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Trial-averaged metrics, e.g. in the form of tuning curves and population response vectors, are

a basic and widely accepted way of characterizing neuronal activity. But how relevant are such

trial-averaged responses to neuronal computation itself? Here we present a simple test to estimate

whether average responses reflect aspects of neuronal activity that contribute to neuronal processing

in a specific context. The test probes two assumptions inherent in the usage of average neuronal

metrics:

1. Reliability: Neuronal responses repeat consistently enough across single stimulus instances

that the average response template they relate to remains recognizable to downstream regions.

2. Behavioural relevance: If a single-trial response is more similar to the average template, this

should make it easier for the animal to identify the correct stimulus or action.

We apply this test to a large publicly available data set featuring electrophysiological recordings

from 42 cortical areas in behaving mice. In this data set, we show that single-trial responses were

less correlated to the average response template than one would expect if they simply represented

discrete versions of the template, down-sampled to a finite number of spikes. Moreover, single-trial

responses were barely stimulus-specific – they could not be clearly assigned to the average response

template of one stimulus. Most importantly, better-matched single-trial responses did not predict

accurate behaviour for any of the recorded cortical areas. We conclude that in this data set, average

responses do not seem particularly relevant to neuronal computation in a majority of brain areas,

and we encourage other researchers to apply similar tests when using trial-averaged neuronal metrics.
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Introduction

For decades, neuroscientists have recorded local neuronal populations and estimated how much information the brain

can extract from their activity to guide perception and decision-making. While research has traditionally focused on

the average response preferences of individual neurons [1–13], more recent studies have explored population patterns

of activity, either in their raw form and/ or in the form of population vectors obtained by dimensionality reduction in

higher-order (e.g. principal component) space [14–16]. This recent work has highlighted, for instance, the adaptation

of neuronal responses to the statistics of the perceptual environment [17] and orthogonalized neuronal coding of

stimulus information, behavioural choices and memory [15, 18, 19].

Irrespective of the specific approach, these studies have in common that trial-averaged population activity is im-

plicitly treated as meaningful. For instance, upon finding that with repeated stimulus exposure, average population

responses become more discriminative of behaviourally relevant stimuli [6, 8, 20], it is implicitly assumed that this will

improve an animal’s ability to perceive these stimuli correctly. Related to this assumption is the notion that devia-

tions of single-trial neuronal responses from the average population response represent ‘noise’ of one form or another.

The exact interpretation of such neuronal noise has been debated for decades [21], ranging from truly random and

meaningless activity [22–26], to neuronal processes that are meaningful but irrelevant for the neuronal computation

at hand [27–29], to an intrinsic ingredient of efficient neuronal coding [30–33]. Nevertheless, in all of these cases a

clear distinction is being made between neuronal activity that is directly related to the cognitive process under study

(e.g. perceiving a specific stimulus) – which is typically approximated by a trial-averaged neuronal response – and

‘the rest’. While this framework has undoubtedly been useful for neuroscientists aiming to characterize the general

response dynamics of neuronal networks, it remains an outstanding issue whether trial-averaged population activity

does in fact reflect an aspect of neuronal responses that transmits information between neurons. In other words,

neuroscientists care about average population responses, but does the brain?

There is some evidence in both directions: On the one hand, studies highlighting the large inter-trial variability

of individual neuronal responses [28, 29, 34–38] would suggest that a fixed ‘template response’ averaged across many

stimulus instances may not be very useful in order to represent ongoing neuronal processing. In addition, there is

the simple fact that outside the lab, any stimulus is unlikely to appear repeatedly in the same way and in the same

behavioural context, and therefore pooling responses across stimulus repetitions seems unlikely to be an ecologically

valid strategy for reliable neuronal coding. On the other hand, the fact that perceptual decisions can be shifted e.g. by

simply increasing or suppressing the activity of specific neuronal populations away from their average activity [39–44]

indicates that at least for the clear-cut contexts - and limited time frames [45] - typically presented in lab experiments,

average population responses can directly shape perceptual decision making and must therefore be computationally

relevant.

In this paper, we formally test whether the implicit assumptions inherent in the computation of average population

responses do actually hold for neuronal activity. Specifically, if the brain cares about averages, i.e. if neuronal coding

relies fundamentally on average ‘templates’ of population activity, it should satisfy two assumptions (see Fig 1A):

1) The responses of task-relevant neuronal populations are reliable – they repeat consistently enough across single

stimulus instances that the information they carry remains recognizable to downstream regions (i.e. responses can be

matched to the ‘population template’ of a given percept or action). 2) Population responses guide decision-making

and behaviour – if a single-trial response is more similar to the average population template, this should make it

easier for the animal to identify the correct stimulus or action.
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We test these two assumptions in a large data set containing neural activity from multiple brain areas recorded

during a perceptual decision task. After identifying which areas are most relevant in this context, we use simple tests

to compare single trial activity in these areas to the average response templates. Based on these tests, we show that

in this data set, neither of the two assumptions set out above is fully met.

Results

To test our two assumptions, we use a large and publicly available data set provided by [44]. The data set contains

high-density electrophysiological (Neuropixel) recordings across a large number of brain regions in mice performing

a two-choice contrast discrimination task. In the task, animals are presented with two gratings of varying contrast

(0, 25, 50 or 100%) appearing in their left and right hemifield, respectively. To receive reward, animals turn a small

steering wheel to bring the higher-contrast grating into their central vision, or refrain from moving the wheel if no

grating appears on either side (see Fig. 1B). The original task also featured trials in which both stimulus contrasts

were equal. In those cases, animals were randomly rewarded for turning right or left. Those trials were discarded

in the current analysis since it is impossible to define one ‘correct’ behavioural response in this context. Neuronal

recordings were obtained from 42 brain regions including cortical and subcortical targets (Fig. 1C).

To first establish which cortical areas are relevant for this task, we used a data-driven approach to identify across

all recorded areas to what extent neuronal population activity predicted the presented stimulus and/or the animal’s

target choice. To this end, we trained a decoder (Multinomial GLM; see Methods) to identify either target choice

(left turn, right turn, no movement) or stimulus condition (higher contrast on left, higher on right, zero contrast on

both sides) based on the single-trial population response vectors of each cortical area. For the response vectors, we

took into account neuronal activity from stimulus onset to 200ms post-onset (see Figs. S1 and S2 for a rationale of

this choice and examples of neuronal activity during this time window). Finally, we computed the mutual information

between the decoder predictions and the real outcomes. Figure 2 shows the amount of mutual information about

stimulus condition and target choice that was conveyed by the neuronal population activity in different cortical areas.

As one can see, many cortical areas contained little information on either stimulus identity or target choice, suggest-

ing that they were not crucially engaged in the task. We therefore used an elbow criterion (see Methods) to determine

a threshold for selecting cortical areas that provided the highest information on either stimulus (Ithrstim = 0.242 bits;blue

quadrant), choice (Ithrchoice = 0.248 bits;red quadrant), or both (i.e. both thresholds exceeded; purple quadrant). With

this approach we identified five cortical areas that contained predominantly stimulus information, one area that con-

tained mainly choice information and three areas that contained both. These results seem largely congruent with the

literature: For instance, latero-intermediate visual cortex (VISl) and primary visual cortex (VISp) would be expected

to contain visual stimulus information. Meanwhile, choice information is conveyed most strongly by the reticular part

of the substantia nigra (SNr), which is pivotal in reward-seeking and learning [46–48]. The fact that the Red Nucleus

(RN), which is involved in coordinated paw movement, contains information about both stimulus and choice is also in

agreement with previous literature [49, 50]. More surprisingly, Inferior Colliculus (IC), which is classically regarded a

hub of auditory processing [51], also contains stimulus and choice information, emphasizing the fact that information

is widely distributed across cortical areas [14, 44, 52].

Having identified the most task-relevant cortical areas in a data-driven way, we used the neuronal recordings from

these areas as well as from three comparison areas that contained the least relevant information – nucleus accumbens

(ACB), dorsal endopiriform nucleus (EPd) and substantia innominate (SI) – as a benchmark to test the assumptions
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FIG. 1. (Color online) Overview of the analysis and data. A) Graphic summary of the two assumptions underlying the

computation of average population responses: Single-trial responses correspond at least somewhat to the trial-averaged response

template (left), and better matched single-trial responses lead to more efficient behaviour (right). B) Task structure: To obtain

reward, animals need to move a steering wheel to bring the higher-contrast grating stimulus into the centre, or refrain from

moving the wheel when no gratings are presented. Average behavioural performance on this task is shown on the right. C)

Recording sites and, in parenthesis, total number of recorded neurons. B and C are reproduced with permission from [44].

set out above. As a first step, we computed average population responses (‘templates’) for two stimulus constellations:

Target stimulus on the left or target stimulus on the right. Note that these average templates each summarize several

different contrast levels (e.g. trials with a contrast difference of 50% right – 0% left and 100% right – 50% left will

both be pooled in the ‘Target right’ template). We chose this approach to avoid working with 4 × 4 = 16 different

contrast combinations with trial numbers as low as n = 2, which would have made averaging essentially meaningless.

However, as Figure S3 shows, the average responses to contrast differences of the same ‘direction’ (e.g. ‘Target right’)

were very comparable to each other, justifying the decision to pool them into the same average response template.

We then quantified how well single-trial population responses correlated with the average template for that given

stimulus constellation (Fig. 3; see also [53]). Correlations were generally high, typically ranging from r values of 0.4
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FIG. 2. (Color online) Stimulus and target choice information decoded from the neuronal activity in various cortical areas.

Scatter plot of stimulus information versus target choice information extracted from different cortical areas by a multinomial

GLM decoder. Each data point represents the median (dot location) and standard deviation across sessions (dot size) of one

cortical area (see in-figure labels). The blue and red quadrants (determined by an elbow criterion, see Methods) represent those

areas where either stimulus or choice information was high, respectively; the purple quadrant shows those areas where both

choice and stimulus information was high. Comparison areas (in the white quadrant) are marked in grey.

to 0.8 across all cortical areas (n = 89 to 3560 trials per cortical area; all p < 0.001). This suggests that single-trial

responses are quite a faithful representation of the trial-averaged template. To assess more precisely if single-trial

responses can be regarded as a down-sampled version of the population template, we generated surrogate data. For

each trial, we repeatedly drew the number of action potentials observed in that trial from the overall pool of spikes

that make up the population template, and then computed a bootstrapped single-trial response vector based on the

drawn spikes (Fig. 3A). Therefore, the bootstrapped responses contained the same number of spikes as the measured

single trial, but the neurons that produced each of these spikes were chosen randomly according to the probability

with which they contributed to the average template. We then correlated these bootstrapped single-trial responses to

the population template. If single-trial responses are indeed simply the result of a Poisson process sampling from the

average population template, the correlations resulting from our surrogate data should be comparable in the original

data. The surrogate data uniformly showed higher correlations to the population template than the original data
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(Fig. 3B). In fact, most correlations derived from the original data land far below the 50th percentile when compared

to the distribution of correlations derived from surrogate data (Fig. S4). This suggests that single-trial responses

exhibit more variation around the time-averaged mean than strictly explained by (Poissonian) down-sampling.

We suspected that the correlations between single-trial responses and the population template resulted at least

partially from the basic firing properties of different neurons, which would not carry any specific information since

this would not vary with the stimulus and/or task response. This notion is also supported by the observation that the

three least informative cortical areas (ACB, EPd and SI) showed comparable correlations to the population template

as the cortical areas carrying the most stimulus and/or choice information. To estimate more precisely what portion of

the correlation was stimulus-specific, we also computed the correlation of each single-trial response to the population

template for the stimulus that was not in fact shown at that particular time, i.e. the incorrect template. As one might

expect, the resulting correlations are indeed lower than those with the population template for the correct stimulus

(Fig. 3C; average difference between median correlations: 0.03 ± 0.02; t-test for dependent samples; n = 89 to 3560

trials per cortical area; t = 3.0 to 27.2; all p < 0.01, corrected for multiple comparisons using a FDR correction

imposing a family-wise error rate of 0.05). While statistically significant, this correlation difference (0.03± 0.02) is so

small compared to the typical spread of single-trial correlations (standard deviation: 0.04 to 0.39 across cortical areas)

that correlations to the correct and incorrect templates were largely indistinguishable on a single-trial level. What

is more, highly informative cortical areas did not show significantly more specific correlations than non-task-related

cortical areas (mean correlation difference for all highly informative areas: 0.031; n = 9; for all unrelated areas: 0.022;

n = 62; Welch’s t-test: t = 1.17, p = 0.27). Thus, most of the correlation between single-trial responses and the

time-averaged template is not explained by stimulus-specific response patterns. To quantify this more precisely, we

computed a metric referred to as the specificity index, which represents for each single-trial response the correlation

to the correct template minus the incorrect template. The distribution of single-trial specificity indices across cortical

areas is shown in Fig. 3D. Most values are positive, indicating that single-trial responses were generally more related

to the correct than incorrect template (t-test for difference from zero; n = 89 to 3560 trials per cortical area; t = 3.0

to 27.2; all p < 0.01, corrected for multiple comparisons using a FDR correction imposing a family-wise error rate

of 0.05). However, the distributions also remain close to zero, with correlation differences rarely exceeding 0.1 (Fig.

3D). In addition, the specificity of the original data tended to be slightly lower than that of the bootstrapped data

introduced above. This indicates that in this data set, across all examined cortical areas including visual ones, single-

trial responses were barely more similar to the correct stimulus template than to the incorrect one – and deviated

more from the template than necessary due to downsampling.

These results may not come entirely as a surprise since recent work has demonstrated how strongly non-task-related

factors can drive neuronal responses even in primary sensory areas like visual cortex [28, 29, 54–59]. As a consequence,

single-trial responses would be expected to vary strongly according to factors that are neither related to the perceived

stimulus nor the target choice. However, that does not change the fact that in the presence of these expected single-

trial variations, the animal still needs to identify the presented stimulus and make a correct perceptual choice based on

that. If time-averaged response templates were relevant to this perceptual decision, we would expect that single-trial

responses that for whatever reason fail to resemble the average response template should be more difficult to process

for downstream areas, and hence lead to less efficient behavioural choices [44].

To directly test if the match between single-trial responses and the correct response template predicted target

choices, we quantified single-trial correlations separately for hit and miss trials. In this context, miss trials are defined
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FIG. 3. Correspondence between average and single-trial responses. A) Representation of the bootstrapping procedure. The

number of spikes stayed the same on each trial, but the neuron that produced each of these spikes was chosen randomly with a

probability according to how often it spiked in the average template. We repeated this procedure 100 times. B) Distribution of

the correlations between single-trial response vectors and the trial-averaged response template for the correct stimulus. Icons

on top represent an example of a correct match between the stimulus constellations on a single trial, and that used to calculate

the average response template. Box: 25th and 75th percentile. Centre line: median. Whiskers: 10th and 90th percentile. Colors:

Classification of cortical areas (see in-figure legend). Dotted lines: Median correlation of bootstrapped data. Variance around

this median value ranged from 0.02 (RN) to 0.23 (EPd). C) Same as B, but for correlations to the response template of the

incorrect stimulus constellation. D) Specificity index of single-trial responses across cortical areas, defined as the difference

between the correlations to the correct and incorrect template. Solid gray line highlights the Specificity Index of 0.0, which

translates to exactly equal correlation to correct and incorrect template. Dotted lines represent the specificity index of the

medians of the bootstrapped values for each recorded area, with variances around those median values ranging from 0.03 (VISl)

to 0.33 (VISp).
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FIG. 4. (Color online) Match between single-trial responses and correct response template in hit and miss trials. A) Same as

Figure 3A, but for single-trial correlations to the correct template, split by hit and miss trials. B) Effect size (Cliff’s δ) of the

difference in single-trial correlations for hit versus miss trials is shown below the plot. Cliff’s δ can take values between 0 and

1, with 0.5 indicating a complete overlap between distributions (see Methods).

as trials where the animal either did not respond at all or chose the wrong target. Single-trial correlations were

somewhat lower in miss trials than in hit trials across most cortical areas, suggesting that a worse match to the

average template did indeed tend to produce miss trials more often (Fig. 4A, top). However, overall the difference

between the correlations in hit versus miss trials was small, as quantified by Cliff’s δ (Fig. 4A, bottom). There were

a few exceptions, such as the secondary motor area (MOs) (Cliff’s δ = 0.66, p = 0.0142, nhit = 2057, nmiss = 667, see

Methods). This is potentially due to the fact that hit and miss trials are associated with fundamentally different motor

responses, particularly since miss trials also include trials when the animal did not respond at all. Yet the overall

pattern suggests that the absolute correlation between a single-trial response and the average response template has

low - and inconsistent - predictive power regarding perceptual decision-making.

It is however possible that the important factor for perceptual decision making is not the overall correlation between

the single-trial response and the correct response template, but whether it resembles the correct template more than

the incorrect one. To explore this possibility, we compared the distribution of specificity indices (see Fig. 3D) between

hit and miss trials. There was again no consistent difference (Fig. 4B), with many relevant areas (e.g. CP, IC and

RN) showing no difference at all, others (like MOs, VISl and VISp) showing small differences with a large distribution

overlap, and again others (VAL) showing an inverted difference. This indicates that single-trial responses that were

more specific to the correct template did by and large not lead to improved target choices.

While in the neuronal populations recorded here, average responses were overall not particularly informative about

either stimulus identity or subsequent behaviour, it is possible that there could be a ‘supergroup’ of highly informative

neurons whose activity carries a larger amount of information about either of these aspects. These neurons would then
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drive neuronal processing in downstream areas and ultimately target choice (for examples of such highly informative

neurons, see e.g. [60, 61]). To examine whether such highly informative neurons existed in this context, we removed

one neuron at a time from the data, and quantified whether this reduced single-trial correlations to and specificity for

the correct stimulus template. The contributions of individual neurons to the overall template match in a given trial

were typically equally low, and there was no distinct outlier group of neurons that boosted single-trial correlations or

their stimulus specificity – in either hit or miss trials (Fig. S5). In a few areas (e.g. MOs and VISp), there seemed

to be at least some neurons that contributed more substantially to the template correlations, however this did not

translate to response specificity: For most areas’ correlations and all areas’ specificity indices, a roughly equal number

of neurons were contributing to and subtracting from the match of the single-trial response to the correct template

(as measured by the proportion of data points above and below zero).

It thus seems that single-trial responses are less correlated to the average than a bootstrapped version of it, and

that they are only slightly predictive of subsequent behaviour, in only a few cortical areas. However, the available

information might be more than enough to generate accurate perceptions and behaviour when scaled up to the

number of neurons actually present in a local circuit. To explore this possibility, we first sub-sampled the population

of recorded neurons in each cortical area at 10 different levels from N/10 to N . From these sub-samplings, we

extrapolated how metrics like the Specificity Index would evolve as the number of available neurons grew. As shown

in Figure 5A, single-trial correlations to the response template tended to grow with sample size, suggesting that in a

realistic population sampled by a downstream neuron (e.g. 30.000 inputs), template matching would be quite strong.

However, correlations to the correct and incorrect template appeared to grow at the same rate, so that the resulting

correlations would be high but not stimulus-specific (Fig. 5A). This is also borne out by the development of the

Specificity Index with sample size: With growing N , specificity remains largely constant in some areas (e.g. MOs and

SPF), and actually declines in many others, including lateral and primary visual cortex (VISl and VISp), red nucleus

(RN) and substantia nigra (SNr) (Fig 5B). Moreover, neither single-trial correlations nor specificity showed a tendency

to become more predictive of behaviour with larger sample sizes (Fig. 5C,D). With the exception of RN, the difference

in single-trial correlations between hit and miss trials remained constant with growing n. The difference in response

specificity between hit and miss trials actually tended to decrease (e.g. in MOs, RN and SNr). In other words, the

single-trial match to the average template did not become more indicative of subsequent behavioural choices with

larger neuron numbers.

Together, these results suggest that the relation between single-trial population responses and their trial-averaged

response templates is both less strong and less stimulus-specific than what one would expect if single-trial responses

were simply a down-sampled representation of the average. Most importantly, single-trial responses that better

resembled the correct time-averaged template did not evoke better target choices. This suggests that if ‘average

template matching’ is part of neuronal processing in this context, it happens in a non-linear and/or multi-dimensional

way that is not captured by simple correlations. To take a first step at exploring this possibility, we repeated the

analyses shown in Figures 3-5 by characterizing population responses using Principal Component Analysis (PCA) via

Singular Value Decomposition (SVD), and quantifying their resemblance to an average template in this dimensionally-

reduced space rather than by linear correlation (Figs. 6-7).

The resulting single-trial response vectors did overall not represent the corresponding average vectors more effectively

than the linear averages we had explored previously. In PCA space, single-trial vectors matched average vectors

more closely than would be predicted from bootstrapping (Fig. 6A), but the match was nevertheless weak: The
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FIG. 5. (Color online) Extrapolation of single-trial correlations and specificity index across different sample sizes. A) As we

increase the number of sampled neurons, single-trial responses do not get more stimulus-specific, given that the gap between

curves does not increase. B) Specificity index. As expected from the previous panel, the specificity index is always around 0;

moreover, when increasing the number of sampled neurons, we see a tendency towards less stimulus-specificity. C) Correlation,

split over hits and misses. Sampling more neurons does not make single-trial responses differentially more correlated to their

template in hit than in miss trials. D) Specificity index, split over hits and misses. The specificity index is always around 0,

for both hits and misses, and the stimulus specificity of the single-trial responses seems to decline when the number of sampled

neurons increases.

distance between a single-trial vector and its corresponding average template was typically 5 − 10 times larger than

the distance between correct and incorrect template. Consistently with this, single-trial responses were largely not

stimulus-specific, in fact the specificity of single-trial responses for the correct average template was even lower in

PCA space than for linear correlations (Fig. 6C; t-test for difference from Zero: n = 90 to 3123; t = 0.6 to 17.0;

p < 0.01 except for p(EPd) = 0.04 and p(SI) = 0.56, corrected for multiple comparisons using a FDR procedure with

a family-wise error rate of 0.05). Specificity indices were clustered tightly around zero, and never exceeded a value

of 1. This is particularly remarkable because unlike correlation coefficients, which are bounded between 1 and −1,

PCA vector distances are not upper-bounded and often took on values between 5 and 10 (Fig. 6A-B). Given these

values, specificity indices < 1 imply negligible differences between the single-trial distances to correct and incorrect

templates, respectively. Single-trial responses that were more similar and/or specific to the correct average vector

also had only a marginally higher chance of resulting in correct behavioural choices (Fig. 6D-E; Mann-Whitney’s

U-test for differences in single-trial distances in hit and miss trials: n = 90 to 3123, Cliff’s δ between 0.38 and 0.55;

all p < 0.01; Mann-Whitney’s U-test for differences in single-trial specificity in hit and miss trials: n = 90 to 3123,

Cliff’s δ between 0.38 and 0.61; all p < 0.01; corrected for multiple comparisons). Finally, unlike the linear averages

probed before, the information conveyed by average vectors in PCA space seemed to at least somewhat profit from

increased neuron numbers, but only in very specific cases. Single-trial vectors generally did not match average vectors
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FIG. 6. (Color online) Template matching using PCA instead of Pearson correlation. A) Distance of single-trial response

vectors to the correct average template. For interpretability, distances are normalized by the distance between the two average

templates. B) Same as A, but for the incorrect template. C) Specificity index, computed for each trial as the difference

between the distance to correct and incorrect template, respectively. D) Distribution of single-trial distances to the correct

average template in hit and miss trials, respectively. Horizontal line: Median. Colors: see inset legend. E) Same as D for the

Specificity index.

better with more neurons (Fig. 7A,C), but response specificity seemed to increase at least in some cortical areas,

particularly Substantia Nigra (SNr) and to a lesser extent the Red Nucleus (RN), Inferior Colliculus (IC) and primary

visual cortex (VISp). These areas showed not only increased specificity with larger neuronal populations (Fig. 7B),

but also at least slightly higher response specificity in hit than miss trials (Fig. 7D). Note however that even with these

improvements, the Specificity Index never exceeded 1, still pointing to low overall response specificity (see above).

The remaining cortical areas did not seem to undergo any improvement in specificity with increased neuron numbers

(Fig. 7B), and also showed no and/or inconsistent differences in specificity between hit and miss trials (Fig. 7D).

Overall, these results demonstrate that just like for linear correlations, resemblance of single-trial to average vectors

in PCA space did not seem to drive neuronal processing in a decisive way across most cortical areas, with the possible

exception of Substantia Nigra and Red Nucleus. However, since PCA is a linear method too, this still leaves open the

possibility that non-linear methods may reveal accurate template matching of single trials.
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FIG. 7. (Color online) Extrapolation of single-trial distances in PCA space and specificity indices across different sample sizes.

A) Distance between single- trial vectors and correct and incorrect template over increasing sample sizes. B) Specificity index

computed over increasing sample sizes. C) Distance between single-trial response vectors and correct average template in PCA

space, split for hit and miss trials. D) Same as C for specificity index.

Discussion

The present study set out to formally test the implicit assumptions we make when computing average population

responses. Specifically, if average population responses are informative to the brain, single-trial responses should be

sufficiently reliable and specific to be matched to the correct percept’s population template, and single-trial responses

more similar to the template should evoke more efficient behaviour. We find that these two assumptions are only

fulfilled to a very limited extent in the data set examined here: Single-trial responses were reliably correlated to the

average template - although less so than would be expected if they represented a discretized version of the population

template. However, these correlations showed very low stimulus specificity, meaning that a large part of their reliability

was likely based on stimulus-independent factors such as the baseline firing rate of different neuron types. Correcting

for such differences in firing rate, as is done automatically by the PCA, did not improve the stimulus specificity

of the correlations. In addition, single-trial responses that better resembled the correct population template hardly

increased an animal’s chance of making the correct target choice. Further analyses indicated that these results would

not improve for a larger number of neurons, and were only marginally improved for specific brain areas (Substantia

Nigra and Red Nucleus) when applying dimensionality reduction techniques (specifically PCA) before quantifying the

match between single trials and average response vectors. This suggests that if the brain uses average population

responses as a template, at least in the context of the given data set, this is not the central mechanism driving

perceptual decision making.

Given that these conclusions are based on one specific data set and one specific set of analyses, one can envision

several caveats, most of which pertain to the appropriateness of the average response template. First, given the nature

of the behavioural task employed here, the most relevant stimulus information (the contrast difference between the two
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presented stimuli) is computed by comparing information across two cortical hemispheres, but we only have access to

neuronal recordings from one hemisphere. Thus, if we recorded neuronal responses from both hemispheres, population

templates might become more stimulus-specific and informative. While this is likely true for some cortical areas, the

fact remains that the animal is able to make largely correct perceptual decisions in this task, which means that even if

specific cortical areas (e.g. primary visual cortex) did not contain information about the stimulus comparison between

the two hemifields, some downstream area should receive the result of this cross-hemisphere computation in order to

initiate the correct behavioural response. Since this data set is arguably the most complete set of neuronal recordings

to date regarding the number of cortical and subcortical areas covered, it seems unlikely that across all these recorded

areas, there is not a single one that consistently represents the integrated stimulus information of the two hemifields.

Another limitation of our average population template may be that animals were presented with 16 different contrast

combinations, which we have pooled into only three stimulus categories (higher-contrast stimulus on the right or the

left, and no stimulus on either side). Thus, if there were enough trials to compute average response templates for each

specific stimulus pair, the measured single-trial correlations to the template as well as their stimulus specificity might

be higher. While this is certainly possible, the fact that the average responses for each of the pooled stimulus pairs

were highly correlated to each other (see Fig. S3) would suggest that the precision lost by pooling across stimulus

pairs is largely negligible. In addition, since the stimulus categories we applied are congruent with the target choice

the animal needs to make (i.e. choose whether to turn the wheel to the left or right), this global information (which

hemifield contains the higher-contrast stimulus, irrespective of exact contrast) should be reflected in at least some of

the recorded cortical areas in order to drive the behavioural response – an assumption which is also borne out by the

decoder analysis shown in Figure 2.

A third potentially important factor is our choice to analyse neuronal responses within a time window of 200ms

post stimulus onset. We chose this analysis window to largely exclude neuronal signals directly related to licking

activity, since the majority of licks typically happened after 200ms, with the response peak occurring at a delay of

520ms (see Fig. S1). In this way, our aim was to focus on the decision process that leads up to the behavioural

response, rather than the response itself. Nevertheless, it is possible that a different analysis window would highlight

different and/or more task-related information across the recorded cortical areas.

Most importantly, while the results obtained in this data set suggest a very limited utility of trial-averaged popula-

tion responses for neuronal processing, these results may not hold for other cases. It is very possible that time-averaged

response templates are much more relevant to neuronal computations given different behavioural contexts, stimulus

structures or even species – or different metrics of neuronal activity that are being extracted and averaged over

time [44]. Similarly, in this context we chose PCA as a benchmark of dimensionality-reduction techniques due to

its relative simplicity and ubiquitous use, but other approaches might in principle yield improved results. For in-

stance, non-Negative Matrix Factorization [62], though computationally more demanding and less widely used, might

outperform PCA because it defines neuronal ensembles in a sparser, and therefore more realistic, way [63].

We would therefore encourage other researchers to run a simple ‘rule-of-thumb’ test like the one presented here

on their data in order to gain an estimate of how crucial average population templates might be to the neuronal

computations they are studying – and ideally choose their analysis approach based on that estimate. Over time, this

might allow the neuroscience community to put together a ‘map’ of contexts in which averaged responses are more

or less informative to the brain, similar to the emerging map of cortical areas in which neuronal responses show more

or less representational drift over time [34, 35, 64, 65].
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In statistics, it is common practice to explicitly test whether the assumptions (e.g. normal distribution) of a

particular analysis (e.g. ANOVA) are fulfilled in a data set. We would argue in favour of a similar approach when

it comes to the average metrics of neuronal activity typically applied in neuroscience: Population response vectors,

tuning curves, PSTHs etc. should ideally come with a simple metric (like the Specificity Index) that represents an

estimate of how likely the information they convey is to be informative to the brain, rather than only to the reader.

To facilitate this, we have kept the computational tools employed here purposefully simple and general, by utilizing

mainly linear correlations. This aims to ensure that the analyses presented here provide an easy-to-use and intuitively

interpretable way of estimating the relation between single-trial responses and time-averaged response templates.

Second, since typical metrics of neuronal activity such as tuning curves, receptive fields and PSTHs do in fact rely

on simple averaging, our test is designed to directly determine if these common metrics can be meaningfully applied

to a specific data set. This does not exclude the possibility that our estimate is missing out on higher-order relations

between single-trial and average population responses, which cannot be captured in simple correlations. As we have

shown, this possibility can at least be excluded for relations that can be revealed by PCA, but other analyses may

uncover strong and behaviourally meaningful links between individual and averaged responses on a more complex

level.

Since the classical trial-averaged responses tested here appear largely irrelevant to ongoing neuronal computations

at least in this particular context, how then could stimulus and target choice information be encoded? First, the

stimulus-related response profiles explored here may underestimate the computational power of average responses by

ignoring modulating factors: Neuronal responses in every cortical area are likely shaped by many task-related and

task-unrelated factors at any moment in time [12, 28, 29, 54, 56–59, 66–69], only some of which will be accessible

to the experimenter. This can make neuronal responses appear highly unpredictable, when they are in fact shaped

systematically and reproducibly by a set of unmeasured, or ‘latent’, variables. In principle, downstream neurons

may be able to disentangle these factors and dissect out e.g. stimulus-related information from the representation

of other variables. Thus, while the simple population averages tested here may not appear particularly informative,

other approaches considering joint neuronal response profiles for multiple factors, potentially including non-linear

interactions between them, might be more successful at teasing out reliable information from trial-averaged templates.

If this were the case, then we would suggest that the neuroscience community should abandon single-feature response

averages in favour of multi-feature response averages. This would likely involve finding routine metrics to track

ubiquitous latent variables like behavioural state [56, 58, 70–72] throughout a wide range of experiments.

However, it is also possible that trial-averaged templates, whether single- or multi-feature, are simply not the best

way to represent neuronal information. Several recent papers have argued that factors such as stimulus properties,

behavioural choices, and retrieved memories are encoded along largely orthogonal dimensions in neuronal response

space [15, 18, 19]. If this is true and trial-averaged responses are informative along these different dimensions, then

our PCA approach would be expected to more successfully retrieve e.g. stimulus identity from averaged neuronal

population vectors by dissociating it from the response profiles related to other, orthogonally coded, factors. We show

here that this was largely not the case.

This leaves several alternatives. First, information may be encoded mostly in joint neuronal dynamics that are

only captured very imperfectly by static (single-or multi-feature) response preferences. Analysis approaches that take

into account such dynamics, e.g. by tracking and/or tolerating ongoing rotations and translations in neuronal space

[72–78] or by explicitly including shared variability in their readout [79–81] seem to generally fare better in capturing
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robust features of neuronal coding. Even though such non-static approaches do not always uncover consistent neuronal

representations across all cortical areas [34], they often provide vastly more informative and stable representations

of neuronal activity despite seeming variability [73–75, 81]. Consistently with this, the decoder approach used in

Figure 2 extracted information more successfully than the average templates derived from the same data – most likely

because decoders build their predictive power on co-variability and co-dependences between the input data and the

class labels, which are smoothed over when averaging across trials.

Finally, it is also possible that highly informative aspects of neuronal activity might not be captured by population

response vectors at all, whether single-trial or trial-averaged. For instance, transient phase relationships between

neuronal sub-populations [82–84] or the relative timing of action potentials [85, 86] will not be reflected in overall

population responses. No matter which of these approaches turns out to be most successful, it is important to

recognize that time-averaged population responses may at least in some contexts not be a fitting way to describe how

information is represented in the brain.

Conclusion In this study, we present a simple analysis that can be used to determine whether trial-averaged popula-

tion responses are likely to be relevant to the neuronal computations under study - or not. We apply this analysis to a

publicly available data set containing electrophysiological recordings from a large number of cortical areas in behaving

mice [44] and show that in this data set, average population responses seem to be largely irrelevant to perceptual

decision making. Even in cortical areas that carry stimulus and/or target choice information, the relation between

single-trial and trial-averaged population responses reflected neither stimulus nor target choice reliably. This fits with

studies [34, 54, 64, 75] showing that in many contexts, neuronal responses spontaneously shift over time. In such

(and other) instances, a static average taken across time is a very imprecise way of representing the ongoing neuronal

computations. In other contexts, trial-averaged responses may be a much more meaningful representation of ongoing

neuronal responses. We encourage other researchers to apply the analysis presented here or similar analyses on their

own data sets. While trial-averaged metrics such as receptive fields, orientation preferences, or PSTHs can be a useful

tool to summarize neuronal responses in a clear-cut way, it is important to know whether these metrics are mainly a

shortcut for us neuroscientists, or whether we also expect the brain to make use of them to convey information.
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METHODS

We have released all the scripts and data files to reproduce these analyses, they can be found at the following URL:

https://github.com/atlaie/BrainAveraging. They are written in Python 3 and leverage on several libraries.

Decoder

We trained a multinomial Generalized Linear Model (GLM) using the SciKit-Learn package in Python [87]. In

order to avoid overfitting, we introduced a L2-regularization. If we have K classes in which we want to classify our

label data, this model states that the probability of a particular data point yi belonging to class c is dependent of the
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input data xi and the bias for that class (bc) takes the form of:

p (yi = c | xi) =
ewc·xi+bc∑K
j=1 e

wj ·xi+bj
(1)

After having the probabilities of yi belonging to each class c, the highest one will be taken to be 1 and the rest will

be set to 0. Therefore, the objective is to find the weight vector wc that minimizes the distance between the predicted

(ŷi) and the actual (yi) class labels by optimizing (in this case, minimizing) the following loss function:

L (ŷi, yi) = − log

(
ewc·xi+bc∑K
j=1 e

wj ·xi+bj

)
+ λ ∥wc∥22 (2)

where ∥wc∥22 is the L2-norm of the weight vector for class c , accounting for the L2-regularization term – with the

hyperparameter λ modulating its strength.

For each experimental session, there are several recorded regions. Thus, we trained independent decoders using the

single-trial population vector for each region. The labels to be predicted would be either choice (left wheel turn, right

wheel turn or no movement) or stimulus (right-higher contrast, left-higher contrast, both equal). We split the data

following a 80-20 ratio (train-test) and, given the imbalanced nature of the dataset, we used an stratified 10-repeated

5-fold Cross-Validation approach. We then performed hyperparameter optimization via a greedy algorithm (grid

search) and checked that the model performance (Accuracy and LogLoss score) was above chance and above majority

class (i.e., always predicting the most abundant label) and random models.

We then computed the Mutual Information between the predicted and the test class labels, as a proxy of the amount

of stimulus – or choice – information there was in the population vector.

Mutual Information

This quantity is defined in the context of classical Information Theory [88, 89]. We can compute it for two discrete

stochastic variables X and Y. Assuming these have a joint probability mass function given by pX,Y (x, y) = P (Y = y |
X = x) ·P (X = x) and that each of them follows a marginal probability distribution given by pX =

∑
y∈Y pX,Y (x, y),

one can mathematically define the Mutual Information between X and Y as:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(X,Y ) log

(
pX,Y (x, y)

pXpY

)
(3)

Intuitively, one can understand I(X;Y ) as the uncertainty reduction in X that follows if Y is measured (or vice

versa, as I(X;Y ) is invariant when swapping X and Y ). If (and only if) they are independent of each other, then

I(X;Y ) = 0. Therefore, this is a strictly non-negative quantity. It is noteworthy that I(X;Y ) captures all linear and

nonlinear dependencies between X and Y , thus generalizing the notion of correlation measures. For further discussion

of this measure, see [90, 91].

Elbow method

In order to select a threshold when selecting the task-related areas based on their stimulus and choice information

(Figure 2 in the main text), we used the data to compute the Kernel Density Estimate, via Gaussian kernels [92].
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After having extracted these, we used the method discussed in [93] to find the point of maximum curvature. We made

use of the kneed Python package, implemented by the same authors [93].

Surrogate models

We were interested in comparing the experimental neuronal population response with a downsampled version of

the trial-averaged template. To do that, we built our surrogate models by constructing N(= 100) random vector with

the following constraints:

1. Its size is equal to the number of neurons comprising the neural population for that area and that session.

2. The probability that at n spikes are allocated at a particular location m (i.e., that neuron m has spiked n times)

is given by Pm,n =
(

λm∑
m λm

)n
, where λm is the mth element of the template vector.

3. The total number of spikes is constant and equal to the total recorded number of spikes for that area and that

session.

By imposing these constraints, we are testing the alternative hypothesis that neurons are independent from each

other (uncorrelated) and it is therefore equivalent to keeping the single-trial population statistical response, while

scrambling across trials. This is also the same as drawing single-neuron responses from the underlying template

distribution following a Poisson process.

Specificity index

With the intent of characterizing whether the neural response is more similar to the appropriate template (i.e., the

one corresponding to the stimulus that was actually presented in that trial) or the other one, we introduced a simple

quantity we termed specificity index. It is defined as:

ρi = cor(λappropriate, ri)− cor(λwrong, ri) (4)

where cor is the Pearson correlation, λ denotes a given neural template and ri is the population vector of the ith

trial. Thus, the specificity index captures the differential similarity of a given neural response to each of the templates.

It is key to note that, given that the Pearson correlation is bounded between −1 and 1, the specificity index can attain

values between −2 and 2 and, as we were just interested in its sign and global tendencies, we did not introduce any

normalization factor.

Cliff’s δ

As a way to quantify the overlap between distributions (for example, correlation in hit vs miss trials) we relied on

Cliff’s δ [94]. Cliff’s δ is an effect size derived from the Mann-Whitney U-test –a non-parametric statistical test that

is particularly useful when distributions are not Gaussian [95]. Furthermore, Cliff’s δ is especially interpretable. It

can be thought of as the probability of a randomly selected point from one distribution being higher than another

randomly selected point from the other one. Mathematically, if we have two distributions A and B, the U-statistic is

given by:

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2021. ; https://doi.org/10.1101/2021.11.28.469673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.469673
http://creativecommons.org/licenses/by/4.0/


18

U =
a∑

i=1

b∑
j=1

S (Ai, Bj) (5)

with a and b being the number of elements of A and B, respectively; and

S (Ai, Bj) =


1, if Ai < Bj

1/2, if Ai = Bj

0, if Ai > Bj

(6)

Having computed the U-statistic, Cliff’s δ is given by normalizing it as

δ =
U

ab
(7)

Thus, it is bounded between 0 and 1. If A and B are maximally overlapping, δ = 0.5; if there is no overlap, δ = 1 (or

0 if we take the U-test in the reverse direction). Therefore, the more its value deviates from 0.5, the less overlapping

the distributions are.

Templates and distances in PCA space

As an alternative to Pearson’s correlation, we applied Principal Component Analysis (PCA) [96]. We have chosen

PCA over non-Negative Matrix Factorization [97] or other more advanced dimensionality reduction techniques such

as LFADS [79] or PSID [72] because we wanted to keep all analyses as general as we possibly could. Thus, we compute

the truncated Singular Value Decomposition (tSVD) [98] for the matrix consisting on Z-scored single-trial population

vectors, for a given area and session. Then, we extract the knee (elbow) using the aforementioned method, to select

the number of components based on the variance explained. After the number of components has been selected, we

project each single-trial into this (dimensionally-reduced) space and compute the Euclidean distance between this new

vector and the template (also projected into this space). We normalize by the distance between the projection of the

two templates in this new space. For the subsampling analyses, the only thing we require is that the dimensionality of

the extracted subspace should be larger than one. That explains the discrepancy between the correlation subsampling

range (from N/10 to N) and this other one (from N/6 to N).

Specificity Index for PCA distances

Since in PCA analyses we dealt with distances rather than correlations (i.e., differences rather than similarities), we

inverted the computation of the Specificity Index in this context so that positive values continued to signify a stronger

relation between single trial response and correct template than incorrect template. The corresponding formula is:

ρPCA
i = d(λPCA

wrong, r
PCA
i )− d(λPCA

appropriate, r
PCA
i ) (8)

where d stands for Euclidean distance and rPCA
i is the PCA-projected version of the population vector measured

in the ith trial; λPCA
wrong and λPCA

appropriate are the PCA-projected version of the trial-average templates (wrong and
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appropriate, respectively).
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FIG. S1. (Color online) Post-stimulus licking time distribution. In the highlighted inset, we show licking times below a second

after stimulus presentation. We have selected our analysis window of 200ms because of the relatively small number of lick

events in that window (5% of all licks) and its likely relevance to stimulus processing and behavioural decision making.

FIG. S2. (Color online) Example of neuronal responses to stimulus constellations with the target on the left and right,

respectively. Responses are shown for one neuron each in four representative areas that are informative of the stimulus (VISp),

the target choice (SNr), both (CP) and neither (ACB).
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FIG. S3. (Color online) Correlations between response templates for different contrast combinations. These generally exceed

0.9, suggesting that one template should be sufficient to represent different contrast constellations.

FIG. S4. (Color online) Percentile distributions for the correlation between single-trial responses and the correct (A) and

incorrect templates (B). Box: 25th and 75th percentile. Solid line: Median. Whisker bars: 10th and 90th percentile. In both

cases, these correlations lie well below the 95th percentile when compared to the surrogate distributions we computed (main

text, Fig. 3A).
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FIG. S5. (Color online) Neuron removal analyses. A) Change in single-trial correlations to the correct average template when

one individual neuron was removed. Data points: Trials. Colors: see inset legend. B) Same for single-trial specificity.
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