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Abstract 
Selective vulnerability is an enigmatic feature of neurodegenerative diseases (NDs), 

whereby a widely expressed protein causes lesions in specific brain regions and cell 

types. This selectivity may arise from cells possessing varying capacities to regain 

proteostasis when stressed by cytotoxic protein conformers. Using the RiboTag 

method in mice, translational responses of five neural subtypes to acquired prion 

disease (PrD) were measured. Pre-onset and disease onset timepoints were chosen 

based on longitudinal electroencephalography (EEG) that revealed a gradual increase 

in theta power between 10- and 18-weeks after prion injection, resembling a clinical 

feature of human PrD. At disease onset, marked by significantly increased theta power 

and histopathological lesions, mice had pronounced translatome changes in all five 

cell types despite having a normal outward appearance. Remarkably, at a pre-onset 

stage, prior to EEG and neuropathological changes, we found that 1) translatomes of 

astrocytes indicated a sharply reduced synthesis of ribosomal and mitochondrial 

components, 2) excitatory neurons showed increased expression of cytoskeletal 

genes, and 3) inhibitory neurons revealed reduced expression of circadian rhythm 

network genes. Further assessment for the role of circadian rhythms using a jet lag 

paradigm modestly exacerbated disease. These data demonstrate that early 

translatome responses to neurodegeneration emerge prior to other signs of disease 

and are unique to different cell types. Therapeutic strategies may need to target 

multiple pathways, each in specific populations of cells, early in the disease process.  
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Introduction 

NDs typically involve the misfolding and aggregation of proteins which lead to 

toxicity and cellular stress. Most NDs are characterized by late onset of clinical signs 

and, conceivably, protective mechanisms must be proactive to counterbalance the 

toxic processes that eventually manifest as disease symptoms. Neurodegeneration 

progresses when the capacity of those protective proteostatic mechanisms is 

exceeded (Fu, Hardy, & Duff, 2018). NDs initially affect defined regions in the brain, a 

phenomenon known as selective vulnerability (Carroll, Guha, Nehrke, & Johnson, 

2021; Fu et al., 2018; Guentchev, Wanschitz, Voigtlander, Flicker, & Budka, 1999; 

Jackson, 2014; Mattsson, Schott, Hardy, Turner, & Zetterberg, 2016). Expression of 

disease-causing proteins is typically ubiquitous, and often higher in regions and cell 

types resistant to disease (Jackson, 2014; Kaczmarczyk et al., 2021), indicating the 

observed regional and cellular selectivity is determined by other factors. We 

hypothesize that the differences in cellular microenvironments (e.g., specific 

compositions of the protein trafficking and quality control machineries) influence the 

vulnerability of individual cells, which adopt distinct responses to cope with the 

disease-related protein conformers (Fu et al., 2018; Jackson, 2014; Tebbenkamp & 

Borchelt, 2010). As brain regions are largely composed of neural networks consisting 

of multiple functionally interacting cell types, failure of one cell type likely triggers a 

domino effect that results in region-wide changes observed in human NDs (Jackson, 

2014). 

In this study we dissected responses of five neural cell types to proteostatic stress 

using the RML (Rocky Mountain Labs) mouse model of neurodegenerative PrD. In 

contrast to other NDs, PrDs naturally affect several mammalian species, and mouse 
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models present neuropathological, biochemical and gene expression changes very 

similar to humans. Moreover, knowledge gained by studying prion diseases is 

important for other NDs since the prion protein (PrP) that causes PrDs, has a 

mechanistic role in them (Corbett et al., 2020) and many are thought to spread through 

the brain via prion-like mechanisms (Goedert, Clavaguera, & Tolnay, 2010; Lau et al., 

2020; Walker, Schelle, & Jucker, 2016). RML is an ideal model since it is extraordinarily 

precise, causing lethality to an entire study group within a week following a five-month 

disease course. Such precision in disease progression is well suited for gene 

expression analyses. We thus studied cell type-specific responses to RML using 

RiboTag profiling (Sanz et al., 2009). RiboTag is a Cre-directed transgenic tool that 

enables the isolation of ribosome-associated mRNA from cells expressing an epitope-

tagged ribosomal protein (Fig 1A) (Sanz et al., 2009). By capturing actively translated 

mRNAs rather than total RNA, RiboTag data more closely reflect the changes in the 

cellular proteome of specific cell types (Battle et al., 2015). Moreover, tissue samples 

can be immediately frozen upon removal, constraining batch effects and preserving 

mRNA significantly better than methods based on physical separation of cells or cell 

bodies (Kang et al., 2018; Millard et al., 2021). To determine the most informative 

analytical timepoints, we tracked theta frequency waves, which increase in human PrD, 

using longitudinal EEG analysis (Franko et al., 2016). Changes to gene expression 

were analyzed for five brain cell types at the disease onset stage, when theta was 

significantly increased, and at an earlier, pre-onset stage when theta for both groups 

was still identical and neuropathological changes were absent.  

Even at the pre-onset stage, three cell types demonstrated coordinated, but distinct, 

responses although the cell type we most expected to respond did not. However, all 

five cell types were strongly altered at the later, disease onset stage, which coincided 
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with increased EEG theta power. Some of the differentially expressed genes (DEGs) 

from the early time point have been related to PrDs and other NDs; here we present 

such alterations in the context of specific cell types. More significantly, this work 

indicates that disparate cell types unleash unique strategies in response to 

neurodegeneration and that parallel engagement of multiple therapeutic targets may 

provide the most efficacious treatments.  

Results 

A steady increase in EEG theta power marks RML progression 

We have observed that a subset of mice in the commonly used C57BL/6 

background are hyperactive at night (Jackson et al., 2009; Jackson et al., 2013; 

Kaczmarczyk et al., 2021). In contrast, 129S4 mice are calmer, exhibit more consistent 

behavior between individuals, and have a very different sleep pattern than C57BL/6 

mice (Dittrich, Petese, & Jackson, 2017; Kaczmarczyk et al., 2021). Therefore, to 

optimize the identification of markers of PrD through gene expression analysis, which 

could be obscured by bouts of hyperactivity, we used the 129S4 mouse strain for these 

studies.    

The neurodegenerative PrD model was initiated by unilateral, intracranial injection 

of brain homogenate from either normal (NBH, control) or RML infected mice (Fig 

1A).  RML induced terminal disease in 129S4 mice following an incubation period of 

22.6 weeks, with behavioral features typical for prion diseases (e.g., kyphosis, ataxia, 

reduced body condition, poor grooming, clasping during tail suspension, etc.) To 

identify early cellular mechanisms altered by RML, we defined study stages as 1) pre-

onset, before any differences and 2) onset, when differences between NBH and RML 

groups could be detected using a clinically relevant method in living mice (Fig 1B). 
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This was accomplished by measuring EEG changes during sleep-wake cycles, 

concomitant with core body temperature (Tb) and locomotor activity in freely-moving 

mice implanted with wireless, telemetric devices (Data Sciences Inc). 24 h recordings 

were taken every two to four weeks until terminal disease was reached. Body weight 

was measured weekly. 

EEG measures the summarized electrical activity of cortical and subcortical 

neurons, providing a very sensitive tool to detect brain dysfunction (Leuchter et al., 

2017; Meghdadi et al., 2021), including theta power increases in several human PrDs 

(Franko et al., 2016). Analyses of EEG spectral frequency distributions revealed a 

pronounced and progressive increase in the theta band (5-10 Hz) relative to other 

frequencies (0-50 Hz) that reached statistical significance at 18 weeks post-injection 

(WPI) (Fig 1C). Theta power increase was apparent in wake, non-rapid eye movement 

(NREM) sleep, and rapid eye movement (REM) sleep states (Fig S1). To examine if 

EEG theta reflected disease progression, we calculated relative theta power (5-10 

Hz/0-50 Hz) against WPI. We found that relative theta power remained consistent in 

controls yet incrementally increased in RML with disease progression, across all 

vigilance states (Fig 1C). Mixed model ANOVAs revealed interaction effects of 

treatment group (RML and NBH) and timepoint (WPI): wake (F6,48 = 8.3, p = 0.003), 

NREM (F6,48 = 6.9, p = 0.011), and REM (F6,48 = 8.9, p = 0.002). At 18 WPI, a peak 

effect was seen, reflected by statistically significant higher theta in RML mice 

compared to NBH mice (Fig 1C). By focusing on the evolution of EEG theta across 

WPI, we determined that theta power was comparable between RML and NBH mice 

up to 11 WPI, after which the groups slowly separated (Fig 1C).  

Next, we examined brains of RML and NBH injected mice for neuropathological 

changes. PrDs lead to PrP aggregation (PrPres) and morphological changes of 
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astrocytes and microglia readily detectable with specific antibodies (PrP, GFAP and 

Iba1, respectively).  Each of these neuropathological hallmarks of PrD were detected 

in RML mice at 18 but not 10 WPI (Fig 1D). Accordingly, and combined with the EEG 

theta marker, 18 WPI for RML mice appeared to be a clinically relevant timepoint 

indicating disease onset as reflected by evident change in brain activity and histology. 

Nevertheless, mice demonstrated an overtly normal phenotypic behavior, with no 

differences found in overall sleep parameters, core body temperature, locomotor 

activity, or response to 6 h of sleep deprivation by the gentle handling method (Fig S1), 

and still lacked the typical signs of RML (e.g., kyphosis, ataxia, etc.) Lastly, by 

combining histological and EEG analyses, we identified 10 WPI as an early pre-onset 

disease time point. At this timepoint, there was no divergence in theta power or body 

weight (Fig 1C), and no overt histological changes (Fig. 1D) between RML and NBH 

mice.  

Cell types demonstrate specific responses to RML  

We directed the expression of epitope-tagged ribosomes (Sanz et al., 2009) to 

astrocytes and four neuronal types (glutamatergic, GABAergic, PV and SST neurons) 

using knock-in mouse lines expressing Cre from endogenous Gja1 (Cx43), Slc17a6 

(vGluT2), Gad2, Pvalb (PV), and Sst genes, respectively (Fig 2A, 2B). These cell types 

were chosen primarily as GABAergic neurons, particularly PV-expressing cells, are 

reported to be the most vulnerable in human and rodent PrDs (Ferrer, Casas, & Rivera, 

1993; Guentchev, Groschup, Kordek, Liberski, & Budka, 1998; Guentchev, Hainfellner, 

Trabattoni, & Budka, 1997; Guentchev et al., 1999). SST neurons, while generally non-

overlapping with PV neurons (Taniguchi, 2014), constitute an important GABAergic 

subtype. In contrast, glutamatergic neurons (excitatory) drive neural activity and the 
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overall network excitability is balanced by GABAergic (inhibitory) populations. Lastly, 

we chose to study astrocytes as they play a key role in the removal of toxic substances 

from extracellular space (Iliff et al., 2012) and undergo reactive gliosis in PrDs and 

other NDs (Makarava, Chang, Kushwaha, & Baskakov, 2019; Makarava, Mychko, 

Chang, Molesworth, & Baskakov, 2021; Sofroniew & Vinters, 2010). An inducible Cre 

line was employed for astrocytes since constitutive Cre expressing lines are active in 

neural precursor cells and thus also label neurons (Pfrieger & Slezak, 2012).  

We verified the fidelity of RiboTag expression through co-localization of the RiboTag 

epitope with known cell type markers in histological sections (Fig 2C and Fig S2). 

RiboTag IP samples and corresponding total mRNA (input control) analyzed by RNA-

sequencing (RNA-seq) confirmed cell type-specificity with enrichment or depletion of 

known cell type marker genes (Fig 2D). Principle component analysis revealed that 

samples from the same cell types clustered tightly together (Fig S3). 

Since we expected changes to be very mild at 10 WPI, we defined differentially 

expressed genes (DEGs) to have a Benjamini-Hochberg adjusted p-value (hereafter 

false discovery rate or FDR) < 0.1 without applying a fold change cut-off. A summary 

of the DEGs that are unique for each cell type or shared between multiple cells, at each 

time point, is presented in Fig 3A (an interactive browser of all DEGs for each cell type 

is available online (https://shiny.it.liu.se/shiny/Scrapie_RML_RiboTag). Although at 18 

WPI RML mice appeared normal via passive observation, there were severe gene 

expression changes for all cell types, with 8 to 40% of all mRNAs altered (FDR ≤ 0.1), 

and thousands of DEGs having an absolute log2 fold change |L2FC| ≥ 1 (Fig 3B), 

consistent with gross EEG and IHC (Fig 1). In contrast, at 10 WPI, SST and PV 

neurons in RML mice were barely altered (1 and 3 DEGs, respectively, considered 

unaffected cell types hereafter), contrarily to our predictions based on literature (Ferrer 
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et al., 1993; Guentchev et al., 1998; Guentchev et al., 1997; Guentchev et al., 1999), 

but consistent with a recent report (Scheckel, Imeri, Schwarz, & Aguzzi, 2020). Both 

glutamatergic and GABAergic neurons showed more changes, with 38 and 83 DEGs 

respectively, but astrocytes demonstrated the greatest number of DEGs with 139 (Fig. 

3A and B). Glutamatergic DEGs were primarily upregulated, whereas GABAergic and 

astrocytic DEGs were primarily downregulated (Fig 3A and B). Importantly, in contrast 

to 18 WPI when over half of DEGs were changed in multiple cell types, only 10% of 10 

WPI DEGs were changed in multiple cells, indicating that early in disease, cells activate 

unique responses (Fig 3A).  

We expected that if cell responses were deliberate, multiple DEGs for a given cell 

type to be associated with a specific cellular pathway or process. Since the data from 

the two timepoints have vastly different numbers and magnitudes of DEGs, we 

optimized our analysis by using the most appropriate method for the properties of the 

data. Since the 18 WPI data were characterized by a large percentage of genes being 

differentially expressed, and consequently multiple functional modalities in the cells 

were affected, we analyzed those data with gene set enrichment analysis (GSEA). 

GSEA considers the ranking of all genes (DEGs and non-DEGs), thereby maximizing 

the potential to determine the most affected modalities (higher gene ranking 

contributes more to the overall GSEA scoring). In contrast, overrepresentation analysis 

(ORA) uses unranked DEG subsets which is more appropriate for the 10 WPI data 

since relatively small changes may not be appropriately reflected in the ranking due to 

a lower signal-to-noise ratio. Genes were ranked based on the degree of differential 

expression and log2fold change (L2FC) using the formula: rnk = LFC*(−log(FDR)). 

Noteworthy, when applied to 10 WPI sample data, GSEA failed to yield significant 
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enrichment scores. Corroborating the differences between the cell types with respect 

to differential gene expression (Fig 3A), this analysis further confirmed that there were 

no common pathways at 10 WPI (Fig 3C), although the cells responded similarly at 18 

WPI, with ribosomal and electron transfer molecular functions in common (Fig 3D, S4). 

Intrigued by the changes at 10 WPI, we focused the remainder of our analysis on those 

data. To explore specific cellular changes further, we included interactome information 

in our analysis.  

DEGs occupy neighboring positions in the interactome 

By identifying genes in regions of the interactome connected to DEGs, we could 

deduce which cellular changes are relevant to disease progression. The proteins 

encoded by genes sharing disease associations often colocalize within protein-protein 

interactions (PPI) networks, forming communities, referred to as disease modules. 

Identification of disease modules typically relies on exploring the interactions of known 

disease genes, i.e., the seed genes. Herein, we defined the seeds as the subset of 

gene network nodes overlapping with DEGs and examined whether they provide 

sufficient clues on disease module localization. To this end we collected high 

confidence PPI interactions (cumulative confidence score > 0.7) from the STRING 

database and constructed a separate interactome for each cell type, excluding the 

genes that were not detected in either diseased or control mice.  We then determined 

the sizes of the largest connected components (LCCs) within subnetworks composed 

of seed genes and compared each to a reference LCC size distribution of randomly 

selected nodes in the interactome. In astrocytes, GABAergic, and glutamatergic cells 

the LCC sizes were greater than for random subnetworks of equivalent size (Z-scores 

2.53, 5.42, 2.57 respectively, empirical p-values 0.005, 0.001, 0.043) (Fig S5A).  The 
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general lack of DEGs in PV and SST neurons was corroborated with a lack of 

significant connectivity between the top ranked genes (0.01 Wald test p-value cutoff 

was used) in those cell types (Z-scores 0.30 and 1.69 respectively, empirical p-values 

0.342 and 0.077, Fig S5B). 

We then sought to identify putative disease modules specific to each affected cell 

type in early pre-onset disease stage (10 WPI) by integrating the interactome and 

RiboTag data sets using a modified DIAMOnD method (Ghiassian, Menche, & 

Barabasi, 2015). To account for bias towards well studied genes in the STRING-based 

network, our modified version of the DIAMOnD algorithm used a two-stage ranking 

system to iteratively add genes to a disease module (see supplementary materials and 

methods). Identified disease modules for all cell types were enriched with genes which 

share functional annotations with seed genes and therefore represent network 

communities likely affected by disease. The results are described in the following 

sections, organized by cell type. 

Astrocytes downregulate ribosomal and mitochondrial mRNAs  

The most prominent feature of DEGs in astrocytes was a strong down regulation of 

mRNAs encoding 26 ribosomal proteins, (average L2FC = -0.64; range -0.41 to -0.94). 

Additional proteins related to ribosome synthesis (Fbl) or translation in general 

(Ccdc124, Denr, Dohh, Eif5b, Upf2) were also downregulated, supporting the view that 

fewer ribosomes were being made. Mitochondrial proteins (Glrx5, Lars2, mRpl18, 

mRps12, Romo1, Tomm6) and components of the electron transport chain including 

cytochrome c, and proteins in complexes I (n=3), III (n=4), IV (n=3) and V (n=3), were 

all downregulated in astrocytes, except for Lars2 which was upregulated.  The most 

strongly downregulated gene, Pcsk1n (L2FC -1.25, FDR < 3E-5), encodes proSAAS, 
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a secreted chaperone that has anti-aggregation activity and is found associated with 

protein aggregates in brains of Alzheimer’s disease (AD) patients and an AD mouse 

model (Hoshino et al., 2014). Interestingly, RML induced a decrease in macrophage 

migration inhibitory factor (Mif), within astrocytes. This factor is induced in neurons in 

AD patients and mouse models (Zhang et al., 2019). 

There were also three up-regulated DEGs of interest: C4b, Serpina3n, and Tnrc6a. 

C4b is a marker for aging astrocytes and signals for inflammation (Boisvert, Erikson, 

Shokhirev, & Allen, 2018), Serpina3n is also a marker for aging astrocytes (Boisvert et 

al., 2018) and is strongly up-regulated in all forms of human PrDs (Vanni et al., 2017), 

and Tnrc6a associates with a complex involving PrP and Argonaute2 for a role in 

miRNA-mediated silencing (Gibbings et al., 2012).  

These observations of 10 WPI DEGs being closely related to ribosome biogenesis 

and oxidative phosphorylation were confirmed by our ORA analysis (Fig 4A).   IHC 

experiments verified Rps21 was reduced by RML at 10 WPI in cerebellar astrocytes 

(Fig 4B) which preferentially express Rps21 (Kaczmarczyk et al., 2021). Notably, 

numerous components of ribosomes and mitochondria were reduced in postmortem 

human PrD brains (Ansoleaga et al., 2016). 

128 DEGs from astrocytes were included in our astrocyte cell interactome and used 

as seed genes for inference of disease-relevant genes using the modified DIAMOnD, 

producing a module with 7 major communities. Within the two largest communities, the 

most overrepresented functional categories were ‘oxidative phosphorylation’ and 

‘nuclear transcribed catabolic process nonsense mediated decay’, which consisted 

primarily of mitochondrial and ribosomal protein gens, respectively. In small 

communities, the overrepresented categories were ‘proteasomal protein catabolic 

process’, ‘RNA splicing via transesterification reactions’, ‘heart process’, ‘myeloid 
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leukocyte mediated immunity’ and ‘mitochondrial translational termination’ (Fig 4C). 

Thus, at 10 WPI, astrocytes primarily downregulated genes for mitochondrial and 

ribosomal biogenesis in response to RML. 

Glutamatergic neurons upregulate cytoskeleton genes  

Of the 38 DEGs altered by RML in glutamatergic neurons, many were linked to 

upregulation of cytoskeleton-shaping proteins (Gsn (gelsolin), Limch1, Mprip, 

Ppp1r9a) and cytoskeletal components including GFAP and four spectrins (Sptan1, 

Sptb, Sptbn1, Sptbn2) (Fig 5C). In human PrD, mass spectrometry analysis of 

synaptasomes revealed Gsn increased while Sptan1 decreased (Gawinecka et al., 

2013). Gesolin and spectrin breakdown products are common in human NDs (Ji, 

Chauhan, Wegiel, Essa, & Chauhan, 2009; Yan, Jeromin, & Jeromin, 2012) and the 

mRNA upregulation seen here may be compensatory. The GABA receptor protein 

Gabrb2 was decreased which may lead to increased neuronal activity. Consistent with 

this notion, Arc (activity-regulated cytoskeleton) commonly induced for synaptic 

plasticity (Steward, Wallace, Lyford, & Worley, 1998), was increased, which in turn 

may have led to the increased synthesis of cytoskeleton related proteins. The ORA 

analysis confirmed this notion with biological process terms including ‘regulation of 

long-term synaptic depression’, ‘membrane raft organization’, and ‘endoplasmic 

reticulum to Golgi vesicle mediated transport’ (Fig 5A).  

We next used the modified DIAMOnD algorithm for inference of disease-relevant 

genes which incorporated 33 of 38 DEGs in the glutamatergic cell interactome as seed 

genes. The resulting module contained 10 communities, within which the most 

overrepresented functional categories were ‘ER to Golgi vesicle mediated transport’, 

‘RNA splicing via transesterification reactions’, ‘myeloid leukocyte mediated immunity, 
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‘endocytosis’, ‘response to peptide hormone’, ‘actin filament-based movement’, 

‘humoral immune response mediated by circulating immunoglobulin’ ‘cytoplasmic 

translation’, ‘post-translational protein modification’ and cell-cell signaling by Wnt’ (Fig 

5B). Therefore, at 10 WPI the changes observed in vGluT2+ cells were coordinated 

and quite different from those in Cx43+ cells. 

GABAergic neurons modulate circadian rhythm genes 

While RML induced astrocytes to downregulate ribosomal and mitochondrial 

biogenesis and glutamatergic neurons increased cytoskeleton genes at 10 WPI, 

GABAergic neurons modulated 11 genes implicated in circadian rhythmicity: Bhlhe41 

(Dec2), Ciart (chrono), Dbp, Nr1d1, Nr1d2, Per1, Per2, and Usp2, were down-

regulated while, Arntl (Bmal1), Tardbp, and Vip were up-regulated. These differences 

are related to RML and not time of death, as the latter was controlled for in our 

experimental design. Remarkably, circadian rhythm genes are commonly dysregulated 

in neurodegenerative diseases (Carter, Justin, Gulick, & Gamsby, 2021). Many of the 

downregulated genes normally suppress Arntl expression, potentially explaining its 

upregulation. Arntl forms dimeric complexes with Clock or Npas2 to drive expression 

of circadian clock and redox genes, and its disruption in mice leads to 

neurodegeneration with prominent reactive astrocytosis (Musiek & Holtzman, 2016; 

Musiek et al., 2013). Studies have highlighted a role for the circadian rhythm network 

in antioxidation and neuroprotection (Musiek & Holtzman, 2016) and we see a potential 

connection in our data with down regulation of proteins involved in mitochondrial 

morphology (ROMO1) and electron transport complex III (Uqcc2 and Uqcrq). It is worth 

noting that timing may be modified by RML independently to sleep if driven by 

GABAergic cells.  
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The most significant pathways from ORA included ‘RNA catabolic process’, and 

‘circadian regulation of gene expression’ for BPs, ‘postsynaptic density membrane’ for 

CC, and ‘structural constituent of ribosome’ for MF (Fig 6A). Analysis of 10 WPI data 

with the modified DIAMOnD resulted in a module built on 69 of 83 DEGs with 6  

communities with functional categories of ‘ATP synthesis coupled electron transport’, 

‘cotranslational protein targeting to membrane’, ‘RNA splicing’, ‘protein 

polyubiquitination’, ‘rhythmic process’, and ‘myeloid leukocyte mediated immunity’ (Fig 

6B).  Thus, although Gad2+ cells also changed expression of some ribosomal and 

mitochondrial proteins, they predominately changed additional pathways and 

demonstrated an overall response quite different from Cx43+ and vGluT2+ cells. 

Jet lag induced disruption of circadian rhythm mildly exacerbates RML 

Since key circadian rhythm genes were changed in a key neuronal population in our 

study, and in several others (Carter et al., 2021), we asked if circadian rhythm 

regulation becomes more vulnerable to external disturbances in RML, accelerating 

disease progression. A common alteration of circadian rhythmicity in humans is when 

crossing different time zones, the poor adaptation referred to as jet lag (JL). Therefore, 

we subjected both RML and NBH mice to a JL modeling procedure whereby lights turn 

on and off 6 hours earlier each week (phase advance, PA) starting at 6 WPI. We 

hypothesized that if RML destabilized circadian rhythm mechanisms, this mild JL 

intervention might enhance RML induced theta EEG increase, or enhance reactive 

astrocytosis, since Arntl knockout mice demonstrate severe reactive gliosis (Musiek & 

Holtzman, 2016; Musiek et al., 2013).  

The activity of JL mice was highest when lights were off, even as the timing shifted, 

demonstrating the mice sensed and responded to the PA (Fig 7A). Since comparing 
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theta between acutely jet-lagged and undisturbed mice might be confounded by 

disease-independent effects of JL, we made sure there was sufficient recovery time. 

At 13 WPI, two weeks following the final PA, theta tended to increase, although not 

significantly (Fig 7B). To determine if JL enhanced reactive gliosis, two microscopists 

blinded to the sample identities independently examined and scored samples for 

severity of reactive gliosis at 14 WPI. In most comparisons, though not all, the JL 

samples were more intensively stained (Fig 7C). One microscopist scored the JL 

samples as being most severely affected in six of the seven blocks (p = 0.0101, 

Fisher’s exact) while the second examiner identified five (p = 0.1319, Fisher’s exact). 

Thus, although theta was not strongly affected, JL appeared to enhance the ongoing 

neurodegeneration. 

Discussion 

Identification of EEG biomarker that precedes morphological disease changes 

A better insight into mechanisms of selective vulnerability in neurodegenerative 

diseases is needed to develop therapies. For these therapies to stop or slow disease 

progression, it is important to understand disease mechanisms at early stages, before 

clinical signs. We chose mouse RML prion disease as a model as the timeline from 

induction until clinical illness and neuropathological changes is highly precise (Watts 

& Prusiner, 2014). To define disease onset, we measured theta waves longitudinally 

with EEG. As in human PrDs (Franko et al., 2016) we found theta increased. Despite 

spectral changes in this band, and other spectral composition alterations at 18 WPI, 

we did not find changes in sleep-wake states, which suggests for this RML model, that 

degeneration remains too mild to affect sleep or that compensation mechanisms are 
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in place that protect sleep-wake behavior up to 18 WPI. Nonetheless, the observed 

increase in theta as disease progressed might be suitable for detecting effects of 

disease-modifying experimental treatments in mice. 

RiboTag elucidates cell type-specific responses to early ND 

RML in RiboTag mice permitted the detection of early molecular responses elicited 

by different cell types. To verify if the RiboTag IPs contained mRNAs from the cells of 

interest we assessed the enrichment or depletion of known cell type marker genes 

compared to the total RNA input. Cell type markers are generally not absolutely specific 

for one cell type, but high abundance can predict the population of interest. GFAP is a 

notable example; as it is widely recognized as an astrocyte marker, but we found 

expressed in our neuronal samples, and RML induced a significant upregulation of 

GFAP in glutamatergic neurons at 10 WPI. Neuronal expression of GFAP has been 

reported by chromatin marks in healthy young adult mouse brains (Halder et al., 2016), 

human AD by IHC (Hol et al., 2003) and single nucleus RNAseq (Mathys et al., 2019), 

in motor neurons in a mouse model of amyotrophic lateral sclerosis (Sun et al., 2015), 

and in synaptasomes of human PrD (Gawinecka et al., 2013). Therefore, increased 

GFAP expression in neurons seems common to many neurodegenerative diseases. 

Furthermore, since several other astrocyte markers were strongly depleted/absent in 

neuron-derived samples, we conclude that this GFAP observation was not due to 

cross-contamination. 

Unexpectedly, at 18 WPI there were extensive changes in gene expression even 

though by passive observation RML mice had no overt phenotype. This implies that 

even when the first clinical symptoms appear in patients of NDs, there may already be 

significant cellular perturbations, across several cell types making successful treatment 
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interventions difficult. Furthermore, at 10 WPI, prior to EEG and histological 

abnormalities, we identified that astrocytes, glutamatergic, and GABAergic cells 

(presumably PV- and SST-) were responding. While at 18 WPI each cell type changed 

similar molecular pathways and sets of genes, at 10 WPI each population 

demonstrated unique DEGs and pathways and was, therefore, altered specifically. 

These results support our hypothesis that the phenomenon of selective vulnerability is 

caused by specific brain cells adopting unique responses to cope with an emerging 

neurodegenerative disease.  

Distinct translatome responses in excitatory and inhibitory neurons 

Glutamatergic neurons at 10 WPI altered their translatomes to maintain or enhance 

actin and cytoskeleton networks, which are important for cellular transport to the 

synapse and signal transduction. Moreover, Arc responds to synaptic activity by driving 

expression of cytoskeletal proteins at synapses (Minatohara, Akiyoshi, & Okuno, 

2015), and its upregulation suggests glutamatergic neurons are abnormally active, 

which may relate to excitotoxicity (Chen, Zhu, Wang, & Hang, 2020), a molecular 

mechanism long postulated to be involved in neurodegenerative diseases. 

GABAergic neurons prominently modulated their translatomes for the circadian 

rhythm pathway. Since circadian rhythm genes have been associated with 

neurodegeneration (Carter et al., 2021; Fifel & Videnovic, 2020; Leng, Musiek, Hu, 

Cappuccio, & Yaffe, 2019), we tested whether interfering with the circadian rhythm 

system would worsen disease. Theta in RML mice measured two weeks after the last 

PA tended to be different between JL and undisturbed control mice but was not 

significant. Notably, this corresponded to 13 WPI, still before theta is increased in RML 

versus controls, so JL would need to have a big impact to yield a detectable difference. 
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In this light, we were somewhat surprised to see even the modest effect on reactive 

gliosis. It is conceivable that a more intense jet lag paradigm or an experiment ending 

later in the disease course would have a larger impact. The results presented here 

provide an initial framework to guide future experiments testing the effects of circadian 

rhythm interference on neurodegeneration. 

Astrocytes reduce synthesis of ribosomes and mitochondria 

Human PrDs are characterised by reduced synthesis of mitochondria and 

ribosomes (Ansoleaga et al., 2016; Frau-Mendez et al., 2017), and our cell-type-

specific data suggest that during early disease, these changes occur in astrocytes, 

even before other signs of disease. There are several possible explanations for why 

astrocytes deploy this strategy. 

The strong reduction of ribosome protein mRNAs could be related to ribosome 

specialization, where the stoichiometric ratio of ribosomal proteins differs between 

tissues and brain regions, possibly to steer the preferential translation of specific 

mRNAs (Jackson, 2014; Kaczmarczyk et al., 2021; Preiss, 2016; Shi et al., 2017; Xue 

& Barna, 2012). However, the reduction in many ribosome proteins in combination with 

reduced mitochondrial proteins suggests it is not simply ribosome specialization. Since 

ribosomes are highly abundant and energy intensive to make, their synthesis is tightly 

coupled to that of mitochondria, and the reduction in both implies that complete 

ribosome synthesis is decreased. In the mouse brain, the half-life for ribosomal and 

mitochondrial proteins is approximately 10 and 20 days, respectively (Fornasiero et al., 

2018). Thus, while acute intracellular signaling (e.g., phosphorylation), occurs without 

mRNA expression changes, drivers of long-lasting reduction in mitochondria and 
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ribosomes will likely be directed by gene expression changes, which might be reflected 

in our data.  

Glycogen metabolism, a key function of astrocyte energetics, was not affected as 

adenylate cyclases, phosphodiesterases and other genes associated with protein 

kinase A signaling were unchanged. The mTOR (mechanistic target of Rapamycin) 

pathway also senses energy levels and controls growth, in part through coordination 

of ribosome biogenesis. However, the only DEG related to mTOR, Fkbp8, is an 

inhibitor and its decrease should therefore stimulate ribosome biogenesis. Thus, a lack 

of glycogen and mTOR signaling changes suggest there is not a change in metabolism.  

The unfolded protein response acts to relieve protein misfolding stress by reducing 

overall protein synthesis, especially ribosomes, and increasing production of protein 

quality control proteins (e.g., chaperones) (Hetz, Zhang, & Kaufman, 2020). Such a 

response was noted in an over-expression transgenic model of acquired prion disease 

(Moreno et al., 2012; Smith et al., 2020). However, data from another study (Scheckel 

et al., 2020) and ours did not demonstrate increased synthesis of protein quality control 

genes, suggesting that an artifactual unfolded protein response may have been 

triggered in the overexpression transgene study (Smith et al., 2020).  

A final explanation for the reduced ribosome synthesis in our study relates to 

molecular crowding. Cells tune ribosome abundance to sculpt their physical properties, 

including diffusion rates of intracellular protein aggregates or cellular stiffness (Delarue 

et al., 2018; Evers, Holt, Alberti, & Mashaghi, 2021). It is conceivable that astrocytes 

would benefit from such a manipulation in early stage PrD. 
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These results in the context of previous studies 

Previous reports have also contributed to our understanding of selective 

vulnerability by applying alternative methods. The laser capture microdissection 

approach was used to cleanly remove sections of the CA1 region of the hippocampus 

or granule cells of the cerebellum from mice at various stages of PrD (Majer et al., 

2012; Majer et al., 2019). Purified RNA was then measured with microarrays. These 

regions primarily, or exclusively, contain glutamatergic neurons and are thus most 

comparable to our glutamatergic RiboTag samples. Interestingly, they found RML 

upregulated genes related to actin-cytoskeleton in both regions early in disease, with 

a stronger response in the cerebellum. Our data also hint at the cerebellum being the 

location of affected glutamatergic neurons as some of the DEGs (e.g., Zic1 and Zic2) 

are preferentially expressed there, according to the Allen Brain Atlas. 

Another study employed fluorescent activated cell sorting to study microglia from 

prion diseased mice (Vincenti et al., 2015), a cell type providing an important 

neuroprotective function to brains during prion diseases (Zhu et al., 2016). 

Interestingly, microglia sharply increase expression of mitochondrial and ribosomal 

protein encoding genes (Vincenti et al., 2015), in direct contrast to what we report here 

for astrocytes. This difference may relate to the concept that ribosome abundance is 

employed to regulate intracellular crowding (Delarue et al., 2018; Evers et al., 2021) 

and/or due to differences in phagocytic capacity by micro- and astroglia during PrDs 

(Sinha et al., 2021). 

During the completion of our work a report of experiments like ours was published 

(Scheckel et al., 2020). They employed a Cre dependent ribosome tagging system 

analogous to RiboTag to study the responses of excitatory and PV neurons, 
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astrocytes, and microglia to intraperitoneal RML injection. Despite the overall similarity 

of the experiments, the results in the two studies were surprisingly different.  For 

example, in their study 24 WPI corresponded to 75% of complete disease progression, 

with less than 300 DEGs, whereas the 18 WPI timepoint of our study corresponded to 

80% of disease progression, with thousands of DEGs, many with |L2FC| >> 1. 

Furthermore, we detected over 200 DEGs at 10 WPI representing 44% disease 

progression, while they detected no DEGs at 16 WPI, representing 50% disease 

progression. Last, they detected no changes in astrocytes and microglia until late in 

disease, and none in neurons until mice were near death. One explanation for the 

discrepancy is the application of a |L2FC| > 1 cutoff in their study, which we did not 

apply since we expected only small changes in mild disease stages. We consider it 

likely that mRNAs changing less than 2-fold can have substantial biological impact. For 

example, given how abundant they are in the first place, it is easy to envision how the 

coordinated reduction of ribosomes and mitochondria in astrocytes at 10 WPI may 

impact on cellular metabolism, or as discussed earlier, intracellular crowding. 

Additional explanations for the different outcomes between the studies are technical in 

nature, including different mouse genetic backgrounds, different treatments of RNA 

(e.g., the application of RNase in their procedures), different transgenic mouse lines, 

etc. All explanations ought to be considered when comparing these studies. 

Outlook 

With these results in hand, it will now be interesting to study additional, early time 

points, especially considering the drastic changes in gene expression at 18 WPI, as 

well as selected brain regions to further study localized subgroups of astrocytes, 

GABAergic and glutamatergic neurons. Furthermore, in addition to actively translated 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.11.26.470101doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.26.470101
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

23 
 

mRNAs, other levels of gene expression including miRNAs and lncRNAs as well as 

epigenetic features could be analyzed from specific cell types using the Tagger mouse 

line, analogous to the RiboTag system, but expressing four tagging modalities 

(Kaczmarczyk et al., 2019). Studying multiple levels of gene expression in a cell-type-

specific manner will greatly enhance our understanding of disease mechanisms and 

may point towards therapeutic targets. The work described here, validating such a 

system in our mouse model in the context of an EEG-based early biomarker of disease 

progression, is an important first step in this direction. 

Materials and Methods 

Mouse lines and husbandry 

Mice were housed in individual ventilated cages (22°C; 60% humidity) on a standard 

12h light / 12h dark cycle and had access to food and water ad libitum. RiboTag mice 

(Jax #11029; (Sanz et al., 2009)) were crossed to cell-type-specific Cre driver lines: 

Vglut2-Cre (Jax #016963; (Vong et al., 2011), Gad2-Cre (Jax #010802; (Taniguchi et 

al., 2011), SST-Cre; Jax #013044, PV-Cre (Jax #008069; (Hippenmeyer et al., 2005)) 

and Cx43-CreERT a gift from Martin Theis, (Kretz et al., 2003). To induce Cre activity 

in Rtag/Cnx43-CreERT mice, starting one week before sacrifice, Tamoxifen (T5648, 

Sigma-Aldrich) prepared as 10mg/ml in 10% ethanol / 90% sterile sunflower oil, was 

intraperitoneally injected, 10µl/g body weight, once per day for three days.  

Experimental mice were heterozygous for both RiboTag and Cre recombinase. For 

each condition (5 RiboTag/Cre combinations, injected with 20µl 0.1% RML or NBH, 

sacrificed at 10 or 18 WPI) four mice were used (total n=80). Mice were genotyped for 

the presence of Cre and the RiboTag allele using an established PCR protocol (Sanz 

et al., 2009). Prior to intercrossing, each Cre and RiboTag mouse line was bred to S4 
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for at least 8 generations and were verified to be at least 99% 129S4 (Kaczmarczyk et 

al., 2021) by a commercial high throughput single nucleotide polymorphism service 

(Envigo/Harlan).  

NBH/RML prion injections 

The RML prion homogenate used in these experiments was originally acquired from 

Gregory Raymond (Rocky Mountain Labs).  It was injected into 129S4 mice at the 

location where this line originated, the Whitehead Institute for Biomedical Research, 

Cambridge, Massachusetts, resulting in an incubation period to terminal disease of 

22.8 weeks. Brain homogenates prepared from these RML-infected 129S4 mice 

resulted in an incubation period to terminal disease of 22.6 weeks and were the source 

of RML for the EEG, JL and RiboTag experiments reported here. All three experiments 

included a common injection procedure: 20µl 0.1% brain homogenate from normal 

brain (NBH) or RML infected mice was injected into the right brain hemisphere at the 

bregmatic suture using hand-held syringes with needle guides to control injection depth 

of approximately 3.5 mm.  

EEG and sleep recordings 

For recordings of EEG, EMG, body temperature, and locomotor activity, ten male 

wild type 129S4/J (Jax #009104) mice were bred in-house and injected with NBH (n=5) 

or RML (n=5). Only males were used to reduce the variability of sleep parameters 

influenced by sex (Mong et al., 2011; Mong & Cusmano, 2016). They were injected at 

1 year of age since the study was done in parallel with a similar study of inherited prion 

diseases that required older mice (manuscript in preparation). Mice injected at this age 

die from RML only 5% faster than young mice (Sorce et al., 2020). Surgical procedure: 

After at least twelve and a maximum of 22 d incubation time, mice were implanted 
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intraperitoneally with F20-EET transmitters (Channel bandwidth 1-50Hz, Data 

Sciences International (DSI)) under isoflurane anesthesia. EEG leads were routed 

subcutaneously to the skull, placed epidurally above the left frontal cortex (AP: 1.5, 

ML: 1.5 mm from bregma, negative lead) and the right parietal cortex (AP: -2.5, ML: 

2.0, positive lead) and fixed in place with dental acrylic. EMG leads were anchored in 

the neck muscles. Mice were allowed at least two weeks of recovery before recordings. 

Data acquisition and analysis: Undisturbed 24 h baseline recordings were performed 

in the home cages. Mice were kept in individual cages but could hear, smell and see 

at least one other mouse of the same experiment. The cages were placed in ventilated 

cabinets with a 12h light / 12h dark cycle. Sleep scoring and analysis was done as 

reported before (Dittrich, Morairty, Warrier, & Kilduff, 2015; Morairty et al., 2013; Parks 

et al., 2016). EEG and EMG were recorded via telemetry using DQ ART software (DSI). 

Sampling frequencies were 500Hz. EEG low-pass filter cut off was 100Hz (in addition 

to the 1Hz high pass and 50Hz low pass anti-aliasing filtering built into the transmitter). 

EEG and EMG recordings were scored in 10s epochs as wake, rapid eye movement 

sleep or non-rapid eye movement sleep by an expert scorer who examined the 

recordings visually using NeuroScore 3.0 software (DSI). EEG spectra were analyzed 

with a fast Fourier transform algorithm using a Hanning Window without overlap 

(NeuroScore) on all epochs without stage transition or artifact. For direct comparisons 

of EEG power spectra, power was expressed as relative power, i.e., each frequency 

bin (0.122Hz) was divided by the sum of the values between 0 and 50 Hz. Relative 

theta power was calculated as the power between 5 and 10 Hz (summed values of the 

respective frequency bins) divided by the sum of the values between 0 and 50 Hz. 
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Jet lag 

The jet lag (JL) experiment was designed to study 20 male mice in parallel, our 

maximum recording capacity, as follows: n = 7 each for RML + JL and RML undisturbed 

control; n=3 each for NBH + JL and NBH + undisturbed control.  To ensure the loss of 

a mouse from the injection or implant procedures would not compromise the 

experiment, NBH and RML were each injected into an extra mouse. While they were 

not needed for the EEG study, they were both subjected to JL and included in the 

histology study.  Since it was not feasible to obtain such a large cohort of males by 

breeding in our facility, we imported C57Bl/6JRj male mice at approximately 3 months 

of age from Janvier in France.  Following injections with NBH or RML, mice were kept 

in two identical microisolator cabinets, one for the jet lag and the other for the 

undisturbed control group, with 12-hour light cycles initially set for lights on at 9:00. 

Two weeks after injections surgeries were performed to implant the telemetric 

recording devices, as done above. The first 24h baseline recordings were done at 5 

and 6 WPI. Immediately after the 6 WPI recordings, lights for the JL group were 

subjected to a phase advance (PA) whereby the lights turn on and off 6 hours earlier 

in the day. After one week of habituation to the advanced Zeitgeber, EEG was recorded 

again, and the cycle of PA followed by EEG 1 week later was repeated for a total of 6 

PAs. PAs were always accomplished by shortening the light phase. Following the final 

PA at 11 WPI, additional EEG recordings were made at 12, 13 and 14 WPI. All 24 h 

recordings were started at the same clock time irrespective of light status, keeping the 

distance between recordings constant. Since the most rigorous analysis of EEG data 

requires scoring by a human expert, and the scoring involves inspection of data at a 

resolution of 10 second bins, it was unfeasible to score all data. We expected that at 

12 WPI there might be residual effects from the previous PA affecting EEG, 
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independent of disease. However, we thought that by 13 WPI, the immediate effects 

of PA would have passed, and we would be able to measure the lasting impact of JL 

on theta, and thus focused on these data for the analysis. Mice were sacrificed 

immediately after the last recording and brains were processed as described above. 

JL and undisturbed control brains were embedded in blocks together to ensure equal 

processing and staining and to facilitate microscopic evaluation. 

Tissue preparation 

For gene expression studies 2-4-month-old RiboTag mice were injected, 4 mice 

each for NBH and RML. Only females were used for Gad2, PV, and Cx43 lines; both 

sexes were used in nearly equal proportion for vGlut2 and SST lines. RiboTag mice 

were sacrificed at 10 or 18 WPI by CO2 asphyxiation. Brains were removed from the 

skull, the olfactory bulbs were removed and discarded, the brain stem was cut at the 

level of the most caudal tip of the cerebellum, the two hemispheres were separated; 

one was snap frozen for mRNA isolation and the other formalin fixed for IHC. Prion 

infectivity in formalin fixed hemispheres was inactivated with formic acid prior to 

embedding in paraffin cassettes. Histology samples from mice injected with NBH were 

treated the same way in parallel. 

RiboTag translational profiling 

Each frozen brain hemisphere was weighed and put into a tissue grinder with a 

corresponding volume of polysome buffer (50mM Tri pH = 7.5, 100mM KCl, 12mM 

MgCl2, 1% Nonidet P-40, 1mM DTT, 1x Protease inhibitor (SigmaFast Protease 

Inhibitor Tablets (S8820), Sigma-Aldrich), 100U/ml RNAse inhibitor (RNAase inhibitor 

(N8080119), Thermo Fisher Scientific), 100µg/mL cycloheximide (Cycloheximide 

(C7698), Sigma-Aldrich) to prepare a 10% brain homogenate. Homogenate was 
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prepared with help of a motorized tissue grinder (Heidolph, 600rpm, ~30s) on ice and 

centrifuged (10000g, 10min, 4°C). Supernatant was transferred to a new reaction tube 

and used as IP input and for isolation of total RNA. For IP with magnetic beads 

(Dynabeads Protein G 10004D, Thermo Fisher Scientific) pre-cleared supernatant 

(25µl beads and 200µl supernatant, 30min, 4°C) was first incubated with anti-HA 

antibody 12CA5 (Roche Life Science; 200µl pre-cleared supernatant, 10µl antibody, 

45min, 4°C) and this mixture then added to the magnetic beads (50µl beads, 1-2h, 

4°C). Magnetic beads were washed three times with PBS (~500µl) before use and 

incubation steps of IP were done on a rotator. IP samples were put on a magnetic rack 

and the magnetic bead pellets were washed three times with high salt buffer (50mM 

Tris pH = 7.5, 300mM KCl, 12mM MgCl2, 1% Nonidet P-40, 1mM DTT, 100µg/ml 

cycloheximide; ~500µl). Cell-type-specific mRNA was eluted from the magnetic beads 

by RLT buffer supplemented with 2-mercaptoethanol from the RNeasy Mini Kit 

(Quiagen; 200µl; Thermomixer: 700rpm, 5-10min, RT) and afterwards isolated with this 

kit. For each supernatant two technical replicates of IP were done, and total RNA from 

the input supernatant (200µl) was isolated in parallel. Quality and quantity of 

immunoprecipitated mRNA and total RNA were verified by Qubit Fluorometer (Thermo 

Fisher Scientific) and Agilent 2100 Bioanalyzer (Agilent Technologies). 

RNA-seq library preparation and RNA-sequencing 

300ng of total RNA or 150ng of immunoprecipitated mRNA was used for RNA-

sequencing. Each sample was checked for amount and quality using a Nanodrop 2000 

(Thermo Fisher Scientific) and Agilent 2100 Bioanalyzer. For each condition (5 

Cre/Rtag lines, injected with RML or NBH, sacrificed at 10 or 18 WPI) we used four 

individual samples (exceptions: SST RML 10 WPI: n = 3; PV NBH 10 WPI: n = 3; Astro 
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RML 18 WPI: n = 2). RNA was converted to cDNA using the Transcriptor High Fidelity 

cDNA Synthesis Kit (Roche Aplied Science). RNA-sequencing libraries were prepared 

using the TruSeq RNA Sample Preparation 2 Kit (Illumina). The library quality was 

checked using an Agilent 2100 Bioanalyzer and concentration was measured by a 

Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific) and adjusted to 2nM before 

sequencing (single end, 50 bp) on a HiSeq 2000 Sequencer (Illumina) using TruSeq 

SR Cluster Kit 3-cBot-HS (Illumina) and TruSeq SBS Kit 3-HS (Illumina) according to 

the manufacturer’s instructions. 

RNA-seq data analysis 

Quality assessment was based on the raw reads using the FastQC (0.10.1, 

Babraham Bioinformatics) quality control tool. The sequence reads (single-end, 50 bp) 

were aligned to the mouse reference genome (mm10) with Bowtie2 (2.0.2) (Langmead 

& Salzberg, 2012) using RSEM (1.2.29) (Li & Dewey, 2011) with default parameters. 

First, the mouse reference genome was indexed using the Ensembl annotations 

(84.38) with rsem-prepare-reference from RSEM software. Next, rsem-calculate-

expression was used to align the reads and quantify the gene abundance. Differential 

expression analysis was carried out using total gene read counts with DESeq2 

package (1.12.4) (Love, Huber, & Anders, 2014). Genes with less than five reads 

(baseMean) were filtered out and false discovery rate (padj/FDR) was recalculated with 

Benjamini-Hochberg procedure for the remaining genes.  

Overrepresentation analysis (ORA) and gene set enrichment analysis (GSEA) 

ORA was performed with the enricher() function from clusterProfiler R package 

(Yu, Wang, Han, & He, 2012). GSEA was done using WebGestallt (Liao, Wang, 

Jaehnig, Shi, & Zhang, 2019). Gene sets were sourced from Molecular Signature 
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Database 3.0 (Liberzon et al., 2011) and sets containing less than 10 or more than 500 

genes were excluded from the analysis. For ORA, all annotated genes expressed in 

the analyzed disease time point and cell-type were used as background gene set. 

Redundant categories were filtered out using simplifyEnrichment R package (v.1.3.1) 

(10.18129/B9.bioc.simplifyEnrichment) and visualized using ggplot2 R package 

(v.3.3.5) (https://ggplot2.tidyverse.org). 

Gene network construction for disease module analysis 

Protein-protein interaction network for Mus musculus was sourced from the STRING 

database (v. 11.0) (Szklarczyk et al., 2021). ENSEMBL protein IDS representing node 

names were replaced with corresponding ENTREZ gene IDs using the getBM() 

function (biomaRt package; version 2.64.3). Data were filtered for interactions with 

combined confidence score ≥ 0.7 and a separate graph object was created for all cell 

types (igraph package; version 1.2.6), including only the vertices with corresponding 

Wald test p-values (genes that were not expressed in either RML or NBH mice were 

removed). Topological characteristics of all generated networks are presented in Table 

S1. Interactome information was sourced from the STRING database (v. 11.0) 

(Szklarczyk et al., 2021). The interactome igraph object used in this study is available 

from GitHub (https://tinyurl.com/tcyryath). 

Seed clusters validation for disease module analysis 

We have considered the genes with FDR < 0.1 as members of the seed cluster and 

used a network-based approach to infer cell-type-specific disease modules. For a 

given set of seed genes LCC size was measured with components() function (igraph 

R package) and compared to a reference distribution obtained by measuring the LCC 

size of 10,000 random node subsets of size equal to that of the original seed gene set. 
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Randomization was done so that node selection was limited to genes with degrees 

comparable to those of the seed cluster. To avoid repeated selection of high degree 

nodes (in biological networks such nodes are rare, thus many have unique degree 

values), nodes within a specified degree interval were organized into bins such that 

there were at least 100 nodes in each bin. Random sampling of nodes was then 

performed from bins containing seed genes (degree-preserving randomization). 

Statistical significance of the observed LCC size was assessed by calculating the 

empirical p-value (the fraction of random sets of nodes with LCC size equal to or 

greater than the size of LCC formed by seed genes), and Z-scores (Z-score =(LCCO 

- mean(LCCR))/sd(LCCR), where LCCO is observed LCC LCCR is random LCC 

and sd is standard deviation). All scripts are available from GitHub 

(https://tinyurl.com/5sbexp89). 

Construction and validation of cell type-specific disease modules 

Candidate disease module genes were identified for selected cell types using the 

modified DIAMOnD algorithm, consisting of the following steps:  1) for all genes 

connected to any of the seed nodes, Wald test p-values (the minimum value was 

selected in cases where multiple Wald test p–values corresponded to the same 

ENTREZ gene ID) and connectivity significance were determined, 2) candidate 

proteins were ranked based on their respective Wald test p-values and connectivity 

significance (ties within individual rankings were resolved using fractional ranking), 3) 

Individual rankings were combined into a single score given as the sum of the inverted 

ranks. 4) the gene with the highest combined score was included into the disease 

module and became a member of the new seed cluster, 6) steps 1-5 were repeated 

500 times. The threshold for the total number of module genes was set as the iteration 
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at which the number of genes with Wald test p-value < 0.01 in the module reached a 

plateau (Fig S5B). The relevance of individual thresholds was verified by determining 

the number of module genes sharing functional annotations with seed nodes. 

Annotated gene sets from Gene Ontology (GO), KEGG, Reactome and Biocarta were 

retrieved using the msigdbr R package (v7.4.1) and all GO terms/pathways 

significantly enriched within a given set of seed genes were identified using Fischer’s 

exact test (Benjamini–Hochberg adjusted p-value < 0.05) (Gene sets containing less 

than 10 and more than 500 genes were excluded from the analysis).  Module genes 

annotated to any of the identified GO terms/pathways were considered true positives. 

The statistical significance of the number of true positive genes at a given iteration step 

was determined using Fischer’s exact test). Gene modules were validated using 

annotated gene sets from Gene Ontology (GO), KEGG, Reactome and Biocarta were 

retrieved using msigdbr R package (v. 7.4.1) and used in ORA analysis using 

clusterProfiler R package. Genes annotated to any of the identified GO 

terms/pathways were included in the validation gene set. The statistical significance of 

the number of functionally related module genes at a given iteration step was 

determined using one-sided Fisher’s exact test. 

Data availability 

The raw and preprocessed data discussed in this publication have been deposited 

in NCBI's Gene Expression Omnibus (Edgar, Domrachev, & Lash, 2002) and are 

accessible through GEO Series accession number GSE189527 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189527). 
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Figure 1. Gradual increase in EEG theta power and histopathological changes in 

RML. (A) Location of RML and NBH injections, marked by a red X. (B) Conceptual 

experimental timeline for collection of tissues for translatome and histopathological 

analysis, in relation to disease progression. At the pre-onset stage mice appear normal 

and lack disease indicators, but neural health begins to decline. (C) Summarized EEG 

theta power of wake (top), NREM sleep (second from top) and REM sleep (third from 

top) mice injected with RML (red) or NBH (black) juxtaposed with weekly percentage 

body weight measurement (expressed as deviation from initial weight) of the same 
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mouse cohorts (bottom). Two-factor mixed ANOVA tests demonstrate significant 

difference in all four measurements (respectively: F(6,48) = 8.9, p-value < 0.001; 

F(6,48) = 6.9, p-value < 0.001; F(6,48) = 8.3, p-value < 0.001; F(14,98) = 4.8, p-value 

< 0.001). Differences were significant (p-value ≤ 0.05, Holm-Šídák test) at 18 WPI for 

wake and NREM and at 21 WPI for NREM (marked by *). (D)  Immunohistochemistry 

staining of thalamus of RML infected and control (mice injected with NBH) 4 μm thick 

formalin fixed paraffin embedded brain sections at 10 and 18 WPI. Staining with SAF84 

prion protein antibody (brown) after proteinase K treatment to detect aggregated PrP 

(PrPres, top row), staining with GFAP antibody (dark brown) to detect astrogliosis 

(middle row) and staining with Iba1 antibody (dark brown) to detect microglia activation 

(bottom row). All sections were counterstained with hematoxylin. Spongiosis is 

apparent in the context of the intense SAF84 staining.  Scale bar represents 50 µm 

and applies to all images.  
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Figure 2. RiboTag activation and validation. (A) The RiboTag system is activated 

in cells with Cre activity through site-directed recombination in Rpl22 to make Rpl22-

HA (RiboTag). Frozen mouse brain tissue is homogenized, creating a mix of mRNAs 

attached to either normal ribosomes (white oval bubbles) or RiboTagged ribosomes 

(white oval bubbles with pink tags) made specifically by Cre+ cells. Cell-type-specific, 

ribosome associated mRNA is isolated by RiboTag IP with HA antibody and protein G 

magnetic beads. mRNA from Cre+ cells is then sequenced. (B) Cell types used in 

these studies. Shaded areas reflect the expression overlap between Gad2, PV and 
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SST Cre lines. (C) Confocal images of cortex following double immunofluorescence 

labeling of HA (RiboTag) and representative histological cell-type markers. Cell type 

markers used (from 1 to 5 respectively): Astrocytes (Sox9), GABAergic cells (Satb2; 

glutamatergic cell marker to highlight the lack of colocalization with GABAergic 

neurons), PV neurons (PV), SST neurons (Sst), glutamatergic neurons (Satb2). 

Examples for double-positive cells are indicated by arrowheads, HA-/marker+ cells by 

upward pointing arrows, HA+/marker- cells by downward pointing and smaller arrows. 

Scale bar indicates 50 µm (identical for all panels). C1: specific HA-labeled astrocyte-

like shaped cells colocalize with Sox9 in Cnx43-Cre/RiboTag mice. C2: Complete 

separation of HA and the glutamatergic marker, Satb2, in Gad2-Cre/RiboTag mice was 

observed. C3: PV and HA show substantial colocalization in PV-Cre/RiboTag mice. 

C4: All Sst+ cells were co-labeled for HA, although there were several HA+/SST- cells 

in SST-Cre/RiboTag mice. C5: Nearly all cells were co-labeled for HA and the nuclear 

marker for glutamatergic neurons, Satb2, in the vGlut2-cre/RiboTag mice. (D) Violin 

plots showing RiboTag IP specificity; each violin summarizes absolute expression 

(TPM) ratios (X-axis) of known cell type markers in IP samples and corresponding input 

(total RNA) samples (Y-axis).  
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Figure 3. Overview of translatome changes. (A) Numbers of differentially expressed 

genes (DEGs). Values represent numbers of genes found to be differentially expressed 

(FDR ≤ 0.1) in a single or combination of cell types studied. Combinations are marked 

by dumbbell-shaped symbols below the plots. The shade of grey corresponds to the 

directionality of changes (see legend above the panel). For 18 WPI all clusters 
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containing < 100 genes were omitted. Note that for 10 WPI, the changes in the 3 

affected cell types: astrocytes, glutamatergic cells and GABA cells are mostly non-

overlapping (respectively, 120, 66, and 34) (B) Visualization of DEGs (FDR ≤ 0.1; dark 

blue) and non-DEGs (FDR > 0.1; light grey) in all cell types and timepoints. Y-axis 

represents log2 fold change, X-axis represents cell type. (C) Overrepresentation 

analysis of DEGs in the affected cell types at 10 WPI. Significantly enriched categories 

were shown for molecular function (MF) and biological process (BP) gene ontology 

subsets.  Categories related to translation, cytoskeletal regulation and circadian rhythm 

were the most enriched in astrocytes, glutamatergic neurons and GABAergic neurons, 

respectively. (D) Gene set enrichment analysis (GSEA) in all cell types analyzed at 18 

WPI. Significantly enriched categories were shown for the MF gene ontology subset. 

The most prominent categories were related to translation and terminal oxidation 

(mitochondrial respiration). Cell type legend for all panels: Cx43: astrocytes, Gad2: 

GABAergic cells, vGluT2: glutamatergic neurons, PV, parvalbumin neurons, SST: 

Somatostatin neurons. 
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Figure 4. Changes in astrocytes (RiboTag::Cx43-Cre). (A) Overrepresentation 

analysis of DEGs in astrocytes (Cx43+ cells) at 10 WPI. Significantly enriched GO 
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categories were shown for molecular function (MF), biological process (BP) and 

cellular component (CC) GO subsets. Most significantly enriched categories were 

related to translation (e.g., ribosome biogenesis) and terminal oxidation (e.g., electron 

transfer). X-axis is the reciprocal of gene ratio. (B) RML causes reduced staining of 

Rps21, one of the ribosomal proteins downregulated at 10 WPI, especially in 

Bergmann glia between molecular (M) and granular (G) cell layers. (C) Visualization of 

10 WPI disease DIAMOnD modules constructed around 64 of 128 DEGs (large circles) 

in astrocytes. Small circles denote genes added by the DIAMOnD algorithm (see also 

Fig S6 for the same visualization with gene labels). The module consists of 6 

functionally related clusters (identified with the fast greedy modularity optimization 

algorithm). In each cluster, the genes annotated to the representative GO term are colored. 
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Figure 5. Changes in glutamatergic neurons (RiboTag::vGluT2-Cre). (A) 

Overrepresentation analysis of DEGs in glutamatergic neurons (vGluT2+ cells) at 10 

WPI. Significantly enriched GO categories were shown for molecular function (MF), 

biological process (BP) and cellular component (CC) GO subsets. Most significantly 

enriched categories were related to cytoskeleton (e.g., regulation of actin filament 

organization) and synaptic function (e.g., regulation of long-term synaptic depression). 

X-axis is the reciprocal of gene ratio. (B) Visualization of disease DIAMOnD modules 

constructed around 15 of 33 DEGs (circles) in glutamatergic neurons. Pentagons 

denote genes predicted by the DIAMOnD algorithm. The module consists of 7 

functionally related clusters (identified with the fast greedy modularity optimization 

algorithm). In each cluster, the genes annotated to the representative GO term are 

colored. 
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Figure 6. Changes in GABA neurons (RiboTag::Gad2-Cre). (A) Overrepresentation 

analysis of DEGs in GABAergic neurons (Gad2+ cells) at 10 WPI. Significantly 

enriched GO categories were shown for molecular function (MF), biological process 

(BP) and cellular component (CC) GO subsets.  Most significantly enriched categories 

were related to circadian rhythm (e.g., circadian regulation of gene expression) and 

translation (e.g., cytosolic large ribosomal subunit). X-axis is the reciprocal of gene 

ratio. (B) Visualization of disease DIAMOnD modules constructed around 27 of 69 

DEGs (large circles) in GABAergic neurons. Small circles denote genes added by the 

DIAMOnD algorithm. The module consists of 6 functionally related clusters (identified 

with the fast greedy modularity optimization algorithm), the largest of which involved 

‘rhythmic process’. In each cluster, the genes annotated to the representative GO term 

are colored. 
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Figure 7. A mild jet lag challenge mildly worsens RML. (A) Activity (group average) 

of mice measured with the DSI telemetric transmitter, simultaneously recording EEG, 

indicates that mice are least active (dark blue tiles, each tile = 1 h) when lights are on 

(tile groups framed in grey) and most active (light blue tiles) when lights are off (tile 

groups framed in black). Each row represents data from the indicated WPI. The right 

panel represents the undisturbed group; note that the grey (lights on) frame for each 

row is aligned with the grey frames in the other rows. The left panel shows that in the 

Jetlag group after baseline recordings at WPI 5 and 6, the grey frames shift (advance) 

6 h earlier each week until the final shift at WPI 12. Note that the tiles inside are still 

dark blue. (B) After two weeks to recover from the final PA, 24h measurements of theta 

at the end of WPI 13 revealed a trend consistent with enhancement of disease, 

although statistically not significant (ANOVA followed by Holm-Šídák test). (C) 

Thalamus stained for GFAP shows that JL modestly enhanced reactive gliosis in RML 

(top right versus top left) but had no effect on controls (bottom). Scalebar is 100 µm 

and applies to all images. 
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Figure S1. Characterization of EEG and sleep features in RML. (A-L) Frequency 

power spectra from serial EEG. (A-G) Examples of frequency power spectra during 

wake, acquired serially as disease progressed. The power in each frequency bin is 

expressed as percentage of the cumulative power of all frequencies (0-50 Hz). Curves 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.11.26.470101doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.26.470101
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

46 
 

depict group averages, shaded areas depict SEM. The degrees of freedom are 409 

and 3272. The p-values for post hoc uncorrected bin-by-bin t-tests are indicated below 

the spectra.  The average wake power spectra up to 11 WPI (C) shows no difference 

between the groups but at 13 WPI (D) differences begin to emerge and at 18 WPI (F) 

RML mice show a significant increase in relative power in the theta range (5-10 Hz) 

and a decrease in relative power in lower and higher frequencies. A summary of data 

in panels A-G is depicted in H, also shown in Fig 1C.  A similar increase in theta at 18 

WPI was also seen for NREM (J) and REM (L), but not at 5 WPI (I, K). (M-R) Baseline 

vigilance states, temperature and activity in RML and control mice, relative to 

time. (M, N) Average Wake, NREM and REM time during 24 h undisturbed recording. 

The shaded area indicates the 12 h lights-off period. Mixed model ANOVA did not 

reveal significant main effects for group (RML or NBH) nor interactions between group 

and Zeitgeber Time (ZT, hourly bins) for any vigilance state at either 5 WPI (M) or 18 

WPI (N). (O, P) Average intraperitoneal temperature across 24 h undisturbed 

recording. The average temperature did not differ between groups (no main effect 

found by ANOVA), and the course of temperature over time was also not affected by 

treatment (no interaction of temperature and ZT) at 5 and 18 WPI (O and P, 

respectively). The ANOVA result for the interaction is given at the bottom of the panel. 

(Q, R) Average locomotor activity across 24 h undisturbed recording. Activity levels did 

not differ between groups (no main effect), and there was no interaction between group 

and ZT (indicated at bottom of graphs) for 5 or 18 WPI (Q and R, respectively).  

Degrees of freedom for ANOVAs were 1, 8 for main effects of treatment group and 23, 

184 for interaction effects of treatment group and ZT (hourly bins). (S-V) Response to 

6 h sleep deprivation in RML and control mice (S, T) Vigilance states (wake, NREM, 

REM) across 6 h of total sleep deprivation by the gentle handling method and the 
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subsequent 3 h of recovery sleep opportunity at 5 and 16 WPI (18 WPI was not tested). 

The sleep deprivation period is indicated by the horizontal black bar at the top of each 

panel. T-tests of the first hour of recovery (ZT7) did not show significant differences for 

either state at 5 WPI (S, p > 0.21) or at 16 WPI (T, p > 0.48). (U, V) Average NREM 

EEG delta power (0.5-4Hz) during sleep deprivation and recovery, normalized by the 

average NREM delta power of the corresponding undisturbed baseline recording. Both 

groups show the expected increased delta power (values higher than 1) during 

recovery from sleep deprivation. However, a T-test of the first hour of recovery (ZT7) 

did not show a significant difference between groups at either 5 WPI (U, p = 0.078), or 

16 WPI (V, p = 0.669). 
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Figure S2. Immunofluorescence showing RiboTag expression specificity and 

sensitivity. (A) Confocal images of double immunofluorescence labeling of HA 
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(RiboTag) and representative histological cell-type markers. (B) Bar plots showing the 

numbers of cells immunopositive for HA and appropriate histochemical markers. 

Sensitivity is the percentage of cell profiles positive for the marker that is also positive 

for HA. Specificity is the percentage of cell profiles positive for HA that is also positive 

for the marker. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.11.26.470101doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.26.470101
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

50 
 

Figure S3. Translatome sequencing shows RiboTag expression specificity and 

sensitivity. (A) Principal Component Analysis (PCA) of RiboTag data from all cell 

types and time points analyzed. PCA was done on variance-stabilized normalized 

counts (vst() transformation using DEseq2 R package). Clustering was dominated 

by differences between cell types rather than disease states. (B) Heatmap showing 

RiboTag specificity. Each row corresponds to a cell type marker for one of the cell 

types listed on the left side of the heatmap. Each column represents one biological 

replicate (one mouse), and the specification of the sample is encoded by the colored 

legend below the heatmap. Input samples are total RNA collected specifically for this 

analysis for comparative purposes. Z-score for each row was calculated so that the 

mean input level for each row was set to 0 (Z=(x–row_meaninput)/row_SD, where 

row_SD is row standard deviation and x is the TPM value). 
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Figure S4. Gene Set Enrichment Analysis (GSEA) of 18 WPI samples. (A-E) GSEA 

of DEGs in (respectively) astrocytes, glutamatergic neurons, SST neurons, PV 

neurons and GABAergic neurons at 18 WPI. In case of PV neurons (D), no terms 

enriched at FDR < 0.1 were found and therefore terms > 0.1 were shown. Categories 

with GSEA FDR < 0.1 were shown after removing similar terms based on semantic 

similarity using GOSemSim R package (see methods for details). Categories related 

to terminal oxidation (highlighted in red) and translation (highlighted in blue) were 

amongst the most enriched, and were common across multiple analyzed cell types, 

suggesting that the 18 WPI timepoint is marked by canonical changes to mitochondria 

and ribosomes, typical for neurodegenerative diseases. 
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Figure S5. LCC size compared to randomly generated control LCCs. (A, B) LCCs 

were calculated for each cell type and compared to randomly generated LCCs in which 

random genes were limited to those with similar connectivity as the test genes (degree-

preserving) or were full random. (A) For affected cells (Cx43, Gad2 and vGluT2), LCC 

sizes were larger (indicated by dotted lines) than control LCCs computed using either 

method. (B) PV and SST cells had LCCs that were not larger than the degree-

preserving controls. (C) Determination of lists sizes was based on the breakpoint 

threshold resulting from repeated additions of one gene at each iteration.  
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Figure S6. Overrepresentation analysis of astrocytic (RiboTag::Cx43-Cre) 

DIAMOnD module. Colors represent fast-greedy clustering of genes within the 

module. 
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Figure S7. Overrepresentation analysis of glutamatergic (RiboTag::vGluT2-Cre) 

DIAMOnD module. Colors represent fast-greedy clustering of genes within the 

module. 
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Figure S8. Overrepresentation analysis of GABAergic (RiboTag::Gad2-Cre) 

DIAMOnD module. Colors represent fast-greedy clustering of genes within the 

module. 
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Figure S9. Topological characteristics of disease modules obtained with original (left) 

and modified (right) DIAMOnD algorithm. N - number of nodes, s - number of seed 

nodes in the final module, d - edge density, k - number of edges, ks - number of edges 

including predicted and seed nodes (ks). The modules produced by the modified 

algorithm had more seed genes and a higher percentage of connections between initial 

seed genes and predicted genes than those obtained from the original algorithm. 
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Table S1. Topological properties of PPI networks. 
  Number of 

nodes 
Number of 

edges 
Size of 

LCC 

Number of 
connected 

components 

LCC 
diameter 

LCC mean 
distance 

Original PPI 
network 

 16181 364969 15767 152 15 3.955 

Cx43  12800 267375 12401 271 13 3.862 
Gad2  12636 264921 12248 273 13 3.852 

vGluT2  12557 259357 12160 286 13 3.866 

Table S1. Topological characteristics of all generated networks are presented. In 

contrast to a previous report (Magger, Waldman, Ruppin, & Sharan, 2012), we observed 

that node removal does not have a major impact on network connectivity. As indicated 

by the number of connected components, filtered networks are more fragmented in 

comparison to the generic network. However, most of the genes constitute a single 

connected component (96.9% on average). The diameter and mean shortest distance 

did not increase with node removal, suggesting that the “small world” property of the 

original network was preserved. 
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Table S2. Seed gene information and validation results.  

  Number of seed 
genes 

Number of seed 
genes in the PPI 

network 
Observed LCC 

size 
Empirical 
p-value 

Cx43 137 128 55 0.0048 
Gad2 83 69 9 0.0014 

vGluT2 38 33 4 0.0426 

Table S2. Seed gene information and validation results. Only a fraction of seed 

genes have corresponding vertices in the PPI network. Most of the seeds occupy 

neighboring interactome positions, as indicated by the significance of their LCC size 

(empirical p-value < 0.05). Note that sizes of LCCs formed by seeds were compared 

to a reference distribution which was obtained by measuring the LCC size of random 

genes with degrees similar to the ones of the initial seed cluster. Thus, the observed 

local clustering cannot be attributed solely to the network's structural characteristics, 

but points to the network localization of the seed genes themselves, highlighting their 

relevance in marking the disease-related interactome community. 

Supplementary methods  

Characterization of module topology   

Topological characteristics of generated graphs for the original and 

modified DIAMOnD methods were determined with the following functions of 

the igraph R package: gorder() (number of nodes), gsize() (number of edges), 

components (number and size of connected components), diameter() (size of the 

longest of all shortest paths in the module), mean_distance() (average length of all 

pairwise shortest distances), edge_density() (the number of edges divided by the 

number of possible edges). The genes constituting individual disease modules 

constructed with the modified DIAMOnD algorithm were assigned to unique 
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communities using the fast greedy modularity optimization algorithm 

(cluster_fast_greedy() function in igraph package). Each module gene set with 

size ≥10 was then tested for enrichment with GO terms. The term with the 

lowest Benjamini Hochberg adjusted p-value was chosen as a representative term of 

each community.   

Cell counting to estimate RiboTag expression fidelity   

To assess the overlap between cells expressing the HA-tag and cells 

immunopositive for select markers, we counted cell profiles in hippocampus and 

cortex. A picture of 320x320 µm was taken with a confocal microscope (LSM 700, 

Zeiss) using a 20x objective and all labelled cell profiles counted. For the 

hippocampus, we selected CA1. In cases where CA1 showed no or very few labelled 

cells, we analyzed the hilus region. For the cortex, we selected the deep layers right 

above CA1. If the number of HA+ cells was low, an additional second or third picture 

was taken, so the minimal number of HA+ cells in one analysis was 10. For images 

selected for publication, brightness and contrast were enhanced using ImageJ.   

Modification of the  DIAMOnD  method  

First, we constructed a PPI network using the STRING database (Szklarczyk et al., 

2021). We considered all interactions in the filtered networks, regardless of the species 

in which they were primarily described. Although we didn’t choose to further trim the 

interactome data, we observed that only a fraction of seed genes has corresponding 

vertices in the PPI network which may serve as proof of its incompleteness (Table S2). 

However, we found that most of the seeds occupy neighboring interactome 

positions (Table S2). With consideration of the shortcomings of the PPI networks, we 

sought to develop an algorithm relying on the connectivity patterns of seed genes as 
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well as on the information contained in gene expression data. We chose to modify the 

existing DIAMOnD algorithm (Ghiassian et al., 2015). For every candidate gene, we 

considered the significance of the change in its expression levels (Wald test p-value 

from DEseq2) and connectivity significance as a measure of the gene’s topological 

relevance. Specifically, we have identified all seed gene neighbors and ranked them 

according to their respective connectivity significance p-values and differential 

expression (Wald test) p-values. The individual rankings were then combined into a 

single integrated score. The gene with the highest score was included in the growing 

disease module. As in the original algorithm, each identified gene was considered a 

member of the seed cluster in the following iteration (see also “Construction and 

validation of cell type-specific disease modules” in the main methods). This approach 

prevents omissions of potential genes of interest that could simply be excluded due to 

the following possibilities: 1) conservative criteria selection of DEGs based solely on 

an arbitrary significance threshold, 2) changes to gene expression being too subtle to 

be detected due to low statistical power inherent in settings with a large number of 

variables and a relatively low number of biological replicates, 3) subthreshold changes 

of expression of several genes belonging to a functional set, but having a significant 

cumulative effect on the network 4) changes to certain genes not being reflected by 

RNA levels (e.g., protein stability affected instead) or 5) changes involving a different 

regulatory modality (e.g., phosphorylation). All algorithms used are available on GitHub 

(https://tinyurl.com/5sbexp89).  

Validation  of the  DIAMOnD  method  

We integrated the interactome and RiboTag data sets using a modification of 

the DIAMOnD method (Ghiassian et al., 2015) and sought to identify putative disease 
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modules specific to each cell type in early pre-symptomatic disease stage (10 

WPI).  To compare the performance of the default and the modified DIAMOnD version, 

we first specified a second, less stringent arbitrary significance threshold (Wald test p-

value from DEseq2 < 0.01) to define a set of genes that are likely to be differentially 

expressed but do not meet the seed cluster inclusion criteria and consider them as part 

of a module validation cluster (putatively regulated genes). The rationale for this 

approach was that if DEGs are to be primarily found at the top of a gene list ranked 

according to differential expression p-values, a disease module should be enriched in 

genes from the top of the p-value ranking. Figure S5C shows that more putatively 

regulated genes were found by the modified diamond method in 500 

iterations. Moreover, the rate at which new putatively regulated genes were added to 

the module was higher up to a threshold (Fig 5C) that was used as the iteration cutoff 

for formulating the final modules.  

Cell counting to estimate RiboTag expression fidelity   

To assess the overlap between cells expressing the HA-tag and 

cells immunopositive for select markers, we counted cell profiles in hippocampus and 

cortex. A picture of 320x320 µm was taken with a confocal microscope (LSM 700, 

Zeiss) using a 20x objective and all labelled cell profiles counted. For the hippocampus, 

we selected CA1. In cases where CA1 showed no or very few labelled cells, 

we analyzed the hilus region. For the cortex, we selected the deep layers right above 

CA1. If the number of HA+ cells was low, an additional second or third picture was 

taken, so the minimal number of HA+ cells in one analysis was 10. For images selected 

for publication, brightness and contrast were enhanced using ImageJ.   
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 Immunohistochemistry   

Formalin fixed brain tissues were treated with 98% formic acid to reduce prion 

infectivity, and then post-fixed for at least four more days in formalin. Brains were then 

embedded in paraffin with each cassette containing both NBH and RML injected 

brains, ensuring that controls and diseased samples were stained identically. The 

necessity of formic acid pretreatment renders the brain samples in a fragile state that 

is most successfully prepared with paraffin sectioning. These methods result in high 

autofluorescence and reduce the usefulness of the samples for immunofluorescent 

studies. We therefore employed chromogenic staining methods for all scrapie-infected 

and control samples. Cassettes were cut into 4µm thick sections. Sections were 

dewaxed in xylene and rehydrated in graded dilutions of ethanol (each 5min). Sections 

stained for PrP aggregates were further treated with 98% formic acid (3 min). This step 

was excluded for all other stainings. Epitope retrieval was performed with a steamer in 

0.01 M citrate buffer (PrP: pH = 6; Iba1, GFAP: pH = 8; 30min). Endogenous 

peroxidase was removed with H2O2 treatment (3%, 5 min). For PrP and GFAP 

staining Mouse on Mouse Elite Peroxidase Kit (Vector Laboratories) was used 

according to the manufacturer’s instructions. For Iba1 staining 2,5% donkey normal 

serum (S30, Merck Millipore) was used for blocking (30min), followed by incubation 

with the primary antibody (30-60min), biotinylated secondary antibody (30min) and AB-

Complex (30 min). Staining of the epitope was done with DAB with Nickel for 

all stainings (DAB Peroxidase (HRP) Substrate Kit with Nickel, Vector Laboratories; 5-

10 min). A counterstain with hematoxylin (H-3404, Vector Laboratories) was performed 

(10 s) and sections were dehydrated with graded dilutions of ethanol and xylene (each 

5 min). For each time point, all brain sections were treated at the same time with the 

same solutions and materials. Pictures of sections were made with 
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an AxioCam camera mounted onto a Zeiss AXIO Observer.A1 microscope with Zen 

2012 software used with the same microscope imaging parameters for 

related stainings and magnifications. Primary antibodies: Anti-GFAP Clone GA5 

(MAB360), 1:5000, Merck Millipore; Prion Protein Monoclonal Antibody SAF84, 1:200, 

Cayman Chemical; Rabbit Anti Iba1 for ICC, 1:200, Waco; Rabbit anti Rps21, 1:100, 

Bethyl (A305-070A); secondary antibodies: Biotin-SP-conjugated AffiniPure Donkey 

Anti-Rabbit IgG, 1:500, Jackson Immuno Research.   

Immunofluorescence   

In order to assess the cell type-specificity of RiboTag experiments, we processed 

additional mice for  immunohistological evaluation. Mice were perfused transcardially 

with saline followed by 10% neutral buffered formalin solution (Sigma) and immersion-

postfixed in the same solution overnight at 4C. After cryoprotection in 30% sucrose in 

PBS, 40 µm coronal cryosections were taken and sections stored until use in 50% 

0.1 M PBS, 30% ethylene glycol, and 20% glycerol at -20C. Sections at the level of 

AP-1.46 (Paxinos and Franklin, 2nd edition) were selected, and double incubated 

overnight at 4°C in primary antibodies against HA (1:200, 3F10, Sigma) and the 

respective marker antibody (Somatostatin, 1:200, HPA019472, Atlas; Sox9, 1:500, 

AB5535, Millipore; NeuN, 1:500, MAB377, Millipore; Parvalbumin, 1:200, Novus, NB-

120-11427; Satb2, 1:200, Abcam, 92446; GFAP, 1:500, Dako, Z0334; Iba1, 1:100, 

Wako, 019-19741; Gad67, 1:2000, Acris, AP15571PU). The double incubation for HA 

and Gad67 was preceded by a 45 min antigene retrieval in pH6 citrate buffer using a 

vegetable steamer (15 min + 30 min cooling to RT), quenching of peroxidases in 0.3% 

H2O2, and avidin-biotin block (SP-2001, Vector). Visualization occurred by double 

incubation in fluorescent secondary antibodies from Jackson Immun Research against 
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rat IgG (712-165-153 or 712-545-153) and appropriate second antibody (mouse, 715-

545-151; rabbit, 711-225-152 or 711-585-152). For Gad67 labeling we instead used a 

biotinylated secondary antibody (711-065-152) followed by tyramide signal 

amplification (T20935, Thermo Fisher).   
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