New Results
Leveraging information in spatial transcriptomics to predict super-resolution gene expression from histology images in tumors
Minxing Pang, Kenong Su, View ORCID ProfileMingyao Li
doi: https://doi.org/10.1101/2021.11.28.470212
Minxing Pang
1Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Kenong Su
2Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, USA
Mingyao Li
2Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, USA

Article usage
Posted November 28, 2021.
Leveraging information in spatial transcriptomics to predict super-resolution gene expression from histology images in tumors
Minxing Pang, Kenong Su, Mingyao Li
bioRxiv 2021.11.28.470212; doi: https://doi.org/10.1101/2021.11.28.470212
Subject Area
Subject Areas
- Biochemistry (7359)
- Bioengineering (5338)
- Bioinformatics (20306)
- Biophysics (10034)
- Cancer Biology (7763)
- Cell Biology (11333)
- Clinical Trials (138)
- Developmental Biology (6444)
- Ecology (9968)
- Epidemiology (2065)
- Evolutionary Biology (13346)
- Genetics (9366)
- Genomics (12598)
- Immunology (7719)
- Microbiology (19060)
- Molecular Biology (7452)
- Neuroscience (41108)
- Paleontology (300)
- Pathology (1233)
- Pharmacology and Toxicology (2141)
- Physiology (3171)
- Plant Biology (6869)
- Synthetic Biology (1899)
- Systems Biology (5320)
- Zoology (1090)