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Abstract 
 

Deep learning (DL) is a branch of machine learning (ML) capable of extracting high-level features from raw inputs in multiple 
stages. Compared to traditional ML, DL models have provided significant improvements across a range of domains and 
applications. Single-cell (SC) omics are often high-dimensional, sparse, and complex, making DL techniques ideal for 
analyzing and processing such data. We examine DL applications in a variety of single-cell omics (genomics, 
transcriptomics, proteomics, metabolomics and multi-omics integration) and address whether DL techniques will prove to 
be advantageous or if the SC omics domain poses unique challenges. Through a systematic literature review, we have 
found that DL has not yet revolutionized or addressed the most pressing challenges of the SC omics field. However, using 
DL models for single-cell omics has shown promising results (in many cases outperforming the previous state-of-the-art 
models) but lacking the needed biological interpretability in many cases. Although such developments have generally been 
gradual, recent advances reveal that DL methods can offer valuable resources in fast-tracking and advancing research in 
SC. 
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1. Introduction 

 Since it was highlighted as the “Method of the Year” in 2013 (Fritzsch, Dusny et al. 2012), sequencing individual cells at 
single-cell resolution has become the norm for studying cell-to-cell heterogeneity. RNA and DNA single-cell measurements, 
and recently epigenetic and protein levels, stratify cells at the highest possible resolution. That is, single-cell RNA 
sequencing (scRNA-seq) makes it possible to measure transcriptome-wide gene expression at the single-cell level. Such 
resolution enables researchers to distinguish different cell types based on their characteristics [see (Anchang, Hart et al. 
2016, Haber, Biton et al. 2017, Tabula Muris, Overall et al. 2018, Han, Zhou et al. 2020)], organize cell populations, and 
identify cells transitioning between states. Such analyses provide a much better picture of tissues and the underlying 
dynamics in the development of an organism, which in turn allow for delineating intra-population heterogeneities that had 
previously been perceived as homogeneous by bulk RNA sequencing. Similarly, single-cell DNA sequencing (scDNA-seq) 
studies can reveal somatic clonal structures [e.g., in cancer, see (Roth, Khattra et al. 2014, Zafar, Navin et al. 2019)], thereby 
helping to monitor cell lineage development and providing insight into evolutionary mechanisms that function on somatic 
mutations. 

The prospects of single-cell sequencing (SC-seq) are tremendous: it is now possible to re-evaluate hypotheses on 
differences between predefined sample groups at a single-cell level regardless of sample groups being disease subtypes, 
treatment groups, or morphologically distinct cell types. As a result, enthusiasm about the possibility of screening the basic 
units of life’s genetic material has continued to expand in the recent years. Human Cell Atlas (Regev, Teichmann et al. 2017) 
is a prominent example: an effort to sequence the various cell types and cellular states that make up a human being. 
Encouraged by the great potential of single-cell investigation of DNA and RNA, there has been a substantial growth in the 
development of related experimental technologies. In particular, the advent of microfluidics techniques and combinatorial 
indexing strategies (Hosokawa, Nishikawa et al. 2017, Zilionis, Nainys et al. 2017) has resulted in routinely sequencing 
hundreds of thousands of cells in a single experiment. This growth has also allowed a recent publication to analyze millions 
of cells at once (Cao, Spielmann et al. 2019). More large-scale SC-seq datasets are becoming accessible worldwide (with tens 
of thousands of cells), constituting a data explosion in single-cell analysis platforms.  

The continuous growth of scale and quantity of available SC-seq data has raised significant questions: 1) How do we 
correctly interpret and analyze the increasing complexity of SC-seq datasets? 2) How can different types of data sets 
(mentioned above) provide a deeper understanding of the underlying biological dynamics for a specific condition? and 3) 
how can the acquired information be changed into practical applications in medicine, ranging from rapid and precise 
diagnoses to accurate medicine and targeted preventions. As we face the challenges of rising chronic diseases, aging 
populations, and limited resources, a transformation towards intelligent analysis, interpretation, and understanding of 
complex data is essential. In this paradigm shift, the rapidly emerging field of ML is central (Zheng and Wang 2019). 

ML is the study of algorithms that can automatically learn from data without the need for an explicit set of instructions. 
Simultaneously with biomedical advancements in the past decade, there has been a surge in the development and 
application of ML models, spearheaded by advances in DL. The recent improvements in computational hardware have made 
training DL models feasible, resulting in successful and revolutionary applications of such models across many fields. Some 
of the earliest DL algorithms developed were intended to be computational models of our brains’ learning process, therefore 
being called “Artificial Neural Networks” (ANN). DL models often consist of many processing layers (with many nodes in 
each layer), which enable them to learn a representation of data with several levels of abstraction.  

This review aims to discuss DL applications in SC-seq analysis and elaborate on their instrumental role in improving SC-
seq data processing and analysis. We first introduce some key concepts in DL, which enable us to discuss their applications 
in the SC-seq field later in this manuscript. In Section 3, we review the existing literature on the applications of DL in SC-
seq, particularly in transcriptomics, proteomics, metabolomics, and multi-omics integration. In the same section, we also 
provide an overview of techniques for handling the high technical noise and complexity of SC-seq data. Finally, we discuss 
possible future developments, highlighting both emerging obstacles and opportunities to advance the field. 

2. Essential Concepts in Deep Learning 

2.1 Feed Forward Neural Network 

Learning algorithms use statistics and analytics to improve a given task’s performance (“learn”) utilizing only data, and 
without a specific set of instructions (Akay and Hess 2019). These algorithms use supervised and unsupervised learning 
tasks to match and identify inputs. Supervised learning, the most common form of ML (LeCun, Bengio et al. 2015), uses 
labeled data as inputs, which then is mapped to an output. An example of supervised learning in SC-seq is classifying cell 
subpopulations: this requires a labeled set of cell-types for training, an objective function for calculating learning statisitcs 
(“teaching” the model), and testing data for measuring how well the model can predict the cell-type (label) on data it has 
not seen before. Regression is another common supervised learning task where the model outputs continuous values 
instead of labels or categorical values. For all supervised tasks, the model is trained on a majority of the data (known as 
“training set”) and then evaluated on held-out data (“test set”). Depending on the size of available data, there could also be 
a third data split known as a “validation set” used to measure the performance of the model throughout training. The 
evaluation of the model on the validation set is used for “Early Stopping”, i.e. when the model is being overfitted on the 
training set and therefore generalizing worse if the learning continues (Prechelt 1998). 
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Figure 1. (a) An example of a FFNN architecture. In this network, the raw input is shown as X, the weight tensors are denoted Wi , activation layers 
are αi and the bias nodes are shown in blue nodes marked by b. The positive and negative weights are shown as blue and red edges, respectively, 
where a smaller numerical value corresponds to more transparent edges and vice versa. (b) An example of a CNN architecture for classification. In 
this hypothetical architecture, the model feeds the inputs through the three stages of a CNN (with non-linear activation not depicted) to extract various 
features. As is often the case, the output of the CNN is inputted to a fully connected neural network for classification. (c) An RNN depicted with its 
training flow, and an unrolled version showing the timestep-dependent inputs, hidden state, and outputs. (d) An illustration of a denoising autoencoder. 
Autoencoders (AE) have an encoder network, which tries to extract the most critical features and map them to a latent space (often of a much smaller 
dimension than the input data). The decoder network takes in the latent vector produced by the encoder (denoted as 𝑧) and maps this representation 
back to the original input dimension. (e) The architecture of a Variational AE (VAE) that aims to generate synthetic scRNA-seq data using the gene 
expression values. (f) A depiction of generative adversarial network for generating in-silico scRNAseq data. In this illustration, the scRNA-seq count 
matrix is converted to images that are used as real samples for the descriminator. 

 

Due to the nature of SC-seq data, Feed Forward Neural Networks (FFNNs) are the most common architecture used as 
the core of many existing models for single-cell omics. FFNNs, the quintessential example of an ANN, are composed of 
interconnected nodes (“artificial neurons”) that resemble and mimic the brain’s neuronal functions. 

The connections between the nodes (“edges”) strengthen or weaken as the learning process progresses. Figure 1(a) 
illustrates an FFNN with an input layer (which senses and detects signals within the environment), three hidden layers (that 
process the signal sent by the input layer), and an output layer (the response to a signal or stimulus). FNNN can be viewed 
as a function that maps inputs from SC-seq space to an output space, often with fewer dimensions than the input space. This 
function is composed of simpler functions, each of which provides a different mathematical representation of the input. The 
true success of FFNN was realized when the capacity of such models was increased through the use of non-linear activation 
layers (such as Rectified Linear Units (Nair and Hinton 2010) and Hyperbolic Tangent) and adding more layers (depth). 
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These architectural choices allow neural networks to approximate highly non-linear and complex functions (theoretically 
being “universal approximators”).  

The of ANNs is to learn in the same manner as humans: by interacting with, and responding to, various stimuli within a 
local environment. FFNNs consist of numerous internal adjustable parameters (often on the order of hundreds of millions) 
that determine the input-output function of the machine. The objective of the model is to minimize a loss function that 
teaches the network to perform specific tasks. This optimization is done via the machine learning an optimal set of 
parameters (weights) that minimize the objective function. In FFNN, all neurons are fully connected; thus, the model must 
learn the optimal contribution of each node, which determines the final output of the model. That is, the direct connection 
between any two nodes can have positive or negative weights (refer to Fig. 1(a) for a visualization of this concept). The 
output values are sequentially computed within the network’s hidden layers, with each input vector taking in the previous 
layer’s output vector until reaching the final output layer (this process is known as the forward propagation). This multi-
stage propagation of features through the layers results in an abstract data representation attentive to small details while 
ignoring irrelevant information (Hua, Zhao et al. 2019). 

Initially assigned random values, the model weights are optimized throughout the training based on the loss function. 
Conventionally, the model optimization is done through gradient descent performed backward in the network, which 
consists of two components: a numerical algorithm for efficient computation of the chain rule for derivatives 
(backpropagation) and an optimizer (e.g., Stochastic Gradient Descent or Adam [Kingma and Ba 2015]). The optimizer is an 
algorithm which perform gradient descent, while backpropagation is an algorithm for computing the expression for 
gradients during the backward pass of the model. Deep neural networks (DNNs) are a subset of ANNs with more hidden 
layers between the input and output layers (usually greater than or equal to three hidden layers). This depth enables the 
model to learn complex nonlinear functions and allows the machine to learn a multi-step computer program (Goodfellow, 
Bengio et al. 2016). Several studies have shown that an increase in the network’s capacity (e.g., through depth or non-
linearity) has resulted in better performance in recognition and prediction tasks (Nair and Hinton 2010, Sun, Liang et al. 
2015, Bahdanau, Chorowski et al. 2016).   

Large-scale training of DNNs have been made possible by an increase in available data, algorithmic advances, and 
substantial increases in computational capacity, mainly through the use of general-purpose graphical processing units 
(GPUs) (Shi, Wang et al. 2016). At first, GPU hardware was so specialized that it could be used only for graphical tasks. 
However, once GPUs became more flexible for running custom subroutines, DL researchers were able to train simpler 
neural networks on these devices, which reduced the training time compared to CPUs (Steinkraus, Buck et al. 2005, 
Chellapilla, Puri et al. 2006). NVIDIA’s C-like programming language for GPUs, called CUDA, provided researchers with even 
more flexibility in executing custom code. GPUs’ convenient programming model combined with their high memory 
bandwidth and massive parallelism now stand as the ideal platform for developing deep neural networks (Goodfellow, 
Bengio et al. 2016).  

Over the past seven years, DNNs have led to performance advancements in computer vision (Krizhevsky, Sutskever et 
al. 2012, Girshick, Donahue et al. 2014, Long, Shelhamer et al. 2015), speech identification (Hannun, Case et al. 2014), and 
natural language processing (Wu, Schuster et al. 2016), and the value of DL models in DNA sequence analysis was first 
demonstrated by a Alipanahi et al. in 2015 (Alipanahi, Delong et al. 2015, Zhou and Troyanskaya 2015). Since then, there 
has been a significant increase in the number of studies reporting the use of DNNs in genomics. Meanwhile, the DL 
community has substantially enhanced existing algorithms and has extended its repertoire of modeling methods, with some 
already impacting computational genomics.    

2.2 Common DL Architectures 

2.2.1 Recurrent Neural Network 

RNNs (Rumelhart, Hinton et al. 1986) are often used for processing sequential data, including natural language and time 
series. RNNs process sequential inputs one at a time and implicitly maintain a history of previous elements of the input. We 
present a typical architecture for RNNs in Fig 1(c). The learning in RNNs occurs by propagating the gradients of each hidden 
state’s inputs at discrete times. This process becomes more intuitive if we consider the outputs of the hidden units at various 
time iterations as if they were the outputs of different neurons in a deep multilayer network.  

Due to the sequential nature of RNNs, the backpropagation of gradients would shrink or grow at each time step, causing 
the gradients to vanish or blow up for longer input sequences, makeing RNNs notoriously hard to train. However, when 
these issues are averted (via gradient clipping or other techniques), RNNs are powerful models and gain state-of-the-art 
capabilities in many applications across different fields (e.g. machine translation in natural language processing). The 
training challenges combined with the nature of SC-seq data have resulted in fewer developments of RNNs for single-cell 
analysis. However, recently some studies have used RNNs and Long Short-Term Memory (Hochreiter and Schmidhuber 
1997), a variant of RNNs, used for predicting cell types and cell motility (Kimmel, Brack et al. 2019).  

2.2.2 Convolutional Neural Network 

CNNs (LeCun, Bengio et al. 1995) are specialized types of networks that use convolution (the mathematical operation) 
instead of tensor multiplication (which is done in FFNN) in at least one of their layers. This convolution operation makes 
CNNs ideal for processing data with a grid-like structure (images are a standard example of such datasets). CNNs have been 
effectively used in many applications in computer vision and time-series analysis. Still, they have not been used as 
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frequently in SC-seq data (due to not having a grid-like structure). However, some studies, such as Xu et al. (Xu, Zhang et al. 
2020) have utilized CNNs after converting SC-seq data to images, which have shown promising results. CNNs take advantage 
of natural signals in three ways: (i) sparse interactions, (ii) shared weights, and (iii) equivariant representations (LeCun, 
Bengio et al. 1995).  

The architecture of CNNs was inspired by the organization of the visual cortex (LGN–V1–V2–V4–IT hierarchy in the 
visual cortex ventral pathway [Hubel and Wiesel 1962]), with the connectivity pattern trying to resemble the neural 
connections of our brains. A typical CNN architectural block is composed of a sequence of layers (usually three) which 
include a convolutional layer (affine transform), a detector stage (non-linear transformation), and a pooling layer. The 
learning unit of a convolutional layer is called a filter or kernel. Each convolutional filter is a matrix, typically of small 
dimensions (e.g. 3x3), composed of a set of weights that acts as an object detector and is continuously calibrated during the 
learning process; that is, the CNN learns to find the filters it needs for the task at hand. A weighted sum of these local patches 
is inputted to a non-linear activation layer (second stage). The result of the convolution between the input data and the 
filter’s weights is named a feature map. The output of a convolutional layer is made of as many stacked feature maps as 
filters are present within the layer. There are two key ideas behind this design: first, in data with grid-like structure (such 
as images), local neighbors have highly correlated information. Second, equivariance to translation can be obtained if units 
at different locations share weights. In other words, parameter sharing in CNNs allows for the detection of features 
regardless of the locations that they appear in. An example of this would be detecting a car. In a dataset, a car could appear 
at any position in a 2D image, but the network should be able to detect it regardless of the specific coordinates (Zhao, Zheng 
et al. 2019). 

The resulting feature maps are then fed to a pooling layer. Here, a summary statistic of a rectangular neighborhood of 
nearby values is extracted from the detector stage’s output at a certain location. There are many pooling operations, with 
the common ones being max-pooling (taking the maximum value of a rectangular neighborhood), mean-pooling (taking the 
average), and L2 norm (taking the norm). In all cases, pooling takes input from rectangular patches from one or several 
feature maps and merges semantically similar features into one, decreasing the representation’s dimension and making it 
insensitive to small shifts and distortions (LeCun, Bengio et al. 2015). CNNs typically have an ensemble of stacked 
convolution layers, non-linearity stage, and pooling layers, followed by completely connected layers that produce the final 
output of the network. Fig. 1(b) illustrates an example of a typical CNN architecture. The backpropagation of gradients 
through CNNs is analogous to DNNs, which enables learning the optimal weights for the filters in the model.  

2.2.3 Autoencoders 

AEs are neural networks that aim to reconstruct (or copy) the original input via a non-trivial mapping. Conventional AEs 
have an “hour-glass” architecture with two mirroring networks: an encoder and a decoder. The encoder’s task is to map the 
input data to a latent space, often of a much smaller dimension than the original input space. The encoder is responsible for 
data compression and feature extraction, forming the narrowing part of the hourglass architecture (see Fig. 1(d)). The 
output of the encoder network (latent vector) will contain the most important features present in the data in a compressed 
form. Conversely, the decoder is tasked with mapping the latent vector back to the original input dimension and 
reconstructing the original data. In the ideal case, the decoder’s output will be an exact copy of the training sample. 

AEs were traditionally used for dimensionality reduction and denoising, aiming to minimize a mean squared error (MSE) 
objective among the input data and the reconstructed sample (output of the decoder). Fig. 1(d) depicts an example of a 
denoising AE. Over time, the AE framework has been generalized to stochastic mappings of encoder and decoder 
distributions. A well-known example of such generalization is the Variational AEs (Kingma and Ba 2015), where using the 
same hour-glass architecture, one can generate new samples that are similar to the training data. Both traditional AEs and 
the generalized have practical applications in many biological fields. 

2.2.4 Deep Belief Network 

Although Deep Belief Networks (DBNs) (Hinton et al. 2006) have fallen out of favor in recent years, they had an essential 
role in starting the DL revolution. DBNs are generative models with several layers of binary latent variables, which use 
probabilities and unsupervised learning to produce outputs. Unlike other models where each layer extracts a specific 
feature of its input, individual layers of DBNs learn the input in its entirety. DBNs are composed of stacked undirected 
energy-based models (known as Restricted Boltzmann Machines) with two layers of visible and hidden units, respectively. 
The nodes in each layer of DBNs are fully connected to the subsequent and previous layers, with a network of symmetrical 
weights connecting each layer. The connection of these nodes helps in extracting features and identifying the correlation in 
the input data. The training of the model is done layer-by-layer, with each layer ensuring a layer-based optimal choice 
(greedy learning algorithms). To reach a global optimum, the input data is fed to the first layer, and each subsequent layer 
takes the output of the predecessor layer as its input. 

Despite DBNs being generative models, they were primarily used as a pre-training core that could be fine-tuned as an 
ANN for other tasks. This provided one of the first examples of transfer learning, where the unsupervised learned weights 
would be fine-tuned on a specific supervised task, with classification being the primary application. In addition to improving 
classification, DBNs also showed promising results in image and video recognition in the early days.  
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2.2.5 Variational Autoencoders 

VAEs (Kingma and Ba 2015, Kingma and Welling 2019) are generative networks that learn deep latent-variable and 
inference models simultaneously, i.e., they are made up of generative and inference models. VAEs are AEs that employ 
variational inference to recreate the original data, allowing them to produce new (or random) data that is “similar” to that 
which already exists in a dataset (illustrated in Fig. 1(e)). Traditional VAEs have stronger mathematical properties and 
training stability than Generative Adversarial Networks (GANs), and thus have been used extensively in SC omics 
application. However, VAEs could suffer from two major weaknesses: conventional VAEs create “blurry” samples (those 
that adhere to an average of the data points), rather than the sharp samples that GANs generate due to adversarial training. 
Introspective VAEs (IntroVAEs) Huang et al. have generally solved this issue by specifying an adversarial training between 
the encoder and the decoder (Huang, Li et al. 2018). IntroVAEs are single-stream generative algorithms that assess the 
quality of the images they generate. IntroVAEs have largely been employed in computer vision, where they have 
outperformed their GAN counterparts in applications like synthetic image generation (Huang, Li et al. 2018) and single-
image super-resolution (Heydari and Mehmood 2020).  

The other major issue with VAEs occurs when the variational posterior and actual posterior are nearly identical to the 
prior (or collapse to the prior). Because the generative model excludes a subset of latent variables which may have 
important latent features for inputs, this occurrence frequently creates data creation concerns (He, Spokoyny et al. 2019). 
Some studies have suggested that this happens because of the regularization term in the VAE’s objective purpose (Lucas, 
Tucker et al. 2019), i.e. when the prior and posterior divergence is close to zero. Studies aimed at reducing posterior collapse 
can be divided into two categories: (i) solutions aimed at weakening the generative model (Semeniuta, Severyn et al. 2017, 
Yang, Hu et al. 2017), (ii) alterations to the training purpose (Tolstikhin, Bousquet et al. 2017, Yang, Hu et al. 2017, Zhao, 
Song et al. 2017), and (iii) alterations to the training procedure (He, Spokoyny et al. 2019, Heydari et al. 2019). If both issues 
mentioned above can be addressed, VAEs have shown to perform comparably (or similar) to GANs while training faster due 
to the simpler training procedure, which can be tremendously advantageous for SC omics applications. 

2.2.6 Generative Adversarial Networks 

GANs (Goodfellow, Pouget-Abadie et al. 2014) can generate realistic synthetic data and have been effectively utilized in 
a variety of computer vision tasks (Dziugaite, Roy et al. 2015, Vondrick, Pirsiavash et al. 2016, Zhu, Krähenbühl et al. 2016), 
natural language processing (Yang, Chen et al. 2017, Fedus, Goodfellow et al. 2018), time series synthesis (Esteban, Hyland 
et al. 2017, Engel, Agrawal et al. 2019), and bioinformatics (Marouf, Machart et al. 2020). GANs are made up of a generator 
network (G) and a discriminator network (D) that compete in a zero-sum game; we present the architecture of GANs in Fig. 
1(f). The goal of the G network is to produce fake samples that resembles the distribution of the real data, to “fool” the D 
network into believing that these fake samples are real. Conversely, D trains to learn the difference between real and 
synthetic samples (hence the name discriminator) . In each GAN training iteration, the entire system is re-adjusted to update 
both G and D parameters. In this process, the generator learns to generate more realistic samples as well as deceiving the 
discriminator with higher success. At the same time, the discriminator learns to develop its classification ability over the 
enhanced samples from the generator. GANs’ ability to produce realistic samples is attributed to the adversarial training 
between G and D. GANs have several advantages to other generative models, including the flexibility to generate any sort of 
probability density, no prior assumptions for training the generator network, and no limitations on the size of the latent 
space. 

Despite these benefits, GANs are notoriously difficult to train since achieving Nash equilibrium for G and D is extremely 
difficult (Wang, She et al. 2021). Another drawback of GANs is vanishing gradients, which occur when an optimal D is 
insufficient for G to learn and progress. As demonstrated by Arjovsky et al., if D learns the distinction between real and 
generated data well enough, G will be unable to train (Arjovsky, Chintala et al. 2017). Another problem with GANs is “mode 
collapse,” which occurs when G produces only a small number of outputs that potentially trick D. This happens when G has 
trained to map many noise vectors z to the same output that D recognizes as real data. In this case, G is over-optimized, 
resulting in a lack of diversity in the generated samples. Quantifying how much GANs have learned the distribution of real 
data is often difficult, hence one of the most common methods of assessing GANs is to evaluate the output directly (Larsen, 
Sønderby et al. 2016), which could be laborious. 

Even though certain GAN variations have been proposed to reduce vanishing gradients and mode collapse, (e.g., 
Wasserstein-GANs (WGANs) [Arjovsky, Chintala et al. 2017] and Unrolled-GANs [Metz, Poole et al. 2016]), the convergence 
of GANs is still a big issue. In the case of mode collapse, the feedback from D to G becomes pointless as the training 
progresses. If GANs are trained past this stage, the quality of synthetic samples may be affected, and the system may 
eventually collapse. It is also worth noting that most GANs can not be trained as single-stream networks, thus defining a 
training schedule for G and D separately is required, which adds an additional layer of intricacy. Although all DL models are 
susceptible to hyperparameter settings, Lucic et al. (Lucic, Kurach et al. 2017) show that GANs (including WGANs) are 
substantially more sensitive than VAEs. Such sensitivity could be a disadvantage of utilizing GANs for scRNA-seq generation 
since the hyperparameters may require to be re-tuned for each new dataset. 
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3. DL Applications in SC Omics 

Figure 2. Workflow for RNA-seq data analysis  
 

3.1 DL in SC Transcriptomics 

ScRNA-seq has improved our understanding of biological processes substantially in recent years. In addition to studying 
cellular heterogeneity in humans and mice (Tabula Muris, Overall et al. 2018, Han, Zhou et al. 2020), we can now analyze 
the transcriptome of other organisms such as zebrafish, frogs, and planaria (Briggs, Weinreb et al. 2018, Plass, Solana et al. 
2018, Wagner, Weinreb et al. 2018), as well as uncover previously unknown cell populations (Montoro, Haber et al. 2018, 
Plass, Solana et al. 2018). Given the vast potentials of SC transcriptomics, computational biologists have developed a variety 
of research methods (Rostom, Svensson et al. 2017) (Fig. 2). 

3.1.1 Pre-processing and quality control 

Based on tag-based unique molecular identifiers (UMIs), raw data provided through sequencing machines is utilized to 
generate matrices of molecular counts (count matrices) or read counts (read matrices). Reading quality control (QC), 
mapping reads to their cellular barcodes and mRNA molecules of sources (also known as “demultiplexing”), genome 
alignment, and quantification is all handled by raw data processing pipelines, including Cell Ranger (Zheng, Terry et al. 
2017), indrops (Klein, Mazutis et al. 2015), SEQC (Azizi, Carr et al. 2018), or zUMIs (Parekh, Ziegenhain et al. 2018). The 
dimension of the read (or count matrix) generated is the number of barcodes times the number of transcripts. Since all 
reads allocated to the same barcode may not correspond to reads from the same cell, the word “barcode” is used instead of 
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“cell.” A barcode can tag several cells by mistake (doublet) or not tag any cells at all (empty droplet/well). Although the rate 
of noise in measurements differs between read and count data, the processing methods in a standard research pipeline are 
all the same (Lafzi, Moutinho et al. 2018).  

Despite scRNA-seq data’s richness which can offer significant and deeper insights, the data’s complexity and noise are 
far higher than in traditional bulk RNA-seq, making it challenging to prepare raw sequence data for further study. Unwanted 
variations such as biases, artifacts, etc., require extensive quality control (QC) and normalization efforts (Jiang, Thomson et 
al. 2016). The number of counts per barcode (count depth), the number of genes per barcode, and the fraction of counts 
from mitochondrial genes per barcode are three QC covariates widely used in cell QC (Griffiths, Scialdone et al. 2018). These 
variants may result in low-quality libraries in scRNA-seq data due to various factors, including cell damage during 
dissociation or library preparation failure. As a result, low-quality libraries are a concern because they can lead to erroneous 
findings in downstream analyses. Therefore, the cells at the beginning of the study should be excluded to prevent - or at 
least minimize – such issues. Currently, there is an unmet need for developing more efficient and accurate methods for 
filtering low-quality cells.  
Given the limited number of studies regarding pre-processing and quality control, in the following, we focus only on the DL 
applications that are most related to normalization, data correction, and downstream analysis. 

3.1.2 Normalization 

Normalization is a crucial first step in pre-processing scRNA-seq expression data to address the constraints caused by 
low input content, or the different types of systematic measuring biases (Bacher, Chu et al. 2017). Normalization aims to 
detect and remove changes in measurements between samples and features (e.g., genes) caused by technical artifacts or 
unintended biological effects (e.g., batch effects) (Hogan, Courtier et al. 2019). Methods designed for normalizing bulk RNA-
seq and microarray data are often used to normalize scRNA-seq data. However, these techniques often ignore essential 
aspects of scRNA-seq results (Hogan, Courtier et al. 2019). For scRNA-seq data, a few families of normalization techniques 
have been developed, such as scaling techniques (Lun, Bach et al. 2016), regression-based techniques for identified nuisance 
factors (Buettner, Natarajan et al. 2015, Bacher, Chu et al. 2017), and techniques based on spike-in sequences from the 
External RNA Controls Consortium (ERCC) (Ding, Zheng et al. 2015, Vallejos, Marioni et al. 2015). While these techniques 
address some issues caused by utilizing bulk normalization methods for scRNA-seq, they all have limitations in their 
applicability across different research designs and experimental protocols. Accounting for technical noise of scRNA-seq data 
remains a challenge and an active area of research within the field (Zheng and Wang 2019). Recently, DL-based methods 
were used to alleviate some of these challenges.  

3.1.3 Data correction 

Although normalization aims to address the noise and bias in the data, normalized data can still contain unexpected 
variability. These additional technical and biological variables, such as batch, dropout, cell cycle effects are accounted for 
during the “data correction” stage, which depends on the downstream analysis (Luecken and Theis 2019). In addition, it is 
a recommended practice to address biological and technical covariates separately (Luecken and Theis 2019), since they 
serve different purposes. Given the mentioned subtleties, designing DL models that can address most of these challenges is 
difficult. Therefore, there are currently no DL models that are widely used for data correction within the field.   

3.1.3.1 Dropout 

Compared to bulk RNA-seq, scRNA-seq datasets are noisy and sparse and pose unique nuance such as “dropout”   which 
is one of the most significant issues in this field (Kharchenko, Silberstein et al. 2014, Gong, Kwak et al. 2018). A dropout is 
when a gene is observed at a low to a moderate level in one cell but not in another cell of the same type (Qiu 2020). Dropout 
events can occur during library preparation (e.g. extremely low levels of mRNA in single cells) or due to biological properties 
(the stochastic aspect of gene expression in multiple cells)(Ran, Zhang et al. 2019). Shorter genes have lower counts and a 
greater dropout rate (Zappia, Phipson et al. 2017). Overall, a low RNA capture rate results in the inability of detecting an 
expressed gene, leading to a “false” zero, known as a dropout event. Furthermore, it has been suggested that sometimes 
near-zero expression measurements can also be dropouts (Lin, Troup et al. 2017). Dropout events will introduce technical 
variability and noise, adding an extra layer of difficulty in analyzing scRNA-seq (Sengupta, Rayan et al. 2016), and 
downstream analyses, such as clustering and pseudo-time reconstruction, can be affected (Arisdakessian, Poirion et al. 
2019). 

It is essential to understand the difference between “false” and “true” zero counts. True zero counts mean that a gene is 
not expressed in a particular cell type, indicating true cell-type-specific expression (Eraslan, Simon et al. 2019). Hence, it is 
important to note that zeros in scRNA-seq data do not necessarily translate to missing values and must remain in the data. 
However, the false zeros (missing values) must be imputed to further improve the analysis. The missing values are replaced 
with either random values or by an imputation method (Eraslan, Simon et al. 2019). Imputation approaches designed for 
bulk RNA-seq data may not be suitable for scRNA-seq data for multiple reasons, mainly due to scRNA-seq’s heterogeneity 
and dropouts. ScRNA-seq has much higher cell-level heterogeneity than bulk RNA-seq data; scRNA-seq has cell-level gene 
expression data while bulk RNA-seq data represents the averaged gene expression of the cell population. Dropouts in 
scRNA-seq are not necessarily missing values; they have zero expression and are combined with real zeros. Additionally, 
the number of missing values in bulk RNA-seq data is much lower compared to scRNA-seq (Gong, Kwak et al. 2018). Given 
these factors and the non-trivial difference between true and false zero counts, classic imputation approaches with specified 
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missing values are often not be appropriate for scRNA-seq data, and scRNA-seq-specific dropout imputation methods are 
required.  

Current scRNA-seq imputation methods can be divided into two groups: those that change all gene expression levels like 
high non-zero values, such as MAGIC (van Dijk, Nainys et al. 2017) and SAVER (Huang, Wang et al. 2018), and those that 
impute drop-out events (zero or near-zero counts) alone, such as scImpute (Li and Li 2018), DrImpute (Gong, Kwak et al. 
2018), and LSImpute (Moussa and Măndoiu 2019). These techniques can fail to account for the non-linearity of the data’s 
count structure. Moreover, as larger scRNA-seq datasets become available and common, imputation methods should scale 
to millions of cells, however, many of the earlier models are either incapable of or very slow at processing datasets of this 
size (Eraslan, Simon et al. 2019). As a result, many have resorted to designing DL-based approaches to combat these 
challenges, both on the technical and efficiency fronts. 

Most DL algorithms for imputing drop-out events are based on AEs. For example, in 2018, Talwar et al. proposed 
AutoImpute, a technique for retrieving the whole gene expression matrix using overcomplete AEs to impute the dropouts. 
AutoImpute learns the underlying distribution of the input scRNA-seq data and imputes missing values dependent on that 
distribution, with minor modifications to the biologically silent gene expression values. Through expanding the expression 
profiles into a high-dimensional latent space, AutoImpute learns the underlying distribution and patterns of gene 
expression in single cells and reconstructs an imputed model of the expression matrix. In that year, they claim that their 
system is the only one that can conduct imputation on the largest of the nine datasets in question, PBMC (which contains 
~68,000 cells), without running out of memory (Talwar, Mongia et al. 2018). 

In another study, Eraslan et al. proposed a deep count AE network (DCA). DCA uses a negative binomial noise model both 
with and without zero-inflation to account for the count distribution, overdispersion, and sparsity of the results, and 
nonlinear gene-gene dependencies are captured. Since their approach scales linearly with the number of cells, it can be used 
on millions of cell datasets. It also depends on gene similarities; using simulated and true datasets, DCA denoising enhances 
several traditional scRNA-seq data analyses. One of the key benefits of DCA is that it only requires the user to define the 
noise model. Current scRNA-seq approaches depend on a variety of hypotheses, including zero-inflated negative binomial 
models. DCA increases biological exploration by outperforming current data imputation approaches in terms of quality and 
time. Overall, DCA calculates the “dropout probability” of a zero-expression value due to scRNA-seq dropout and imputes 
the zeros only when the probability is high. Consequently, while DCA effectively detects true zeros, it can be biased when 
dealing with nonzero values (Eraslan, Simon et al. 2019).  

Badsha et al. propose TRANSLATE (TRANSfer learning with LATE) (Badsha, Li et al. 2020), a DL model for computing 
zeros in scRNA-seq datasets which are extremely sparse. Their nonparametric approach is based on AEs and builds on their 
previous method, LATE (Learning with AuToEncoder). The key presumption in LATE and TRANSLATE is that all zeros in 
the scRNA-seq data are missing values. In most cases, their approach achieves lower mean squared error, restores nonlinear 
gene-gene interactions, and allows for improved cell type separation. Both models are also very scalable, and on a GPU, they 
can train on over a million cells in a few hours. TRANSLATE has shown better performance on inferring technical zeros than 
other techniques, while DCA is better at inferring biological zeros than TRANSLATE. 
SAUCIE (Amodio, Van Dijk et al. 2019) is a regularized AE that denoises and imputes data using the reconstructed signal 
from the AE. Despite the noise in the input data, SAUCIE can restore the significant relationships across genes, leading to 
better expression profiles which can improve downstream analyses such as differential gene expression (Amodio, Van Dijk 
et al. 2019). 

ScScope (Deng, Bao et al. 2019) is a recurrent AE network that iteratively handles imputation by employing a recurrent 
network layer; taking the time recurrence of  ScScope to one (i.e. T=1) will reduce the model to a traditional AE. Given that 
ScScope is a modification of AEs, its runtime is similar to other AE-based models (Deng, Bao et al. 2019). 
There also have been a few non-AE-based models developed for imputation and denoising of scRNA-seq data. DeepImpute 
(Arisdakessian, Poirion et al. 2019) uses several sub-neural networks to impute groups of target genes using signals (genes) 
that are strongly associated with the target genes. Arisdakessian et al. demonstrate that DeepImpute has a better 
performance than DCA, contributing the advantages to their divide-and-conquer approach (Arisdakessian, Poirion et al. 
2019).  

Mongia et al. (Mongia, Sengupta et al. 2020) introduced deepMc, an imputation method based on deep matrix 
factorization for missing values in scRNA-seq data that utilizes a feed backward neural network. In most of their 
experiments, deepMc outperformed other existing imputation methods while not requiring any assumption on the prior 
distribution for the gene expression. We predict that deepMc will be the preferred initial approach for imputing scRNA-seq 
data, given the superior performance and simplicity of the model.  
scVI is another DNN algorithm introduced by Lopez et al (Lopez, Regier et al. 2018). scVI is based on a hierarchical Bayesian 
model and uses DNN to define the conditional probabilities , assuming either a negative binomial or a  zero-inflated negative 
binomial distribution (Lopez, Regier et al. 2018). Lopez et al. show that scVI can accurately recover gene expression signals 
and impute the zero-valued entries, potentially enhancing the downstream analyses without adding any artifacts or false 
signals.  

Recently, Patruno et al. (Patruno, Maspero et al. 2020) compared 19 denoising and imputation methods, based on 
numerous experimental scenarios like recovery of true expression profiles, characterization of cell similarity, identification 
of differentially expressed genes, and computation time. Their results showed that ENHANCE, MAGIC, SAVER, and SAVER-
X offer the best overall results when considering efficiency, accuracy and robustness for the measured tasks (Patruno, 
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Maspero et al. 2020). However, the more traditional methods are not well-suited for large-scale scRNA-seq, and therefore 
making DL-based models as favorable candidates instead. Given this fact, more work is required to build upon the previous 
DL methods for imputing dropout effects and better managing biological zeros while retaining technical zero precision. 

3.1.3.2 Batch Effect Correction 

When samples are conducted in separate batches, the term ‘batch effect” is used to describe the variation caused by 
technical effects. Different types of sequencing machines or experimental platforms, laboratory environments, different 
sample sources, and even the technician who performed the experiment can cause batch effects (Fei and Yu 2020). 
Removing and accounting for batch effects is often helpful and it is often recommended, however, the success varies 
significantly across different datasets. For example, batch effect removal on bulk RNA-seq data from ENCODE (Encyclopedia 
of DNA Elements) human and mouse tissues (Lin, Lin et al. 2014) is a recommended standard data preparation step. Batch 
effect correction has been an active area of research since the microarray time. Johnson et al. suggested parametric and 
non-parametric empirical Bayes frameworks for adjusting the data for batch effects removal (Johnson, Li et al. 2007). In the 
recent years and with an increase level of complexity in sequencing datasets, more involved batch effect correction methods 
have been proposed and used (Fei and Yu 2020). However, a majority of the existing approaches need biological group 
expertise for each observation and were originally designed for bulk or microarray RNA-seq data. Given the heterogeneity 
present within scRNAseq-date, these earlier techniques are not well suited for SC analysis in certain cases (Luo and Wei 
2019). Alternative batch effect correction techniques for scRNA-seq data have been developed to address the specific needs 
of single-cell datasets. Batch effects in scRNA-seq data may have a substantial impact on downstream data analysis, 
impacting the accuracy of biological measurements and ultimately contributing to erroneous conclusions (Büttner, Miao et 
al. 2019).  

Several statistical methods, including linear regression models like ComBat (Johnson, Li et al. 2007), and nonlinear 
models like Seurat’s canonical correlation analysis (CCA) (Zhang, Wu et al. 2019) or scBatch (Fei and Yu 2020), have been 
designed to eliminate or minimize scRNA-seq batch effects while aiming to maintain biological heterogeneity of scRNAseq 
data. Additionally, some differential testing frameworks such as limma (Ritchie, Phipson et al. 2015), MAST (Finak, McDavid 
et al. 2015), and DESeq2 (Love, Huber et al. 2014) already integrate the batch effect as a covariate in model design.  
Due to the stochasticity of gene expression, failures in RNA capture or amplification across sequencing, SC studies are prone 
to dropout events, as discussed previously. Consequently, many studies aim at improving the workflows of dealing with 
dataset that exhibit dropout events (Tran, Ang et al. 2020), resulting in a new family of batch effect correction using DL 
methods.  

Recently, there has been a considerable progress in using DL for batch effect corrections. Residual Neural Networks 
(ResNets) and AEs are two of the most commonly used DL-based batch correction approaches in scRNA-seq analysis. 
Shaham et al. (Shaham, Stanton et al. 2017) suggested a non-linear batch effect correction approach based on distribution-
matching ResNet. ResNets are a form of deep neural network that make a direct connection between the input of a layer (or 
network) and the outputs, often through an addition operation. Their approach focuses on reducing the Maximum Mean 
Discrepancy (MMD) between two multivariate replication distributions that were measured in separate batches. Shaham 
et al. applied their methodology to batch correction of scRNA-seq and mass cytometry datasets, finding that their model can 
overcome batch effects without altering the biological properties of each sample (Shaham, Stanton et al. 2017). 
Haghverdi et al. (Haghverdi, Lun et al. 2018) developed a novel and efficient batch correction method for SC data analysis 
that detects cell mappings between datasets, and subsequently reconstructs the data in a shared space. To create relations 
between two datasets, the algorithm first recognizes mutual nearest neighbors (MNNs). The translation vector is computed 
from the resulting list of paired cells (or MNNs) to align the data sets into a shared space. The benefit of this method is that 
it produces a normalized gene expression matrix, which can be used in downstream analysis and offer an effective 
correction in the face of compositional variations between batches (Haghverdi, Lun et al. 2018). However, MNN is 
computationally demanding in terms of CPU time and memory since it computes the list of neighbors in a high-dimensional 
gene expression space, (Fig. 3). 

Scanorama (Hie, Bryson et al. 2019) and BBKNN (Polański, Young et al. 2020) are two other approaches that look for 
MNNs in reduced-dimension spaces, and use them in a similarity-weighted way to direct batch integration. Hie et al. (Hie, 
Bryson et al. 2019) proposed Scanorama which can combine and eradicate batch effects from heterogeneous scRNA-seq 
studies by recognizing and merging common cell types across all pairs in a dataset. Using a variety of existing tools, 
Scanorama batch-corrected output can be used for downstream tasks, such as classify cluster-specific marker genes in 
differential expression analysis. Scanorama outperforms current methods for integrating heterogeneous datasets and it 
scales to millions of cells, eventually allowing the identification of rare or new cell states through a variety of diseases and 
biological processes (Hie, Bryson et al. 2019). 

Polańsky et al. (Polański, Young et al. 2020) developed BBKNN (batch balanced k-nearest neighbors), a fast graph-based 
algorithm that removes batch effects through linking analogous cells in different batches. BBKNN is a simple, rapid, and 
lightweight batch alignment tool, and its output can be directly applied for dimensionality reduction. BBKNN ’s default 
approximate neighbor mode scales linearly with the size of datasets and remains consistently faster by one or two orders 
of magnitude when compared to other existing techniques (Polański, Young et al. 2020).  
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Figure 3: Batch-effect correction via MNN. (a) Batch 1 and batch 2 in high dimensions, with a batch effect variation that is almost orthogonal. (b) By 
identifying MNN pairs of cells, the algorithm recognizes matching cell types (gray box). (c) Between the MNN pairs, batch-correction vectors are measured. 
(d) Batch 1 is considered the reference, and batch 2 is combined into it by subtracting correction vectors. (e) The integrated data is used as a reference, 
and the process is repeated with each new batch of data. This figure has been reused with permission from authors (Haghverdi, Lun et al. 2018). 

 
Moving onto the DL-based methods for batch correction, Li et al. (Liu and Di He 2019) presented DESC (deep embedding 

algorithm for single-cell clustering), an unsupervised DL algorithm for “soft” SC clustering which can also remove batch 
effects. DESC learns a non-linear mapping function from the initial scRNA-seq data space to a low-dimensional feature space 
using a DNN and iteratively improving a clustering objective function. This sequential process transfers each cell to the 
cluster closest to it and attemps to account for biological and technical variability across the clusters. Li et al. demonstrated 
that DESC can eliminated the technical batch effect more accurately than CCA and MNN while better preserving true 
biological differences within closely related immune cells (Li, Wang et al. 2020). 

In a prior study, Shaham (Shaham 2018) proposes batch effect correction through batch-free encoding using an 
adversarial VAEs. Shaham utilizes an adversarial training to achieve data encoding that corresponded exclusively to a 
subject’s intrinsic biological state, as well as to enforce accurate reconstruction of the input data. This approach results in 
maintaining the true biological patterns expressed in the data and minimizing the significant biological information loss 
(Shaham 2018). 
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Wang et al. introduced BERMUDA (Batch Effect ReMoval Using Deep Autoencoders) (Wang, Johnson et al. 2019), an 
unsupervised framework for correcting batch effect in scRNA-seq data across different batches. BERMUDA combines 
separate batches of scRNA-seq data with completely different cell population compositions and amplifies biological signals 
by passing information between batches. While MNN and BBKNN can manage variations in cell population composition 
between batches when such differences are significant, their efficiency is less optimal to BERMUDA. On the other hand, 
BERMUDA was developed with an emphasis on scRNA-seq data with distinct cell populations in mind, and it is focused on 
the similarities between cell clusters, even though scRNA-seq data can be constantly variable, such as data produced for cell 
differentiation (Amodio, Van Dijk et al. 2019). Altogether, a rapidly expanding number of general DL methods for batch 
effects correction in biological datasets represent new ways for eliminating batch effects in biological datasets.  

3.1.3.3 Dimensionality reduction 

A typical scRNA-seq data table consists of ~20,000 genes as columns/features and 50,000 to up to a million cells as 
rows/observations. Therefore some form of dimensionality reduction is necessary to visualize and interpret such high-
dimensional data (Wang and Gu 2018). The most common dimensionality reduction techniques used for scRNA-seq are PCA 
(Sun, Zhu et al. 2019), t-SNE (Van der Maaten and Hinton 2008), diffusion map (Haghverdi, Buettner et al. 2015), GPLVM 
(Titsias and Lawrence 2010, Buettner and Theis 2012), SIMLR (Wang, Ramazzotti et al. 2017), and UMAP (Becht, McInnes 
et al. 2019), to name a few.  

In low-dimensional spaces, linear projection methods like PCA traditionally cannot depict the complex structures of 
single-cell data. On the other hand, nonlinear dimension reduction techniques like t-SNE and UMAP, have been shown to be 
effective in a variety of applications and are commonly used in single-cell data processing (Ding, Condon et al. 2018). These 
methods also have some drawbacks, such as lacking robustness to random sampling, inability to capture global structures 
while concentrating on local data structures, parameter sensitivity, and high computational cost (Zheng and Wang 2019). 
Several DL techniques for reducing the dimensionality of scRNA-seq data have recently been developed. Here we focus on 
the ones that are based on VAEs or AEs. 

Ding et al. (Ding, Condon et al. 2018) proposed a VAE-based model to learn a parametric transformation from a high-
dimensional space to a low-dimensional embedding, which is used to learn the estimated posterior distributions of low-
dimensional latent variables. Compared to common techniques (e.g. t-SNE), their approach (scvis) can obtain the global 
structure of the data, is more interpretable, and is more robust to cell type detection in the presence of noise or unclear 
measurements. Ding et al. demonstrated that scvis is a promising tool for regular study of large-scale, high-resolution cell 
population mapping (Ding, Condon et al. 2018). However, according to Becht et al. (Becht, McInnes et al. 2019), the runtime 
of scvis is high, particularly for dimensionality reduction, and it appears to be less effective at separating cell populations. 
In another work, Wang et al. (Wang and Gu 2018) proposed a method for unsupervised dimensionality reduction and 
visualization of scRNA-seq data named VAE for scRNA-seq data (VASC), which uses a deep VAE. VASC’s architecture consists 
of the traditional encoder and decoder network of a VAE, with an addition of a zero-inflated layer that simulates dropout 
events. In comparison to current methods such as PCA, t-SNE, and ZIFA, VASC can identify nonlinear patterns present within 
the data, and has broader compatibility as well as better accuracy, particularly when sample sizes are larger (Wang and Gu 
2018).  

In 2020, Märtens et al. proposed BasisVAE (Märtens and Yau 2020) as a general-purpose approach for joint 
dimensionality reduction and clustering of features using a VAE. BasisVAE modified the traditional VAE decoder to 
incorporate a hierarchical Bayesian clustering prior and demonstrated how collapsed variational inference can identify 
sparse solutions when over-specifying K. Furthermore, translation invariance lets us handle scenarios where not all features 
are aligned (Märtens and Yau 2020). 

Peng et al. (Amodio, Van Dijk et al. 2019) proposed an AE-based model that combines gene ontology (GO) and deep 
neural networks to achieve a low-dimensional representation of scRNA-seq data. Based on this idea, they proposed two 
innovative approaches for dimensionality reduction and clustering: an unsupervised technique called “GOAE” (Gene 
Ontology AutoEncoder) and a supervised technique called “GONN” (Gene Ontology Neural Network) for training their AE 
model and extracting the latent layer as low dimensional representation. Their findings show that by integrating prior 
information from GO, neural network clustering and interpretability can be enhanced and that they outperform the state-
of-the-art dimensionality reduction approaches for scRNA-seq (Peng, Wang et al. 2019).  

In a study by Armaki et al. (ARMACKI 2018), the dimensionality reduction capabilities of VAE- and AE-based models 
were evaluated and benchmarked against principal component analysis. They found that the best approach for reducing 
the dimensionality of single-cell data was the AE-based model, while the more efficient VAE performed worse in some 
respects than the linear PCA. One possible hypothesis could be that the prior used for modeling the latent space, which was 
Gaussian distribution, is not a good fit for single-cell data. A prior more befitting single-cell data (such as negative binomial 
distribution) could improve the performance of the VAE based model (ARMACKI 2018). 

Finally, there is always the endeavor of optimizing algorithms. As mentioned earlier, representing an efficient DL method 
for dimensional reduction of data is a necessary next step, since it can potentially improve the quality of lower-dimensional 
representations.  

3.1.3.4 In-Silico Generation and Augmentation 

Given limitations on scRNA-seq data availability and the importance of adequate sample sizes, in-silico data generation 
and augmentation offer a fast, reliable, and cheap solution. Synthetic data augmentation is a standard practice in various 
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ML areas, such as text and image classification (Shorten and Khoshgoftaar 2019). With the advent of DL, traditional data 
augmentation techniques (such as geometric transformations or noise injection) are being replaced with more deep-learned 
generative models, primarily VAEs (Kingma and Welling 2013) and GANs (Goodfellow, Pouget-Abadie et al. 2014). In 
computational genomics, both GANs and VAEs have shown promising results in generating omics data. Here, we focus on 
the recent methods introduced for generating realistic in-silico scRNA-seq. 

Marouf et al. (Marouf, Machart et al. 2020) introduced two GAN-based models for scRNA-seq generation and 
augmentation called single-cell GAN scGAN and conditional scGAN (cscGAN); we collectively refer to these models as scGAN. 
At the time, scGAN outperformed all other state-of-the-art methods for generating and augmenting scRNA-seq data (Marouf, 
Machart et al. 2020). The success of scGAN is attributed to the Wasserstein-GAN (Arjovsky, Chintala et al. 2017) that learns 
the underlying manifold of scRNA-seq data, which then can produce realistic never-seen-before samples. Marouf et al. 
showcase the power of scGAN by generating specific cell types that are almost indistinguishable from the real data, and 
augmenting the dataset with the synthetic samples improved the classification of rare cell populations.  

In a related work, Heydari et al. (Heydari, Davalos et al. 2021) introduce a VAE-based in-silico scRNA-seq model that 
aimed at improving Marouf et al.’s training time, stability, and generation quality using only one framework (as opposed to 
two separate models). Heydari et al. propose ACTIVA (Automated Cell-Type-informed Introspective Variational 
Autoencoder), which employs a single-stream adversarial VAE conditioned with cell-type information. The cell-type 
conditioning encourages ACTIVA to learn the distribution of all cell types in the dataset, even if they may be rare, which 
allows the model to generate specific cell types on demand. Heydari et al. showed that ACTIVA performs better or 
comparably to scGAN while training up to 17 times faster due to the design choices. Data generation and augmentation with 
both ACTIVA and scGAN can enhance scRNA-seq pipelines and analysis, such as benchmarking new algorithms, studying 
the accuracy of classifiers, and detecting marker genes. Both generative models will facilitate the analysis of smaller 
datasets, potentially reducing the number of patients and animals necessary in initial studies (Heydari, Davalos et al. 2021). 

3.1.4 Downstream Analysis 

Following pre-processing, downstream analysis methods are used to derive biological understandings and identify the 
underlying biological mechanism. For example, cell-type clusters are made up of cells with similar gene expression profiles; 
minor differences in gene expression between similar cells indicate continuous (differentiation) trajectories; or genes which 
expression profiles are correlated, signaling co-regulation (Zhang, Cui et al. 2021). 

3.1.4.1 Clustering and cell annotation 

A significant phase in the scRNA-seq study is to classify cell subpopulations and cluster them into biologically relevant 
entities (Yang, Liu et al. 2017). The creation of several atlas projects such as Mouse Cell Atlas (Han, Wang et al. 2018), Aging 
Drosophila Brain Atlas (Davie, Janssens et al. 2018), and Human Cell Atlas (Rozenblatt-Rosen, Stubbington et al. 2017) has 
been initiated by advances in single-cell clustering. Different clustering approaches have emerged in recent years to help 
characterize different cell populations within scRNA-seq data (Zheng, Li et al. 2019). Given that DL-based algorithms 
outperform traditional ML models in clustering tasks when applied to image and text datasets (Guo, Zhu et al. 2018), many 
have turned to designing supervised and unsupervised DL-based clustering techniques for scRNA-seq. 

Li et al. presented DESC (Deep Embedding algorithm for Single-Cell Clustering), a AE-based method for clustering 
scRNA-seq data with a self-training target distribution that can also denoise and potentially remove batch effects. In 
experiments conducted by Li et al. (Li, Wang et al. 2020).,  DESC attained a high clustering accuracy across the tested datasets 
compared to several existing methods, showed consistent performance in a variety of scenarios, and did not directly need 
the batch definition for batch effect correction. Given that Li et al. use a deep AE to reconstruct the input data, the latent 
space is not regularized with additional properties that could additionally help with clustering (Chen, Wang et al. 2020). As 
with most DL models, DESC can be trained on CPUs or GPUs. 

Chen et al. proposed scAnCluster (Single-Cell Annotation and Clustering), an end-to-end supervised clustering and cell 
annotation framework which is built upon their previous unsupervised clustering work, namely scDMFK and scziDesk. 
ScDMFK algorithm (Single-Cell Data Clustering through Multinomial Modeling and Fuzzy K-Means Algorithm) combined 
deep AEs with statistical modeling. It proposed an adaptive fuzzy k-means algorithm to handle soft clustering while using 
multinomial distribution to describe the data structure and relying on neural network support to facilitate model parameter 
estimation (Chen, Wang et al. 2020). More specifically, the AE learns a low-dimensional representation of the data, and an 
adaptive fuzzy k-means algorithm with entropy regularization is used in that space to perform soft clustering. On the other 
hand, ScziDesk aimed at learning a “cluster-friendly” lower dimensional representation of the data, since many existing 
deep learning-based clustering algorithms for scRNA-seq do not consider distance and affinity constraints cells from the 
same populations. For scAnCluster, Chen et al. use the available cell marker information to construct a new DL model that 
integrates single-cell clustering and annotation. ScAnCluster can do both intra-dataset and inter-dataset cell clustering and 
annotation, and it also reveals a clear discriminatory effect in the detection of new cell types not found in the reference 
results (Tran, Ang et al. 2020).  

Tian et al. created the scDeepCluster (Single-Cell model-based Deep embedded Clustering) technique, which uses a 
nonlinear approach to combine DCA modeling and the DESC clustering algorithm. Their approach sought to improve 
clustering while reducing dimensions directly. ScDeepCluster outperformed state-of-the-art approaches on a variety of 
clustering efficiency metrics, showing increased scalability with runtime increasing linearly with sample size. In contrast to 
similar methods, scDeepCluster requires less memory and and is scalable to large (Tian, Wan et al. 2019). On the other hand, 
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ScDeepCluster lacks the pairwise distance of associated cells and ignores the affinity limit of similar cells. ScDeepCluster 
does not pre-select such informative genes as input data, which not only excludes clustering precision but also improves 
memory and processing time (Chen, Wang et al. 2020). Peng et al. (Peng, Wang et al. 2019) developed a strategy for 
optimizing cell clustering based on global transcriptome profiles of genes. They used a combination of DNN and Gene 
Ontology (GO) to reduce the dimensions of scRNA-seq data and improve clustering. Their supervised approach is based on 
a conventional neural network model, and the unsupervised approach is based on an AE model, respectively. Their model 
consists primarily of two main components: the choosing of important GO terms and the combination of GO terms with the 
DNN-based model (Peng, Wang et al. 2019). Finally, Grønbech et al. introduced a VAE-based model, called scVAE (Single-
Cell Variational Auto-Encoders) for clustering cells. Since scVAE uses the raw count data as input, many of the traditional 
pre-processing steps are not required. ScVAE can accurately predict expected gene expression levels and a latent 
representation for each cell and is flexible to use the known scRNA-seq count distributions (such as Poisson or Negative 
Binomial) as its model assumption (Grønbech, Vording et al. 2020). 

3.1.4.2 Cell-Cell communication analysis 

In recent years, scRNA-seq has become a powerful method for analyzing cell-cell communication in tissues. Intercellular 
communication controlled by ligand-receptor complexes is essential for coordinating a wide range of biological processes, 
including development, differentiation, and inflammation. Several algorithms have been proposed to carry out these 
analyses. They all begin with a database of interacting molecular partners (such as ligand and receptor pairs) and predict a 
list of possible signaling pathways between types of cells based on their expression patterns. Although the findings of these 
studies may provide useful insight into the mechanisms of diverse tissues made up of a variety of cell types, they can be 
difficult to visualize and analyze using current algorithms (Tian, Wan et al. 2019, Almet, Cang et al. 2021). Algorithms based 
on DL have not yet been fully developed, however, given the importance of this issue, it is expected that new DL methods 
will be developed for analyzing cell-cell communication. 

3.1.4.3 RNA Velocity 

In scRNA-seq data, RNA velocity has created new ways to research cellular differentiation. It represents the rate of 
change in gene expression for a single gene at a given time point depending on the spliced ratio to unspliced mRNA. In other 
words, RNA velocity is a vector that forecasts the possible future of individual cells on a timescale of hours, and it has created 
many new insights into cellular differentiation that have challenged conventional and long-standing methods. Existing 
experimental models for tracking cell fate and reconstructing cell lineages, such as Genetic methods or time-lapse imaging 
have limited power and do not show the trajectory of differentiation or reveal the molecular identity of intermediate states. 
But recently, with the advent of scRNA-seq, a variety of algorithms such as VeloViz (Atta and Fan 2021) or scVelo (Bergen, 
Lange et al. 2020) by analyzing data are generated to visualize the velocity estimates in low dimensions. Despite these 
developments, particularly in well-characterized systems, we are far from a complete understanding of cellular 
differentiation and cell fate decisions. By this means, we foresee the advent of a more integrative model, such as DL-based 
algorithms, to resolve long-standing concerns regarding cell fate choices and lineage specification in this way. 
 

3.2 DL in SC Genomics 

Traditional sequencing methods are limited to measuring the average signal in a group of cells, potentially masking 
heterogeneity and rare populations (Tang, Huang et al. 2019). ScRNA-seq technologies provide a tremendous advantage for 
investigating cellular heterogeneity and recognizing new molecular features correlated with clinical outcomes, 
consequently resulting in the transformation of many biological research fields. SC genomics is being used in many areas, 
such as predicting the sequence specificity of DNA- and RNA-binding proteins, and enhancer and cis-regulatory regions, 
methylation status, gene expression, and control splicing, and searching associations between genotype and phenotype. 
However, SC genomics data are often too large and complex to be analyzed only through visual investigation of pairwise 
correlations. As a result, a growing number of studies have leveraged DL techniques to process and analyze these large 
datasets. In addition to the scalability of DL algorithms, another advantage of DL techniques is the learned representations 
from raw input data, which are beneficial in specific SC genomics and epigenomics applications, such as cell-type 
dentification, DNA methylation, chromatin accessibility, TF-gene relationship prediction, and histone modifications. In the 
following sections, we review some applications of DL models for analyzing scDNA-seq data (Fig. 4). 

3.2.1 Cell type identification in CyTOF 

An essential and challenging task in genomics research is to accurately identify and cluster individual cells into distinct 
groups of cell types. Li et al. (Li, Shaham et al. 2017) describe AE methods (stacked AE and multi-AE) as a gating strategy 
for mass cytometry (CyTOF). CyTOF is a recent technology for high-dimensional multiparameter SC analysis. They 
introduced DeepCyTOF as a standardization procedure focused on a multi-AE neural network. This model allows cells from 
only one sample to be labeled. This is focused on domain adaptation principles and is a generalization of previous work that 
helps users in calibrating between a source domain distribution (reference sample) and several target domain distributions 
(target samples) in a supervised manner. DeepCyTOF was applied to two CyTOF datasets produced from primary immune 
blood cells: (a) cases with a history of West Nile virus (WNV) infection and (b) normal cases of various ages. They manually 
gated a single baseline reference sample in each of these datasets to automatically gate the remaining uncalibrated samples.  
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Figure 4. Overview of algorithms that are used in different parts of single-cell genomics analysis. 

 
 
They revealed that DeepCyTOF cell classification is extremely consistent with cell classification gained by individual manual 
gating of each sample, with over 99% concordance. Moreover, they used a stacked AE, which is one of DeepCyTOF ’s key 
components building blocks, to tackle the semi-automated gating challenge of the FlowCAP-I competition. Li et al. found 
that their model outperformed other existing gating approaches benchmarked on the fourth challenge of the competition. 
Overall, stacked AEs combined with a domain adaptation technique suggest promising results for CyTOF semi-automated 
gating and flow cytometry data, requiring manual gating of one reference sample to precisely gate the remaining samples. 

3.2.2 DNA methylation 

Recent technological advances have made it possible to assay DNA methylation at SC resolution. Angermueller et al. 
propose DeepCpG (Angermueller, Lee et al. 2017), a CNN-based computational method for predicting methylation regions, 
modeling methylation data from single cells with low coverage. DeepCpG is made up of three modules: a DNA module that 
extracts features from the DNA sequence, a CpG module that extracts features from the CpG neighborhood of all cells, and a 
multi-task joint module that integrates evidence from both modules for predicting the methylation regions of target CpG 
sites for different cells. The trained DeepCpG model can be used in various downstream studies, such as inferring low-
coverage methylation profiles for groups of cells and recognizing DNA sequence motifs linked to methylation states and 
cell-to-cell heterogeneity. Angermueller et al. apply their model to both mouse and human cells, which achieves significantly 
more precise predictions than previous techniques.  (Angermueller, Lee et al. 2017). An overview of the DeepCpG model is 
shown in (Fig. 5). 

Interestingly, DeepCpG can be used for differentiating human induced pluripotent stem cells in parallel with 
transcriptome sequencing to specify splicing variation (exon skipping) and its determinants. Linker et al. (Linker, Urban et 
al. 2019) presented that variation in SC splicing can be precisely predicted based on local sequence composition and 
genomic features. DeepCpG, which is used for DNA methylation profiles, imputes unobserved methylation regions of 
individual CpG sites. The cell-type-specific models were made using CpG and genomic information according to DeepCpG’s 
setup of a joint model. Finally, during cell differentiation, Linker et al. recognized and characterized associations between 
DNA methylation and splicing changes, which led to indicating novel insights into alternative splicing at the SC level.  
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Figure 5. An overview of DeepCpG (taken from Angermueller et al.) (a) scBS-seq (Smallwood et al. 2014) scRRBS-seq (Farlik et al. 2015) provide sparse 
single-cell CpG profiles, which are then pre-processed as binary values (methylated CpG sites are marked by ones, unmethylated CpG sites are denoted by 
zeros, and CpG sites with unknown methylation state [missing data] are represented by question marks) (b) Two convolutional and pooling layers are 
used to detect predictive motifs from the local sequence context, and one fully connected layer is used to model motif intera ctions in the DNA model. 
Applying a bidirectional gated recurrent network (GRU), the CpG model scans the CpG neighborhood of numerous cells (rows in b), providing compressed 
information in a vector of constant size. To forecast methylation states in all cells, the Joint model learns connections bet ween higher-level properties 
generated from the DNA- and CpG models (c, d) The DeepCpG model can be utilized for a variety of downstream tasks after training, such as genome-wide 
imputation of missing CpG sites (c) and the finding of DNA sequence motifs linked to DNA methylation levels or cell-to-cell variability (d). 

 
Another method to study chromatin accessibility at single-cell resolution, called Assay of Transposase Accessible 

Chromatin sequencing (scATAC-seq), has gained considerable popularity in the last few years. In scATAC-seq, mutation-
induced hyperactive Tn5 transposase tags and fragments regions in open chromatin sites in the DNA sequence, which is 
later sequenced using paired-end NGS technologies (Yan, Powell et al. 2020). The pre-processing steps of scATAC-seq data 
analysis are often analogous to scRNA-seq pipelines; the same tools are often used in both data modalities, although scRNA-
seq tools are often not optimized for the particular properties of scATAC-seq data. ScATAC-seq has low coverage, and the 
data analysis is highly sensitive to non-biological confounding factors. The data is pre-processed and assembled into a 
feature-per-cell matrix, where common choices for “feature” are fixed-size genomic bins and signal peaks at biological 
events. This matrix displays particular numerical properties which entail computational challenges: it is extremely high-
dimensional, sparse, and near-binary in nature (presence/absence of signal). Several packages have been recently 
developed specifically for scATAC-seq data, with all of them having some major limitations (Cao, Fu et al. 2021). The tools 
for processing scATAC-seq are diverse and nescient, and thus, there is no consensus on the best practices scATAC-seq data 
analysis. Further development of scATAC-centric computational tools and benchmark studies are much needed. ScATAC-
seq analyses can help to elucidate cell types and differentially accessible regions across cells. Moreover, it can decipher 
regulatory networks of cis-acting elements like promoters and enhancers, and trans-acting elements like transcription 
factors (TFs), and infer gene activity (Baek and Lee 2020). ScATAC-seq data could also be integrated with RNA-seq and 
other omics data, however, most current software only integrate the derived gene activity matrix with expression data, and 
important information from whole-genome chromatin accessibility is lost. We delve deeper into this topic in the “DL in the 
integration of SC multimodal omics data” section of this manuscript. 

Currently, there are a variety of DL models for bulk ATAC-seq data, such as LanceOtron’s CNN for peak calling (Hentges, 
Sergeant et al. 2021) and CoRE-ATAC for functional classification of cis-regulatory elements (Thibodeau, Khetan et al. 2020). 
Thibodeau et al. demonstrated CoRE-ATAC’s transferable capability on cell clusters inferred from single nuclei ATAC-seq 
data with a rather small decrease in model prediction accuracy (mean micro-average precision of 0.80 from bulk vs. 0.69 in 
single-cell clusters). 

One common way to reduce the dimensionality of scRNA-data is to identify the most variable genes (e.g. with PCA), since 
they carry the most biologically relevant information. However, scATAC-seq data is binary, and therefore not allowing for 
identification of variable peaks for dimension reduction. Instead, dimensionality reduction of scATAC data is done through 
Latent Semantic Indexing (LSI), a technique used for natural language processing. Although this approach is scalable to large 
number of cells and features, it may fail to capture the complex reliance of peaks since it is a linear method. SCALE (Single-
Cell ATAC-seq analysis via Latent feature Extraction) (Xiong, Xu et al. 2019) combines a deep generative framework with a 
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probabilistic Gaussian Mixture Model (GMM) as a prior over the latent variables, in order to learn a nonlinear latent space 
of scATAC-seq features.  

Given the nature of scATAC-seq, GMM is suitable distribution for modeling the high-dimensional, sparse multimodal 
scATAC-seq data. SCALE can also be used for denoising and imputing missing data, recovering signals from missing peaks. 
In the benchmarking study by Xiong et al., they demonstrated that SCALE outperformed conventional non-DL scATAC-seq 
tools for dimensionality reduction, such as PCA and LSI. Furthermore, they show its scalability to large datasets in the order 
of 80000 single cells. While SCALE succeeds at learning nonlinear cell representations with higher accuracy, it assumes that 
the read depth is constant across cells and ignores potential batch effects. These pitfalls motivated the development of 
SAILER (scalable and accurate invariant representation learning scheme) (Cao, Fu et al. 2021). SAILER is a deep generative 
model inspired by VAEs that also learns a low-dimensional latent representation of each cell. For SAILER, the authors aimed 
at designing an invariant representation learning scheme, where they discard the learned component associated with 
confounding factors from various technical sources. SAILER captures nonlinear dependencies among peaks, faithfully 
separating biologically relevant information from technical noise, in a manner that is easily scalable to millions of cells 
(when using GPUs). Similarly, SCALE also offers a unified strategy for scATAC-seq denoising, clustering, and imputation. 
However, in multi-sample scATAC-seq integration, SAILER can eliminate batch effects and properly recreate a chromatin 
accessibility landscape free of confusing variables, regardless of sequencing depths or batch effects. 

3.2.3 TF-gene relationship prediction 

To unravel gene regulatory mechanisms and differentiate heterogeneous cells, understanding genome-wide binding 
transcription factor (TF) profile is crucial. There have been several approaches that aim to use expression data to 
understand gene-gene interactions, such as mutual information and correlation techniques for coexpression analysis, 
undirected graphical and clustering models for functional assignments, and directional graph-based models for pathway 
reconstruction (Yuan and Bar-Joseph 2019). In the space of DL-based methods, Yuan et al. (Yuan and Bar-Joseph 2019) 
presented CNNC (Convolutional Neural Network for Co-Expression), a new encoding method for gene expression data based 
on CNN, followed by DNN analysis. CNNC is a general computational technique for supervised gene relationship inference 
that builds on previous approaches in various tasks, including predicting transcription factor targets and recognizing genes 
related to disease in order to infer cause and effect. The key idea behind CNNC is to turn data into a co-occurrence histogram, 
making it optimal for CNNs. That is, Yuan et al. produced a histogram (image) for each pair of genes and applies 
convolutional neural networks (CNNs) to infer relationships among the various levels of expression encoded in the image. 
CNNC is adaptable and can easily be expanded to integrate other types of genomics data, resulting in additional performance 
gains. CNNC goes beyond previous approaches for predicting TF-gene and protein-protein interactions and predicting the 
pathway of a regulator-target gene pair. It may also be used to draw causality inferences, functional assignments (such as 
biological processes and diseases), and as part of algorithms that recreate known pathways (Yuan and Bar-Joseph 2019). 

In a recent study, Fu et al. (Fu, Zhang et al. 2020) introduced scFAN (Single Cell Factor Analysis Network), a DL model 
for determining genome-wide TF binding profiles in individual cells. The scFAN pipeline consists of a “pre-trained model” 
trained on bulk data and then used to predict TF binding at the cellular level using DNA sequence, aggregated associated 
scATAC-seq data, and mappability data. ScFAN can help in overcoming the basic sparsity and noise constraints of scATAC-
seq data. This model provides a valuable method for predicting TF profiles through individual cells and could be applied to 
analyze sc epigenomics and determine cell types. Fu et al.  presented scFAN’s ability to identify cell types by analyzing 
sequence motifs enriched within predicted binding peaks and studying the effectiveness of predicted TF peaks. They 
suggested a novel metric called “TF activity score” to classify each cell and demonstrated that the activity scores could 
accurately capture cell identity. Generally, scFAN is capable of connecting open chromatin states with transcript factor 
binding activity in individual cells, which is beneficial for a deeper understanding of regulatory and cellular dynamics (Fu, 
Zhang et al. 2020).  

3.2.4 Histone modification 

Because of the effects of protein-DNA interactions between histone marks and TF on the regulation of crucial cellular 
processes (including the organization of chromatin structures and gene expression), the identification of such interactions 
is highly significant in biomedical science. ChIP-seq (chromatin immunoprecipitation followed by sequencing) is a widely 
used technique for mapping transcription factors, histone changes, and other protein-DNA interactions for genome-wide 
mapping (Furey 2012). ChIP-seq data is suffering from sparsity hence Albretch et al. introduced SIMPA (Albrecht, Andreani 
et al. 2021), a Single-cell ChIP-seq imputation algorithm that was tested on a scChIP-seq dataset of the H3K4me3 and 
H3K27me3 histone marks in B-cells and T-cells. Unlike most SC imputation approaches, SIMPA integrates the sparse input 
of one single cell with a series of 2,251 ENCODE ChIP-seq experiments to extract predictive information from bulk ChIP-seq 
data. Overall, SIMPA aims to identify statistical patterns that bind protein-DNA interacting sites through specific SC regions 
of target-specific ENCODE data for different cell types, as well as the presence or absence of potential sites for a single cell. 
Once these patterns are identified, SIMPA’s DL models will use these patterns to make precise predictions. As a new 
approach in SC-seq, SIMPA’s imputation strategy was able to augment sparse scChIP-seq data from single cells, leading to 
improved cell-type clustering and the detection of pathways that are specific to each cell type. 
 

In conclusion, SC genomics analysis through DL is a promising and increasingly developing field with incredible potential 
to advance our knowledge of fundamental biological issues. In this respect, DL will enable us to gain a better understanding 
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of the nature and intricacy of DNA structure and epigenomics effects on human disease for both therapeutic and diagnostic 
goals. Due to intrinsic challenges, such as the sparsity and complexity of the data, systematic noise, and the features of 
biological systems, it is required to advance in the development of new DL methods in the SC genomics field.  

3.3 DL in SC Proteomics 

Proteomics is the large-scale study of proteomes (all proteins produced or modified by an organism or system). Single-
cell Proteomics concentrates on the classification, localization, and functional analysis of the cell protein and suggests 
pictures of cellular activities and phenotypic characteristics. SC proteomics has been shown as an effective method for 
phenotypic profiling of individual cell types and their physiological structure, quantitative protein evaluation, and the 
recognition of post-translational disease-related changes which cannot be predicted through genomics or transcriptomics 
studies. 

SC proteomics can be applied to nearly every biological area, such as creating a proteome map of each cell type in an 
organism or studying disease progression, diagnosis, and treatment prognosis. Moreover, SC proteomics can be used for 
linage finding of cellular phenotypes, evaluating the activity of particular immune cells in normal, scarce, and abundant 
conditions, cancer diagnosis and immunotherapy. It can also be used to understand  the effect of targeted inhibitors on 
malignancy cells, cell response to engineered molecular stimulations, signaling pathways, cell motility research, cell-cell 
separation distance, analysis of cellular dynamics, personalized medicine, finding of new drug targets, high-throughput 
drug screening, etcetera. (Minakshi, Kumar et al. 2019). The main limiting factor in SC proteomics is the insufficient 
quantity of protein in single cells, contributing to high noise background in protein analyses. Unlike DNAs and RNAs, 
protein cannot be amplified directly, which is crucial in minimizing noise in the measured signals. Certain functional 
proteins, like proteins secreted for signaling and intracellular phosphoproteins, could be as small as tens of copies and 
show significant protein abundance differences. Another challenge is the proteome’s immense intricacy, which means a 
multitude of proteins (secreted proteins, intracellular proteins, and surface markers) can be spliced, changed, and 
activated in the same cell on various epitopes. To combat these challenges , extremely sensitive assays for SC proteomics 
measurement are required (Yang, George et al. 2020). These assays are grouped into three classes:  

(i) Flow cytometry techniques including mass flow cytometry, Fluorescence flow cytometry, and enzyme-linked 
immunospot (ELISpot). 

(ii) Technologies based on microchips such as image cytometry, micro engraving, single-cell barcode microchip 
(SCBC), and SC western blotting. 

(iii) DNA barcoding methods including DNA barcoded antibodies (Li, Yan et al. 2018).  
 

Despite this importance of SC proteomics, computational tools are nescient. Given the pace of advances in this field and 
the growth of multiplexing capacity, more specialized computational tools for handling and analyzing SC proteomics are 
much needed. Moreover, DL methods for analyzing such data can be paramount to successful studies, since DL-based 
models can provide a comprehensive view of proteome, offering significant potential for identifying relevant patterns and 
information within samples. We believe that the ongoing development of DL methods in analyzing SC proteomics can shed 
light on the heterogeneity of cells and cellular subprocesses, therefore result in unparallel advances in biomedical 
applications. 

3.4 DL (ML) in Spatial Transcriptomics 

Since being named the method of the year (Marx, 2021), spatial transcriptomics (ST) is becoming the natural extension 
of scRNA-seq, unbiasedly profiling transcriptome-wide gene expression. By not requiring tissue dissociation, spatial 
transcriptomic retain spatial information, adding a spatial component to conventional RNA-sequencing technologies. ST 
have the potential of revolutionizing the field by bridging the gap between the deep characterization of cellular states and 
the cellular diversity that constitutes tissue organization. Spatially resolved transcriptomics can provide the genetic 
profiles of cells while containing information about the positional distribution of the sequenced cells, enhancing our 
understanding of cell interactions, organ function and pathology. However, the high-throughput spatial characterization of 
complex tissues remains a challenge. Broadly, spatially-resolved transcriptomics techniques can be divided into two 
categories: (i) the cyclic RNA imaging techniques that achieve single-cell resolution and (ii) array-based spatially resolved 
RNA-seq techniques, such as Visium Spatial Transcriptomics (Ståhl, Salmén et al. 2016), Slide-sequencing (Rodriques, 
Stickels et al. 2019), or HDST (Vickovic, Eraslan et al. 2019).  

Though both subgroups can provide spatial information on a single-cell level, the cyclic RNA methods are limited on 
the number of genes that they can multiplex. On the other hand, the array-based spatially resolved RNA-seq techniques 
achieve high-throughput data by capturing mRNA across thin tissue sections using a grid of microarrays or bead-arrays, 
relying on simple molecular biology and histology protocols. However, since array-based mRNA capture does not match 
cellular boundaries, spatial RNA-seq measurements are a combination of multiple cell-type gene expressions that can 
correspond either to multiple cells (Visium) or fractions of multiple cells (depending on the spatial resolution of each 
method). To obtain a comprehensive characterization of underlying tissue, there is the need for computational methods 
that can produce coupled single-cell and spatially resolved transcriptomics strategy, mapping cellular profiles into a 
spatial context. Nonetheless, there are some techniques for retrieving relevant biological information from ST data. As 
remarked by (Lähnemann, Köster et al. 2020), detecting spatial gene expression patterns is one of the most pressing 
challenges in single-cell omics data science. Identifying such patterns can provide valuable insight on the spatial 
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distribution of cell populations, pointing out gene marker candidates and potentially leading to identification of new rare 
cell subpopulations. Moreover, ST not only puts gene expression into a spatial context but also facilitate the integration of 
tissue-image information with gene expression information. Such data integration will enable researchers to utilize image 
processing techniques to investigate the morphological information, gaining more intuition in order to obtain more 
refined inferences, predictions, or cellular profiles. After addressing the mapping issues from gene expression to the 
spatial coordinates, further computational tools will be required to study cell-cell interactions within tissues and to model 
transcriptional relations between cell types (Pham, Tan et al. 2020). Given the recency of ST, ML- and DL-based models for 
studying this type of data are rare and not fully developed. Given the complexity of the ST space, however, we predict that 
DL models will be the predominant method of choice for ST data integration and analysis, with perhaps many new models 
borrowing ideas and designs from the existing body of work in computer vision. 

3.5 Integrating scRNA-seq and Spatial Transcriptomics (Spot Deconvolution) 

Given that spatial transcriptomics (ST) methods normally detect mRNA expression from a mixture of cells, and that 
they do not distribute the sequenced samples to match cellular boundaries, it is imperative to integrate ST data with 
scRNA-seq data to obtain a comprehensive mapping. Using scRNA-seq as a reference, this integration aims to infer which 
cell belong to which gene expression count detected at the various location across the tissue. Following traditional ML 
trends, computational approaches such as SPOTlight (Elosua-Bayes et al. 2021) are built on seeded Non-Negative Matrix 
Factorization, which allows to model count data and obtain cell-type-specific profiles that are representatives of the gene 
expressions associated with the different cells. This process is further refined by a proper initialization of the method that 
uses unique marker genes of specific cell types. Next, the method uses Non-Negative Least Squares for deconvoluting the 
captured expression of each spot (location). Even though this method achieves robust results while maintaining 
computational efficiency, there is a lack of flexibility to integrate datasets from different batches or sequencing 
technologies. In SPOTlight, several aspects of the underlying biological and technological variance in the data are not 
addressed nor accounted for, which limits its application. Furthermore, technical procedures to obtain RNA-seq data are 
notoriously delicate and subjected to notable sources of variation.  

Methods like Seurat 3 (Stuart, Butler et al. 2019) make an effort to account for the intrinsic technical variability RNA-
seq procedures thorough developing an “anchor”-based method for integrating datasets. However, it is essential to 
remember that there is intrinsic biological variability regarding the number of cells across positions or the amount of 
mRNA expressed by each cell or cell type. Therefore, there is unmet need for techniques that can integrate datasets while 
properly accounting for any source of variability; thus, making statistical approaches viable candidates. Approaches such 
as Stereotipe (Andersson, Bergenstråhle et al. 2020) frame their model on a statistical framework, modeling gene 
expressions counts as occurrences under a negative binomial distribution. This model follows previous approaches of 
obtaining a gene expression profile for each cell type; Andersson et al. follow a two-step approach: First, they estimate the 
parameter of the negative binomial distribution for all genes within each cell type. Similar parameters for a distribution of 
the RNA-seq and spatial expression mixture are then formed by a linear combination of the single-cell parameters. The 
next step is to search a set of weights that can best fit the spatial data (Andersson, Bergenstråhle et al. 2020). The 
computed weights will reflect the contribution of each cell type to the gene expression counts found in each location, thus 
explaining the abundance of each cell type across the spots. Following the previous methodology, cell2location 
(Kleshchevnikov et al. 2020) builds on a Bayesian framework and models gene expression counts as a negative binomial 
distribution.  This approach allows for controlling the sources of variability which is crucial when working with data from 
different technologies. This method integrates scRNA-seq information into the spatial model on the same statistical 
framework. 

In addition to modeling the gene-specific unobserved rate (mean) as a weighted sum of the cell signature gene 
expression, it cell2location also adds various parameters to provide the model with prior information regarding 
technology sensitivity. That is, to further improve integration between different technologies, Kleshchevnikov et al. allow 
for four hyperparameters which aim to define informative priors on both variables; these hyperparameters are (i) 
expected number of cells per location, (ii) the expected number of cell types per spot, (iii) the expected number of co-
located cell type groups per location and (iv) mean and variance that allow users to define prior beliefs on the sensitivity 
of spatial technology compared with the scRNA-seq reference. These parameters will scale the weighted sum of cell 
contributions, and additive shift parameters, for accounting for gene- and location-specific shift, such as due to 
contaminating or free-floating RNA. 

3.6 DL in the Integration of SC Multimodal Omics Data 

SC sequencing was chosen as Method of the Year in 2013 due to its ability to sequence DNA and RNA in individual cells 
(Teichmann and Efremova 2020). SC sequencing allows for gene expression measurements at an unprecedented single-
cell resolution, which can provide a comprehensive view of the genome, transcriptome, or epigenome. However, it was 
essential to integrate all omics data for one sample simultaneously in order to gain an accurate and comprehensive view 
of the cellular composition in control (normal) and disease conditions (Wani and Raza 2019). Recent technological 
advances now allow for multimodal omics measurements from the same experiment; these technologies can assess 
various modalities in one experiment (i.e., conduct multimodal studies) or integrate diverse omics datasets from multiple 
experiments. Given the enormous potential of these approaches, single-cell multimodal omics was named the 2019 
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Method of the Year (Teichmann and Efremova 2020). Omics integration holds the promise of linking even small datasets 
across orthogonal biochemical domains, amplifying biologically significant signals in the process (Grapov, Fahrmann et al. 
2018). By analyzing multi-omics data, researchers can produce novel hypotheses or design mathematical algorithms for 
prediction tasks, such as drug sensitivity and efficacy, gene dependence prediction, and patient stratification. Multi-omics 
data reflect molecular phenotypes at different molecular systems, and thus each omics dataset could follow a different and 
specific distribution. This fact poses unique challenges for holistic integration, in addition to the other traditional 
difficulties such as batch effects from multiple sources. To overcome these hurdles, sophisticated statistical and 
computational strategies are required. Among the various proposed algorithms thus far, only DL-based algorithms 
provide the computational versatility necessary to effectively model and incorporate virtually any form of omic data in an 
unsupervised or supervised manner (Grapov, Fahrmann et al. 2018). 

Hao et al (Hao, Hao et al. 2020) proposed the weighted-nearest neighbor study, an unsupervised framework for defining 
cellular identity by leveraging multiple data types for creating a multimodal reference atlas. They apply their technique to 
a dataset of human PBMCs that includes paired transcriptomes and measurements of 228 surface proteins, forming a 
multimodal immune system atlas. They evaluate multimodal datasets from single cells, including paired measurements of 
RNA and chromatin state, and extend beyond the transcriptome to define cellular identity in a coherent and multimodal 
manner (Hao, Hao et al. 2020).  

On the other hand, some algorithms in this area aim to simultaneously calculate several modalities in a single 
experiment. For example, Zuo et al. (Zuo and Chen 2020) introduced a single-cell multimodal VAE model (scMVAE) for 
profiling both transcriptomic and chromatin accessibility information in the same individual cells. Given the scRNA-seq 
and scATAC-seq of the same individual cells, scMVAE’s uses three joint-learning strategies to learn a non-linear joint 
embedding that can be used for various downstream tasks (e.g. clustering). This joint learning distinguishes scMVAE from 
other VAE-based models (such as scVI) which processes individual omics data separately. Zuo et al. note that scMVAE’s 
feature embeddings are more distinct than the scVI’s for each omics data, indicating that the joint learning representation 
of multi-omics data will produce a more robust and more valuable representation (Zuo and Chen 2020).  

Currently there are only a few studies that have used DL for data integration, but their success thus far calls for 
additional investigation of DL models for this domain. Despite the significant advances made with single-cell multimodal 
omics technologies, several obstacles remain: First, these techniques are prohibitively expensive when used on a large 
scale to analyze complex heterogeneous samples and distinguish rare cell types within a tissue. On the other hand, data 
sparsity is a significant limitation of high-throughput single-cell multimodal omics assays. Furthermore, existing methods 
cover only a small portion of the epigenome and transcriptome of individual cells, making it challenging to separate 
technical noise from cell-to-cell variability. While future modification of these approaches will eventually close the gap, 
fundamentally new algorithms or strategies may be needed to resolve this constraint completely (Zhu, Preissl et al. 2020). 
Amodio et al. (Amodio et al. 2018) propose Manifold-Aligning GAN (MAGAN), which is a GAN-based model which aligns 
two manifolds coming from different domains with the assumption that different measurements for the same underlying 
system contain complementary information. They show MAGAN’s potential in the problem of single-cell data integration 
(CyTOF and scRNA-seq data) and demonstrate the generalization potential of this method in the integration of other data 
types. However, the performance of MAGAN decreases in the absence of correspondence complementary information 
among samples (Liu, Huang et al. 2019). Cao et al. (Cao et al., 2020) introduced UnionCom for unsupervised topological 
alignment of single-cell omics integration without a need for correspondence information among cells or among features, 
which can be very useful in data integration. However, UnionCom is not scalable to large datasets in the order of millions 
of cells (Cao, Bai et al. 2020). Other models such as SMILE (Single-cell Mutual Information Learning) (Xu, Das et al. 2021) 
also allow for unmatched feature types. SMILE is a deep clustering algorithm for different tissues and modalities, even 
when the feature types are unmatched. SMILE removes batch effects and learns a discriminative representation for data 
integration using a cell-pairing maximization algorithm (Xu, Das et al. 2021).  

SCIM (Single-Cell Data Integration via Matching) (Stark, Ficek et al. 2020) is a deep generative approach that constructs 
a technology-invariant latent space to recover cell correspondences among datasets, even with unpaired feature sets. The 
architecture is a modified auto-encoder with an integrated discriminator network, similar to the one in GANs, allowing the 
network to be trained in an adversarial manner. Multi-modal datasets are integrated by pairing cells across technologies 
using a bipartite matching scheme that operates on the low-dimensional latent representations (Stark, Ficek et al. 2020). 
Another data integration model is GLUER (Peng, Chen et al. 2021), which employs three computational approaches: a 
nonnegative matrix factorization (NMF), mutual nearest neighbor, and a DL neural network to integrate multi-omics data. 
The NMF stage helps to identify shared signals across data sets of different modalities, resulting in “factor loading 
matrices” (FLM) for each modality. The FLM from one data modality is defined as the reference matrix while the other 
FLM are used as query matrices, which are used to calculate putative cell pairs. These cell pair are then used in a DNN that 
aims to learn a mapping between the query FLMs and the reference FLMs, resulting in co-embedded datasets (Peng, Chen 
et al. 2021). 

Some studies have formulated the integration problem as a transfer-learning task. For example, Lin et al. (Lin, Wu et al. 
2021) pose the integration problem as a transfer learning question, where the model is co-trained on labeled RNA and 
unlabeled ATAC data. Their model, scJoint, integrates atlas-scale collections of scRNA-seq and scATAC-seq data, using a 
neural network framework (Lin, Wu et al. 2021). Their approach uses scATAC-seq to gain a complementary layer of 
information at the single-cell resolution which is then added to the gene expression data from scRNA-seq. However, 
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scJoint requires that both input matrices share the same dimensions, and scATAC-seq is first converted to gene activity 
scores, where a single encoder can share the weights for both RNA and ATAC data (Lin, Wu et al. 2021).  
 

4. Conclusion 
Single-cell omics methods generate massive amounts of data that describe the genomic, transcriptomic, or epigenomic 
profiles of many individual cells in parallel. Integrative methods have recently opened a new way for delineating 
heterogeneous mechanistic landscapes and cell-cell interactions in single-cell multi-omics. There has been a surge in using 
deep learning-based models for such datasets, given the challenges in inferring biological information and constructing 
predictive models. So far, deep learned models have shown promising results, demonstrating the ability to process and 
learn from massive quantities of high-dimensional representations of single-cell and multi-omics data. However, a 
thorough understanding of the underlying models is needed to evaluate the optimal pipeline for analyzing single-cell 
datasets in order to understand cellular identity and function better. We believe that the single-cell sequencing space will 
pose unique challenges in representation and deep learning, particularly in multi-omics applications. We foresee an 
increase in the use of deep learning techniques for addressing these difficulties. Furthermore, we believe that the 
biological generalizability and interpretability of deep-learned models in understanding complex pathological phenotypes 
would be of great interest and importance to the genomics field.  
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