to design peptide inhibitors tested in vitro [25]. 96

Procedure Starting from a representative 3D model of the molecules as our input, we 97

calculate the system’s electronic structure, from which we extract various quantities. In 98

particular, we draw a contact map to identify relevant chemical interactions between the 99

spike RBD and the various interactors considered in this study. The strength of the 100

inter-residue interaction is quantified by the Fragment Bond Order (FBO) [24], 101

calculated using the electronic structure of the system in proximity of a given residue. 102

Such an approach has been previously described in detail [22] and is summarized in 103

Table 1. We use the FBO to identify the interface residues, defined as the amino acids 104

of the counter-ligand that have a non-negligible value, above a set threshold of the FBO, 105

with the ligand. In contrast to a simple geometrical indicator like the RBD-ligand 106

distance, the FBO provides a metric that enables a non-empirical identification of steric 107

hot-spot interactions. We here identify as chemical hot-spot interface residues the 108

amino acids which exhibit a FBO value with the ligand larger than 7 · 10−3. Such 109

threshold value has been chosen from a comparison between the hydrogen bonding 110
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Table 1. Prospectus of the main concepts and quantities constituting the
model. All the elements here discussed are general and therefore applicable, without
previous parameterization, to any given set of atoms for which atomistic structural
representations are available.

Electron Density The distribution of electrons in a given molecular system.
The electron density determines the nature and strength of
the chemical bonds between interacting molecules. Such an
“electron cloud” is the main emerging property of the underlying
atomic structure in defining the chemical characteristics of a
molecule.

Fragment The modular elements into which the electron cloud can be
partitioned, for example, an amino acid. The model partitions
the electron cloud into physically-consistent regions and/or
verifies the consistency of a pre-defined partitioning; every
such region is defined as a fragment.

Fragment Bond
Order (FBO)

The descriptor of the inter-fragment interactions. FBO is the
main quantity used in the model to represent the connection
pattern of the fragments of interacting molecules.

Fragment Inter-
actions

From the results of the model and the features of the
fragments it is then possible to calculate the interaction
strength between any two fragments. Such interaction has
both a Chemical/short-range, always attractive, and an
Electrostatic/long-range term.

Final Output At the end of the simulation, BigDFT provides a simple
representation of the strength of interaction between fragments
of the two molecules. The model can ultimately describe the
energy and nature of the acting chemical bonds. This enables
a mechanistic explanation and/or prediction of how specific
amino acid substitutions or deletions, in spikes or nAbs, impact
the interactions with their hACE2 substrate or the viral spike,
respectively.

Hardware
Requirements

The model requires massively parallel calculations via high
performance computing. Given an access to a modern super-
computer, hundreds of simulations can be performed in a time
frame of one hour.

interaction network of the SARS-CoV-2 main protease with its natural peptidic 111

substrates, derived from traditional FF analysis, and the equivalent FBO network [21]. 112

Once the chemical connection between amino acids is identified, we assign to each of 113

the residues its contribution to the binding interaction between the two subsystems. 114

Such interaction terms can be calculated from the output of the DFT code, and can be 115

split in two parts. The first is a electrostatic attraction/repulsion term, defined from the 116

electron distributions of each of the fragments, which has a long-range character (even 117

when they are far apart two fragments may still interact). The remaining term, which 118

can only be attractive, is provided by the chemical binding between two fragments, and 119

is non-zero only if the electronic clouds of the fragments superimpose (short-range). This 120

term is correlated to the FBO strength, and we identify it as the chemical interaction. 121

By including long-range electrostatic terms, the decomposition enables us to single out 122

relevant residues not necessarily residing at the interface. In this way, the model 123

provides an ab initio representation of the RBD-ligand interactions as the final output. 124
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Crystal structures and generation of virtual structures for mutants 125

Crystallographic structures are obtained from the RCSB database [26](PDB entries 126

6M0J (hACE2), 7K8X (nAb C121), 7K90 (nAb C144), and 7C8J (macACE2)). 127

Protonation of histidines and other titratable residues is assigned a pH of 7, based on 128

the PDBFixer tool in OpenMM [27]. Virtual structures are generated by the imposition 129

of point mutations of the original structure via the same tools. Structure relaxations are 130

performed by optimizing the crystal geometry with the OpenMM package using the 131

AMBER FF14SB force field [28]. While such optimized structures do not represent the 132

full panorama of conformations that might exist at finite temperature, the resulting 133

structures are interpreted as one plausible representative among the possible 134

conformations of the system. 135

3 Results 136

We focus our analysis on the impact of the E484K mutation on antibody evasion and 137

receptor binding. Prior experimental data have shown that antibodies C144 and C121 138

are evaded completely by spike variants presenting the E484K mutation in the RBD [5]. 139

E484K is a typical signature mutation of the RBD of the Gamma and Beta strands. We 140

test our QM model as an agnostic predictor to explain existing biological data, and to 141

characterize the underlying chemical interaction of the nAbs with both the original 142

Wuhan spike and the E484K-mutated one. 143

In Fig. 1, for each amino acid of the primary structure, we represent its contribution 144

to the binding energy, which can be attractive/stabilizing or repulsive/de-stabilizing. 145

We also highlight FBO-interface residues (Fig. 1 yellow bars) as well as those close to 146

the geometric interface. In the forthcoming section we will use FBO to draw an 147

interaction network of the interface to detail the chemical interactions among residues 148

and their role as stabilizing or destabilizing agents. Details of the procedure are 149

provided in the supplementary A.4. 150

3.1 Ab initio simulation shows how nAb C121 loses binding to 151

the E484K mutated spike 152

The first step in the analysis identifies the hotspots between the RBD and the nAbs of 153

the Wuhan spike interaction (Fig. 2). Residue E484 emerges as the main spike interactor 154

with the nAb C121. Other relevant sites of interaction are residues K444, Y449, F486, 155

Y489, and Q493. On the C121 side, residues Y33, S55, and S75 are identified as pivotal 156

for the Wuhan spike binding. The model estimates that among all the residues 157

contributing to the interaction, the individual contribution of E484 amounts to roughly 158

50% of the total. The interaction network of the assembly (see the second part of Fig. 2) 159

completes the characterization of E484 by showing its coordinated binding to elements 160

on the C121 structure; namely, residues Y33 and S55. By imposing the E484K mutation, 161

we observe a rearrangement of the interaction network and a substantially lower binding 162

energy between the spike and the antibody. Specifically, E484K reduces the connectivity 163

at the 484 residue in the interaction network, and modifies the interactions on the C121 164

side towards decreased stability. Only the S52 residue takes advantage of the mutation, 165

but its stabilizing contribution is insufficient to counterbalance the loss of attraction at 166

other residues. Overall, once the mutation is applied, we observe a substantial decrease 167

of about 25% of total binding energy, largely attributable to loss of chemical interaction. 168

The model concludes, with no a priori information, that the E484 residue is the 169

essential actor in the binding by nAb C121, and that a targeted point mutation will 170

substantially affect said binding. The analysis of C144 nAb shows similar results. 171

Moreover, C144 undergoes a substantial rearrangement of its interaction network in 172
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Fig 1. Mechanistic characterization of the binding between Wuhan strain’s spike and hACE2. Data are
plotted on the sequence of hACE2 (panel a) and the spike RBD (panel b). Letters represent single amino acid residues; yellow
bars indicate interface residues, identified with the FBO threshold. The “FBO” row represents Fragment Bond Order values,
the “Distance” row represents the distance of a residue to the nearest atom of its ligand, and the “Interaction” row shows the
chemical/electrostatic force as attractive (blue) or repulsive (red), with darker colors indicating stronger effects.

response to the mutation, arguably a consequence of the original higher connectivity of 173

the residue E484 in the binding, compared to the C121 case: five coordinated residues 174

(Y51, S52, G53, G54 and S55) instead of two (Y33 and S55) (Supplementary Fig. A.1). 175

Interestingly, the importance of E484 also appeared in previous results by Andreano et 176

al. in which E484 mutants arise under the selective pressure of nAbs [33]. 177

3.2 Ab initio simulation identifies the spike E484 residue as 178

the weak link in the binding to the host receptor hACE2 179

The FBO identifies the chemical/short ranged interactions, bringing out the hotspots of 180

the RBD-hACE2 system (Fig. 3). On the hACE2 side (Fig. 3, panel a), Q24, T27, D30, 181

K31, H34, E35, E37, D38, Y41, Q42, Y83, and K353 stand out, in agreement with 182

known data [30]. On the spike side (Fig. 3, panel b), a more diverse layout emerges, on 183

and off the interface, with several residues displaying repulsive interaction. However, 184

residue E484 shows the unique trait of being contextually repulsive and at the interface 185

with hACE2, via a short range interaction with the K31 residue. This implies, as the 186
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chemical interaction is intrinsically stabilizing, that another residue in the vicinity 187

hinders its stabilization with an electrostatic repulsion. Therefore, in the Wuhan type 188

structure, E484 is actually destabilizing the binding to hACE2. From this analysis, we 189

conclude that the Wuhan spike RBD harbors a sub-optimal residue for hACE2 binding. 190

To better investigate this point, we test the model on the available 3D crystal 191

structure of the human homologous ACE2 receptor in Rhinolophus macrotis, a host 192

species with arguably a more adapted SARS-CoV-2 interaction [30]. In this simulation 193

(Fig. 3 panels a and b, second rows), we observe the E484 residue is instrumental to the 194

binding by being strongly attractive to the R. macrotis ACE2 (macACE2); notably, in 195

both hACE2 and macACE2, the interactor with E484 is the ACE2 residue K31. This 196

means that the macACE2 sequence has residues, proximal to the K31 hotspot, that 197

exert an attractive electrostatic force on E484. A closer inspection of the two sequences 198

reveals that this attractive force comes from the K35 residue, which in hACE2 is 199

replaced by Glutamic Acid. The model therefore highlights a strong contrast between 200

human and bat receptors. 201

The role of E484 is further confirmed by the analysis of the spike virtual structure 202

with the E484K mutation imposed interacting with hACE2 (Fig. 4): hACE2 binding 203

improves by about 32% ∆E in presence of the mutation (Fig. 4, bottom right 204

histograms), switching its original interacting residue from K31 to E35. Such an 205

interaction, driven by electrostatics, represents a net improvement of the network. 206

Conversely, the same mutation does not affect the spike binding energy to macACE2 in 207

the same position, where the bat receptor hosts a Lysine. In other terms, for macACE2, 208

K484 clearly does not engage K35, and actually disappears from the interface 209

(Supplementary Fig. 4); the resulting interaction network is largely rearranged, and the 210

interface binding energy is not improved by the mutation. Therefore, the model shows 211

an arguably more optimal interaction between macACE2 and WT RBD, possibly the 212

result of a long adaptation by SARS-CoV-2 to R. macrotis, whereas in the hACE2 213

receptor, the E484 residue belongs to a sub-optimal sector of the chemical interface, 214

suggesting that other RBD adaptations in this sector are likely to improve the binding. 215

3.3 Ab initio simulation predicts that the E484K mutation 216

increases binding of Delta spike to hACE2 217

Presently, the Delta variant’s high infectivity is a major concern in the COVID-19 218

pandemic. At the time of writing this contribution, an experimentally validated Delta 219

spike-ACE2 3D crystal structure is not publicly available. We thus generate a virtual 220

crystal structure to represent Delta (B.1.617.2) in conjunction with hACE2 by 221

substituting its characterizing RBD mutations (L452R and T478K) into the Wuhan 222

spike crystal structure. Such residue mutations belong to a far-from-interface sector of 223

the RBD (see Fig. 1). Our simulations identify the same FBO interface residues found 224

for the Wuhan strain. However, differently from the other tested interaction networks, a 225

substantial contribution to the overall binding energy of Delta to hACE2 comes from 226

off-interface residues via their long range electrostatic effect on their counterparts, 227

highlighting the relevance of including residues beyond the interface region in the 228

analysis of binding. 229

Furthermore, when testing the binding of the Delta-hACE2 system after introducing 230

the E484K mutation, the simulation shows that E484K is compatible with the present 231

Delta variant and further strengthens the overall binding to hACE2. Such an in-silico 232

variant, at present solely based on theoretical grounds, displays a stronger binding to 233

hACE2 than either E484K and Delta variants individually (Fig. 5). 234
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Fig 2. Mechanistic characterization of C121 binding to the Wuhan strain spike protein, and energetic
changes as a result of the E484K spike mutation. Data are plotted on the spike primary structure (panel a) and on
C121 Heavy-Chain (panel b) considering the different bindings via the Wuhan spike (WT) and the mutated one (E484K).
Amino acids are represented by the letters, and numbered on the histogram’s horizontal axis. Histograms underneath the
sequences represent the relative change in binding energy of the second row relative to the first one (Wuhan type strand).
The bottom right histograms represent the overall binding energy of C121 with the Wuhan spike (left) and the mutated one
(right) and its characterization as chemical or electrostatic. The row above each sequence shows the chemical/electrostatic
force as attractive (blue) or repulsive (red), with darker colors indicating stronger effects.
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Fig 2. (cont.) Interaction networks with C121 nAbs. Bonds are purple when inter-molecular or black when intra-molecular,
and their thickness is related to the strength of the FBO between residues. Graph nodes are represented in red (repulsive)
and blue (attractive) based on their effect on their counterpart. Residues at the binding interface are highlighted by a yellow
outline.
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Fig 3. Mechanistic characterization of the Wuhan spike binding to the human ACE2 (hACE2) and R.
macrotis ACE2 (macACE2). Data are plotted on the ACE2 primary structure (a), and on the Wuhan spike RBD (b),
when binding to the human (hACE2) and the bat (macACE2) receptor. Amino acid residues are labeled with letters and
numbered. Interface residues are highlighted with a yellow bar, red tiles are repulsive residues, and blue tiles are attractive
residues; see the rest of the figure for energy scales.
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Fig 3. (cont.) The interaction networks represent the hACE2-spike system on the left, and macACE2-spike on the right;
circles are ACE2 residues, squares are spike residues. Interface residues are highlighted with a yellow bar, red tiles are
repulsive residues, and blue tiles are attractive residues. Bonds are purple when inter-molecular or black when intra-molecular.
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Fig 4. Mechanistic characterization of Wuhan and mutated (E484K) spike binding to hACE2. Data are
plotted on hACE2 (panel a) and on the Wuhan spike (panel b) primary structure bound to the Wuhan spike (WT) and the
mutated one (E484K). Amino acids are represented by the corresponding letters, and numbered on the histogram’s horizontal
axis. Interface residues are highlighted by yellow bars and their overall effect on the other molecule is indicated by red
(repulsive) or blue (attractive) tiles. Histograms underneath the sequences show the relative change in binding energy of the
second row (E484K mutation) relative to the first one (WT strand), with positive and negative values indicating weaker and
stronger binding, respectively. Bottom right histograms represent the overall binding energy of hACE2 with the Wuhan spike
versus the mutated one, partitioned into chemical and electrostatic contributions.

11/28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 29, 2021. ; https://doi.org/10.1101/2021.11.25.470044doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.25.470044


Fig 4. (cont.) Interaction networks (Wuhan spike-hACE2 to the right, and mutated spike-hACE2 to the left), including
FBO-interface residues and their coordinated interactors. Squares depict spike residues and circles depict hACE2 residues,
with red color for repulsive and blue color for attractive energy. Yellow outlines highlight interface residues. Bonds are purple
when inter-molecular or black when intra-molecular.
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Fig 5. Mechanistic characterization of spike-hACE2 binding suggests that Delta+E484K spike has stronger
hACE2 binding that the Delta variant. Data are plotted on hACE2 (panel a) and viral spike (panel b) primary
structure bound to the Wuhan spike (WT), Delta spike (δ), and Delta + 484K spike (δ + 484K). Amino acids are represented
by the corresponding letters, and numbered on the histogram’s horizontal axis. Interface residues are highlighted by yellow
bars and their overall effect on the other molecule is indicated by red (repulsive) and blue (attractive) squares (energy scale is
identical to the one employed in the other figures). Histograms underneath the sequences show the relative change in binding
energy (green: Delta compared to Wuhan; red: Delta+E484K compared to Delta). Bottom right histograms represent the
overall binding energy of hACE2 with the Wuhan, Delta, and Delta+E484K strains, partitioned into chemical or electrostatic
contributions.
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4 Discussion 235

The characterization of inter-protein interactions is central to the mechanistic 236

understanding of biological phenomena. The properties of a protein are only partially 237

defined by the residues that constitute its active site. A mechanistic description of 238

protein-protein interactions can benefit from a full-sequence QM characterization. We 239

use the BigDFT code [22,31] to implement a ab initio QM simulation of the electronic 240

properties of a given set of atoms as large as a full protein-protein system. Through this 241

model, we decompose the interaction between two biological macro-molecules, spike and 242

receptor/antibody, into the individual energetic contributions of each of the amino acid 243

residues involved. Additionally, the model characterizes the nature of these 244

contributions into two main categories: (1) short-range/chemical and (2) 245

long-range/electrostatic. Ultimately, we infer a network of interactions in which every 246

node is a single amino acid belonging to one of the two molecules; the network is based 247

on the electron cloud surrounding the protein-protein system, itself an emergent 248

property of the structural arrangement of the system’s atoms. 249

In this work, we examine how the viral spike interacts with ACE2 as its natural 250

receptor, and with nAbs C121 and C144. We demonstrate that a QM model, assessing 251

the interactions among the residues of an inter-molecular biological system, enables 252

mechanistic insight into how SARS-CoV-2 interacts with its host. 253

The model identifies the E484 residue as the only interface element hindering the 254

binding between the Wuhan strain and hACE2, de facto making it the most evident 255

weak link of the Wuhan spike binding to the human host. The E484K mutation is 256

shown by the model as a direct solution to this hindrance by improving binding to 257

hACE2, and presumably constituting an evolutionary advantage which led to its 258

emergence among several successful variants. Interestingly, the ab initio model also 259

shows that the E484 residue does not destabilize the interaction between the Wuhan 260

viral spike and the bat receptor macACE2 from Rhinolophus macrotis. We interpret this 261

result as an indication that the Wuhan strain is adapted to a bat-like ACE2, and the 262

rise of E484K variants is indeed part of the viral adaptation specific to the human host. 263

We find that the ab initio model correctly predicts the loss of interaction between 264

the SARS-CoV-2 spike and nAbs C121 and C144, once the E484K mutation is imposed 265

on the spike of the Wuhan strain. The RBD residue E484 emerges as the main and 266

fundamental spike fragment enabling the binding event, and therefore neutralization. 267

These data suggest that nAbs challenging the spike at E484, the very residue that most 268

hinders hACE2 interaction, have provided selective pressure for the virus to find 269

alternatives to the original phenotype. 270

The binding energies provided by our model can be compared against quantities 271

obtained from experimental databases of the libraries of the interaction between spike 272

RBD mutants and hACE2 mutants available in the literature [6, 7]. While the two 273

quantities are not directly comparable, as computational studies of protein-protein 274

affinity requires in-depth analysis of structural and thermodynamic contributions [48], 275

results from both datasets are in general accordance (Supplementary Fig. A.3). We 276

plan a detailed study of the comparison between such datasets particularly focused on 277

outliers. We argue that ab initio simulations have achieved the maturity to inform the 278

exploration of the available chemical space via single-point mutations. 279

By analyzing the competition between short- and long- range interaction 280

contributions, we have shown that the charge-shift E484K mutation conferred a 281

substantial binding energy increase (about 30%) to the interaction with hACE2, 282

compared to the Wuhan strain. On the RBD side, the model also highlights how the 283

effect of E484K is focused on the 484 position, with limited off-target repercussions for 284

the spike’s binding (Supplementary Fig. 4). We argue that this trait qualifies the 285

E484K mutation as highly “RBD-modular”, therefore easy to impose on an already 286
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functional spike structure, its contribution to the binding being largely 287

long-range/electrostatic, therefore less dependent of a specific steric conformation. 288

Our ab initio simulation is motivated by the available empirical data in identifying 289

the E484K variant as a particularly dangerous evolutionary outcome, based on increased 290

SARS-CoV-2 infectivity and antibody evasion. From this last standpoint, we examined 291

the potential impact of the E484K mutation improving spike-hACE2 binding in the 292

background of the recently spread Delta variant. Our model suggests that E484K 293

affects spike-hACE2 and spike-nAb binding in a modular fashion. Thus, if acquired by 294

the Delta strain, E484K constitutes a likely future threat, to the extent that receptor 295

binding can contribute to an increase in infectivity. We acknowledge that infectivity is a 296

multi-factor process, and receptor binding is only one of the factors involved. 297

We view our investigation in two lights: on one side, the disruptive nature of the 298

COVID-19 pandemic and its extension because of the emerging variants of 299

SARS-CoV-2. This is a primary motivation to increase our readiness to handle 300

currently emerging variants and anticipate future ones. On the other side, the 301

abundance of data for SARS-CoV-2 has provided an opportunity to test and validate 302

the potentials and limitations of ab initio modeling. This, in conjunction with the 303

maturity of large-scale quantum mechanical calculations, represents a unique 304

opportunity to employ full QM calculations to uncover the interaction mechanisms 305

which would be difficult or impossible to investigate otherwise. We show that ab initio 306

modeling provides insights useful for comparison with experimental data, supporting its 307

capability to offer predictive power for inter-molecular interactions of biological 308

relevance. Research paradigms on large biomolecules investigation, in various domains, 309

can now effectively include QM data. 310

Model limitations The model, despite its first-principles origin, is based on 311

assumptions. First, the quantities we are investigating, while representing the binding 312

energy, do not directly manifest experimental results. A closely-related quantity may be 313

the off-rate dissociation constant, that can be inversely proportional to the structures’ 314

stability. However, to correctly evaluate such terms, the systems’ free energies must be 315

considered, which would require dynamic structural investigations. Additionally, the 316

mutated structures are based on reference structures whose 3D conformation may in 317

principle be altered by a given mutation. Therefore, in the absence of confirmed crystal 318

structures, these structures can only be interpreted as virtual best guesses. The 319

evaluation of mutations at the interface, particularly mutations which are associated to 320

chemical interactions, should be treated with care, considering the interplay between the 321

binding and the actual position of the residue at the interface. In addition, for 322

electrostatic interactions, solvation effects may affect the relevance of a charged residue; 323

also Glycation has been shown to be relevant in the binding of the Spike 324

protein [37][WD: Comment:reference formatting is off]. However, these mechanisms are 325

independent of the QM treatment, and the investigation of such contributions can be 326

effectively performed by coupling our model to other mechanistic treatments, such as 327

polarizable force fields or advanced docking techniques. In addition, we here employ a 328

common, well-established DFT approximation (PBE+D3), which already provides 329

useful information for coarse-grained quantities and trends [21,35], and aptly fits the 330

aim of intensive, high-throughput simulations of several structures, especially in their 331

relaxed positions [45]. Yet, we leave out arguments about the choice of other ab initio 332

levels of theory, which may shed light on more quantitative aspects related to processes 333

beyond the ground-state: reaction coordinates, activation barriers, etc. For the study 334

presented here, considering that experimental quantities are indirectly related to those 335

data, we believe that the method employed represents an ideal compromise between 336

accuracy of the results and affordable modelling. 337
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We argue that our approach, albeit simplified by the assumptions and limitations 338

described above, can predict and characterize potential antibody escape routes of 339

SARS-CoV-2 and, being unbiased and agnostic, is ready to be applied to other 340

biological systems. 341

A Supporting information 342

A.1 Ab initio simulation shows how nAb C144 loses binding 343

to the E484K mutated spike 344
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Fig A.1. Mechanistic characterization of C144 binding to the Wuhan strain spike protein, and energetic
changes as a result of the E484K spike mutation. Data are plotted on the spike primary structure (panel a) and on
C144’s (panel b), considering the different bindings via the Wuhan spike (WT) and the mutated one (E484K). AA are
represented by the letters, and numbered on the histogram’s horizontal axis. Histograms underneath the sequences represent
the relative change in binding energy of the second row relatively to the first (Wuhan type strand). The bottom right
histograms represent the overall binding energy of C144 with the Wuhan spike (right) and the mutated one (left) and its
characterization as chemical or electrostatic.
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Fig A.1. (cont.) Interaction networks (RBD WT @ C144 to the left, RBD E484K @ C144 to the right) at the bottom
represent the interface residues and their coordinated interactors: squares are spike residues and circles C144’s, their respective
coloring is red for repulsive and blue for attractive energy, a yellow highlight represents interface residues. Bonds are purple
when inter-molecular or black when intra-molecular. Interface residues are represented by red squares (repulsive) and blue
squares (attractive) based on their effect to their counterpart, and highlighted by yellow squares when at the binding interface.
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A.2 Ab initio simulation shows how the E484K spike does not 345

improve the binding energy to Rhinolophus macrotis 346

ACE2 receptor (macACE2), compared to the Wuhan 347

strain 348
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Fig A.2. Mechanistic characterization of Wuhan and mutated (E484K) spike binding to macACE2. Data are
plotted on the macACE2 primary structure (panel a) and on Spike RBD (panel b), considering the different bindings via the
Wuhan spike (WT) and the mutated one (E484K). Amino-acids are represented by the letters, and numbered on the
histogram’s horizontal axis. Histograms underneath the sequences represent the relative change in binding energy of the
second row relative to the first one (Wuhan type strand). The bottom right histograms represent the overall binding energy of
macACE2 with the Wuhan spike and the mutated one and its characterization as chemical or electrostatic.

20/28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 29, 2021. ; https://doi.org/10.1101/2021.11.25.470044doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.25.470044


Fig A.2. (cont.) Interaction networks (RBD WT @ macACE2 to the left, RBD E484K @ macACE2 to the right) Bonds are
purple when inter-molecular or black when intra-molecular, their width being related to the strength of the FBO between
residues. Graph nodes are represented in red (repulsive) and blue (attractive) based on their effect to their counterpart, and
highlighted by yellow squares when at the binding interface.
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A.3 Model comparison with preexisting experimental datasets 349

on randomly generated libraries of hACE2 and viral spike 350

mutants 351

We decompose the binding energy of the RBD with the ligand into per-residue 352

contributions to describe the relative importance of each amino acid in the binding 353

process. To see how these data compare with available experimental measurements, we 354

generate a dataset of virtual point-mutations for the RBD-hACE2 system and compare 355

the interaction energies with experimental affinity data obtained from existing high 356

throughput random mutation experiments, which are available in the literature both for 357

the Wuhan spike protein [32] and hACE2 [6]. Data are presented in Fig. A.3. As 358

already pointed out in the main text, the two quantities are not directly comparable, as 359

computational studies of protein-protein affinity require in-depth analysis of structural 360

and thermodynamic contributions [48]. An example of discrepancy can be seen in the 361

N501Y mutation, which appears strongly enhanced in the experiment and not in our 362

model. This is possibly due to the fact that such mutation is associated to a structural 363

rearrangement which would likely lead to different steric conformations. The E484K 364

mutation stands out as an outlier in both the experimental dataset and our simulation, 365

exhibiting an overall improved binding to hACE2. However, most mutations of the 366

RBD residues lead to decreased affinity, indicating that the viral Wuhan spike is overall 367

well-adapted to bind to hACE2. 368

A.4 Details of the Fragmentation procedure 369

We here recall the main equations that define the energy decomposition schemes 370

employed in the present work. We identify a system S from the set of its atomic 371

positions. A QM calculation of the system S provides the density matrix F̂S . We 372

associate to the atomic positions of the system S a set of ionic (electronic) charge 373

densities ρSion(H), respectively. The expression of the total energy reads: 374

E[S] = tr
(
ĤKS [S] F̂S

)
− EH

[
F̂S

]
− tr

(
V̂xc[F̂S ]F̂S

)
+ Exc

[
F̂S

]
+ Eion[S] . (1)

The DFT Hamiltonian is defined as ĤKS = − 1
2∇

2 + V̂H + V̂ion + V̂xc from the 375

combination of the electrostatic potential provided by ρStot ≡ ρSion + ρSH , including the 376

exchange and correlation term. Let us now suppose that our system is separated in two 377

regions, which we call F and G, which in our example are associated to the RBD and 378

the corresponding ligand. 379

When post-processing a QM DFT calculation, it is in theory possible to perform an 380

analysis on an arbitrarily defined set of fragments. The challenge is to define those 381

fragments in a chemically meaningful way, or, at least, to quantify the pertinence of a 382

given fragmentation. To argument the choice of fragmentation scheme, in a previous 383

study we introduced a measure of fragment quality called the purity indicator [23]. This 384

measure is directly based on the density, being computed as the deviation from 385

idempotency of the density matrix block associated with a given fragment. The 386

interactions of a system may be described in the same framework by computing a 387

quasi-observable called the “Fragment Bond Order” as a measure of the off-diagonal 388

contributions of the density matrix. As described in [23], the Purity Indicator and 389

Fragment Bond Order are computed directly from the density matrix. The Purity 390

Indicator and Fragment Bond Order together measure the competition between a 391

fragment’s internal and external interactions. This approach has recently been applied 392

to generating graph views of proteins as well as to understand the interaction between 393

proteins and solvent molecules [24]. 394
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We also assume that those two regions are associated to well-defined fragments with 395

associated fragment projection operators ŴF,G . We can then identify, for instance 396

F̂G ≡ ŴGF̂SŴG . The operators F̂F and F̂G are then defined as the diagonal projection 397

of the full density F̂S of the assembly into the regions associated to the subsystems 398

F ,G. We define by δF̂S the off-diagonal term ŴGF̂SŴF + ŴF F̂SŴG 399

With these definitions, we can identify different terms contributing to the interaction 400

of the fragments. Let us describe them separately. 401

• Electrostatic, Long-Range term: it is defined by the electrostatic interaction 402

between the two fragments in their polarized state, ie. the ground state of the 403

assembly. 404

Eel ≡
(
ρFtot|ρGtot

)
. (2)

This is the only contribution which will have to be considered even when the F ,G 405

subsystems are spatially separated from each other. Such a term can be efficiently 406

approximated by a sum of point-multipoles that are based on the description of 407

the electron density. The electrostatic terms can be non-negligible even for 408

fragments that are far apart, as the interaction which defines this term is 409

long-ranged. 410

• Induction/Contact (Chemical), short-range term: it is defined by the trace of the
block-off-diagonal part of the DFT Hamiltonian on the density of the total system.
It reads:

Ect ≡ tr
(
ĤKS [S]δF̂S

)
= tr

(
ŴFĤKS [S]ŴGF̂S

)
+tr

(
ŴGĤKS [S]ŴF F̂S

)
. (3)

This term is a “contact” term, namely it is non-zero only for fragments which lie 411

nearby, as the Hamiltonian and the density matrix are both represented by sparse 412

matrices. Also, its interpretation is associated to the energy that the system 413

would lose if both the fragments were considered as pure. As the purity indicator 414

is associated to the fragment valence, this term is associated to the energy of the 415

“chemical bond” between the fragments. For this reason, it is always associated to 416

an attractive term, and its magnitude is directly correlated to the value of the 417

fragment bond order. For compactness, dispersion vdW contributions coming 418

from D3 terms [36] are included into such term, as the latter are also short-ranged. 419

The Chemical term is always stabilizing, namely it only contains attractive 420

interactions. 421

We have verified that the sum of these terms correlates very well with the QM 422

interaction energy between the subsystems F and G, thereby proving that they capture 423

the essential contributions of the interactions in our analysis [25]. 424

Both these terms can be decomposed in per-fragment contributions; through the 425

decomposition, we obtain an indication of the relative contribution that each fragment 426

(in our case, each residue) provides to the interaction terms between the two assemblies. 427

We represent those contribution in a network of interactions determined by the FBO 428

quantity. (Absolute) purity values below 0.05 (see previous work [23,24] for a 429

justification of this threshold) indicate that the fragments are sufficiently pure and thus 430

represent a good decomposition of the system. For the systems employed in this work, 431

most of the amino acid lie within this range, with some exceptions (mainly Glycine 432

residues) which reach a (yet acceptable) value of 0.07. For this reason, and to ease the 433

discussion, we have preferred to stick with a usual fragmentation scheme based on 434

aminoacids. 435

All the calculations are performed with the same DFT input parameters employed 436

for the paper [25]. 437
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Fig A.3. Comparison of ab initio simulations of virtual structures with available in vitro binding performance of mutant
libraries. Spike mutations are represented for their affinity binding score towards hACE2 [32]. Negative score means depletion
of the affinity of mutated sequence. Virtual crystals have been generated in silico and the binding strength simulated ab
initio. The percent difference in binding strength is then calculated with respect to Wuhan strand, negative value indicating
improvement of the binding. If both the in vitro and the in silico data represent a depletion or an enhancement, data are in
qualitative agreement and colored with rainbow colors, from red to purple (errorbars and uncertainties have been neglected
here), and with copper colors otherwise. The two different quantities are then represented in the plot (lower panel, horizontal
axis for the ab initio binding, vertical axis for the affinity), by focusing on the top 10 GISAID [49] point-mutations (plus the
L452R point-mutation) which are found in SARS-CoV-2 variants at the time of writing this contribution. The same color
scheme is employed for the mutation represented in the sequence and for the plots. The two datasets have many points in
accordance, more than 60% of the points being in qualitative agreement. Among all the tested mutations, E484K (purple
point) emerges as the strongest ab initio binding performance in qualitative agreement with the experiment.
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