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SUMMARY 

While standard graph-theoretic measures have been widely used to characterize atypical 

resting-state functional connectivity in autism spectrum disorder (ASD), geometry-inspired network 

measures have not been applied. In this study, we apply Forman-Ricci and Ollivier-Ricci curvatures to 

compare networks of ASD and typically developing individuals (N = 1112) from the Autism Brain 

Imaging Data Exchange I (ABIDE-I) dataset. We find brain-wide and region-specific ASD-related 

differences for both Forman-Ricci and Ollivier-Ricci curvatures, with region-specific differences 

concentrated in Default Mode, Somatomotor and Ventral Attention networks for Forman-Ricci 

curvature. We use meta-analysis decoding to demonstrate that brain regions with curvature differences 

are associated to those cognitive domains known to be impaired in ASD. Further, we show that brain 

regions with curvature differences overlap with those brain regions whose non-invasive stimulation 

improves ASD-related symptoms. These results suggest the utility of graph Ricci curvatures in 

characterizing atypical connectivity of clinically relevant regions in ASD and other 

neurodevelopmental disorders. 

INTRODUCTION 

Autism spectrum disorder (ASD) is an umbrella term for a diverse group of clinical 

presentations of neurodevelopmental disorders such as Autism, Asperger’s syndrome, childhood 

disintegrative disorder and pervasive developmental disorder not otherwise specified (PDD-NOS) 

(“National Institute of Neurological Disorders and Stroke. Autism Spectrum Disorder Fact Sheet,” 

2020). ASD is characterized by difficulties in social interaction, speech and non-verbal 

communication, restrictive/repetitive behaviors and varying levels of intellectual disability, and can 

also be accompanied by neurological or psychiatric disorders (Lord et al., 2020; “National Institute of 

Neurological Disorders and Stroke. Autism Spectrum Disorder Fact Sheet,” 2020). Memory and 
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movement impairments are also identified in ASD (Kristen et al., 2014; Habib et al., 2019; Zampella et 

al., 2021). Being highly heritable (Lord et al., 2020; Wang et al., 2017), the prevalence of ASD is 

globally increasing, affecting 1 in 54 children aged 8 years in the United States (Maenner et al., 2020) 

and 1 in 100 children aged under 6 years in India (Arora et al., 2018). In 1990, ASD was declared as a 

disability in the United States. While an early diagnosis is key for early intervention, an accurate and 

effective diagnosis of ASD is crucial (Fein et al., 2013). In order to provide a proper diagnosis and to 

better characterize the disorder, several studies have been undertaken to understand the 

pathophysiology and neurobiology of ASD (see e.g. Lord et al. (Lord et al., 2020) for a comprehensive 

review). 

Neuroimaging methods like diffusion tensor imaging, magnetic resonance imaging (MRI) and 

functional magnetic resonance imaging (fMRI) are well recognized and enable us to understand 

structural and functional brain development in people with ASD compared to typical development and 

to identify the disrupted neural mechanisms underlying ASD (Clements et al., 2018; Langen et al., 

2014; Solso et al., 2016; Woodward and Cascio, 2015). It also provides a means to validate clinical 

symptoms and cognitive theories of ASD neurobiologically (Hull et al., 2017; Langen et al., 2014; 

Lord et al., 2020). fMRI captures activations in different regions of the brain through the changes in 

blood oxygen levels (BOLD signals), and the temporal correlations between these BOLD signals are 

referred to as functional connectivity in the brain (Logothetis, 2008). Distant regions in the brain are 

activated synchronously even during rest (Biswal et al., 1995; Raichle et al., 2001) and they form the 

resting-state functional connectivity of the brain. Resting-state functional MRI (rs-fMRI) studies that 

require participants to look at a blank screen with no task demands have been used to study resting-

state functional connectivity in the human brain, and have been demonstrated to be a convenient 

paradigm to identify neuronal correlates of neuropsychiatric disorders such as ASD (Hull et al., 2017; 

Woodward and Cascio, 2015). Alongside individual studies, data sharing initiatives like the Autism 
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Brain Imaging Data Exchange (ABIDE) have offered large datasets of rs-fMRI images, encouraging 

and accelerating research on ASD (Di Martino et al., 2014; Hull et al., 2017; Lord et al., 2020). 

Graph theory and network analysis provide objective, data-driven measures to analyze the 

topological architecture and connectivity patterns (human ‘connectome’) in the human brain (Bullmore 

and Sporns, 2009; Farahani et al., 2019; Hull et al., 2017; Rubinov and Sporns, 2010; Sporns, 2013; 

Van Essen et al., 2012), and can provide us with deeper insights about the functional, structural and 

causal organization of the brain (Farahani et al., 2019). Remarkably, many previous studies on ASD 

have utilized graph-theoretic analysis of rs-fMRI functional connectivity networks (FCNs) to 

differentiate ASD from typical development (Anderson et al., 2013; Chen et al., 2021; Di Martino et 

al., 2014; Harlalka et al., 2018; Itahashi et al., 2014; Keown et al., 2017; Ray et al., 2014; Redcay et 

al., 2013; Rudie et al., 2013; You et al., 2013), and furthermore, some of these studies (Anderson et al., 

2013; Di Martino et al., 2014; Harlalka et al., 2018; Keown et al., 2017) made use of the ABIDE-I 

dataset. These studies investigated network characteristics such as small-worldness, modularity, 

clustering, efficiency, rich club organization and connection densities of the FCNs in ASD versus 

typical development, and reported atypical functional organization in ASD both globally and at the 

level of individual brain regions. 

In recent years there has been an increasing interest in the development of geometric tools for 

analyzing complex networks (Boguñá et al., 2021), which enables the study of higher-order 

correlations in networks beyond pairwise interactions (Bianconi, 2021; Iacopini et al., 2019; Kartun-

Giles and Bianconi, 2019). A fundamental concept in geometry is Ricci curvature (Jost, 2017), which 

quantifies the extent to which a space differs from being flat. Various nonequivalent definitions of 

graph Ricci curvature have been proposed (Chow and Luo, 2003; Forman, 2003; Ollivier, 2007; Samal 

et al., 2018; Sreejith et al., 2016) with an aim to capture the key properties of the classical Ricci 

curvature. Different notions of graph Ricci curvature have found applications in diverse areas, such as 
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differentiating gene co-expression networks of cancer cells and healthy cells (Sandhu et al., 2015), 

identifying crashes and bubbles in financial networks (Samal et al., 2021; Sandhu et al., 2016), and 

community detection in complex networks (Ni et al., 2019; Sia et al., 2019). Ollivier-Ricci curvature 

(ORC) (Ollivier, 2007) and Forman-Ricci curvature (FRC) (Forman, 2003; Sreejith et al., 2016) are 

two widely-used notions of graph Ricci curvature. 

Notably, graph Ricci curvatures have also been applied to structural and functional connectivity 

networks of the human brain. Farooq et al. (Farooq et al., 2019) applied ORC to brain structural 

connectivity networks to identify robust and fragile brain regions in healthy subjects. They also show 

that ORC can be used to identify changes in brain structural connectivity related to ASD and healthy 

aging. Simhal et al. (Simhal et al., 2020) used ORC to measure changes in brain structural connectivity 

of individuals with ASD before and after the infusion of autologous umbilical cord blood. ORC has 

also been used to study differences in brain structural connectivity networks of cognitively impaired 

and non-impaired multiple sclerosis patients (Farooq et al., 2020). Recently, Chatterjee et al. 

(Chatterjee et al., 2021) used a version of FRC to determine the changes in brain functional 

connectivity related to attention deficit hyperactivity disorder (ADHD). Additionally, FRC has been 

used to analyze task-based fMRI data (Weber et al., 2019) as well as to predict the intelligence of 

healthy human subjects (Lohmann et al., 2021). Most of these studies have also contrasted graph Ricci 

curvatures with standard network measures such as clustering coefficient and node betweenness 

centrality, and showed that graph Ricci curvatures can provide new information about brain 

connectivity organization. However, a systematic evaluation of the ability of graph Ricci curvatures to 

characterize atypical brain functional connectivity in ASD and other neurodevelopmental disorders is 

lacking. 

In the present work, we expand the scope of curvature-based analysis for characterizing brain 

connectivity, by systematically applying graph Ricci curvatures to study atypical functional 
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connectivity network organization in ASD. For this purpose, we utilized raw resting-state fMRI images 

of 1112 subjects from the ABIDE-I dataset and obtained FCNs for each subject by implementing a 

uniform preprocessing pipeline and thorough quality assessment (QA) checks. We employ FRC and 

ORC to compare the FCNs of individuals with ASD relative to typically developing individuals (TD), 

and evaluate the role of these curvature measures as indicators of atypical functional connectivity in 

ASD. We analyzed the brain-wide changes in FCNs by comparing average edge curvatures across the 

two groups, and analyzed the region-specific changes in FCNs by comparing node curvatures across 

the two groups. We then performed two analyses to assess the agreement of our results with relevant 

prior neuroimaging literature. First, we used meta-analysis decoding with respect to a large database of 

fMRI studies, to determine if those regions showing curvature differences are also associated to those 

cognitive domains known to be impaired in ASD, e.g. social cognition. Second, we determined if those 

regions showing curvature differences overlapped with those regions whose non-invasive stimulation 

with transcranial magnetic stimulation (TMS) (Hallett, 2007) and transcranial direct current 

stimulation (tDCS) (Nitsche et al., 2008) are reported in the literature to result in improvement of 

ASD-related symptoms. 

RESULTS 

The primary goal of this study is to evaluate the utility of two notions of graph Ricci curvature, 

namely Forman-Ricci curvature (FRC) and Olivier-Ricci curvature (ORC), that have been recently 

ported to the domain of complex networks, as indicators of atypical topological organization in resting 

state functional connectivity networks (FCNs) of individuals with ASD. For this purpose, we analyzed 

spatially and temporally preprocessed rs-fMRI images of 395 individuals with ASD and 425 TD 

individuals from the ABIDE-I dataset as described in STAR methods. The demographic and clinical 

information for these subjects is summarized in Table 1. Figure 1 is a schematic summarizing the 

processing pipeline for rs-fMRI data used in this study. Furthermore, Supplementary Table S1 gives 
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detailed information on the quality assessment and exclusion criteria for rs-fMRI dataset. 

Subsequently, 200 regions of interest (ROIs) or nodes were defined in the brain using the Schaefer 

atlas, and a 200 × 200 functional connectivity (FC) matrix was generated for each subject by 

computing the Pearson correlation coefficient between the time-series of all pairs of nodes. Thereafter, 

by combining maximum spanning tree (MST) and sparsity-based thresholding, we constructed FCNs 

over a wide range of graph densities between 0.02 or 2% edges and 0.5 or 50% edges, with an 

increment of 0.01 or 1% edges (see STAR methods). In a nutshell, we generated and analyzed 49 

FCNs for each of the 820 subjects in the ABIDE-I dataset considered in this study. 

Brain-wide changes in functional connectivity networks 

To investigate the differences in the global organization of FCNs between the ASD and TD 

groups, we computed the average edge FRC and average edge ORC across the 49 FCNs across the 

graph densities 2% - 50% for each subject. To compare the average edge curvatures at each graph 

density between the ASD and TD groups, we employed a two-tailed two-sample t-test followed by 

FDR correction (see STAR methods). In Figures 2a and 2b, we show the differences in average edge 

FRC and average edge ORC, respectively, between the ASD and TD groups across the graph densities 

2% - 50%. We find that average edge FRC is significantly lower (p < 0.05, FDR-corrected) in the ASD 

group compared to the TD group in the graph density range 5%-50% (Figure 2a). Similarly, we find 

that average edge ORC is lower (p < 0.05, FDR-corrected) in the ASD group compared to the TD 

group albeit the differences were insignificant (p > 0.05, FDR-corrected) in the graph density ranges 

2%-5% and 24%-33% (Figure 2b). Although the directionality of the differences with the two discrete 

Ricci curvatures is the same for the two groups, that is, average edge curvature in the ASD group is 

lower than that in the TD group, it is important to emphasize that the two discrete Ricci curvatures 

capture different aspects of the classical Ricci curvature, and thus, cannot serve as alternative measures 

across different types of networks. Specifically, ORC captures the volume growth property of the 
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classical Ricci curvature whereas FRC captures the geodesic dispersal property (Samal et al., 2018). 

While ORC has a deeper correspondence with the classical Ricci curvature, FRC is based on a simple 

combinatorial expression which is significantly faster to compute in larger networks. After comparing 

the average edge curvatures between FCNs of ASD and TD groups, we find that the statistical test (t-

test followed by FDR correction) yielded lower p-values after FDR correction for average edge FRC 

compared to average edge ORC across most of the considered graph densities (Supplementary Table 

S2). In other words, the differences between FCNs for the two groups are more pronounced for the 

average edge FRC than average edge ORC.  

To gain a deeper understanding of the altered global organization of FCNs between the ASD 

and TD groups, we also compared six other global network measures, namely, average clustering 

coefficient, modularity, average shortest path length, average node betweenness centrality, global 

efficiency and average local efficiency. We find that the average clustering coefficient is significantly 

lower (p < 0.05, FDR-corrected) in the ASD group compared to the TD group in the graph density 

range 2%-50% (Figure 2c). Moreover, our results for clustering coefficient are consistent with results 

from previous studies that have employed graph-theoretic measures to analyze resting state FCNs in 

ASD (Harlalka et al., 2018; Itahashi et al., 2014; Rudie et al., 2013). Thereafter, we find that the 

modularity of the FCNs is significantly reduced in the ASD group compared to the TD group in the 

graph density range 2%-50% (Figure 2d), and our results are consistent with the results from previous 

studies (Harlalka et al., 2018; Rudie et al., 2013). Further, we find that the average shortest path length 

of the FCNs is significantly lower in the ASD group compared to the TD group in the graph density 

range 5%-31% (Figure 2e), and our results are consistent with results from previous studies (Itahashi 

et al., 2014; Rudie et al., 2013). Lastly, we find that average node betweenness centrality is 

significantly lower in the ASD group compared to the TD group in the density range 5% - 31% 

(Figure 2f). 
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Furthermore, we have computed two global measures that characterize how efficiently 

information is exchanged within a network, namely global efficiency and average local efficiency. We 

find that global efficiency is significantly higher (p < 0.05, FDR-corrected) in the ASD group 

compared to the TD group in the graph density range 4% - 31% (Supplementary Figure S1a). Note 

that the direction of the effects observed for global efficiency is opposite to the direction of effects 

observed for average shortest path length (Figure 2e), as global efficiency is defined as the average of 

reciprocal shortest path lengths between all pairs of nodes in a network. Moreover, our results for 

global efficiency are consistent with the results from previous studies (Harlalka et al., 2018; Itahashi et 

al., 2014; Rudie et al., 2013). We find that average local efficiency is significantly lower in the ASD 

group compared to the TD group in the graph density range 2%-50% (Supplementary Figure S1b). 

Note that the results for average local efficiency are similar to the results of average clustering 

coefficient (Figure 2c), since the two network measures are closely related to each other. Moreover, 

our results for average local efficiency are consistent with results from previous studies (Harlalka et 

al., 2018; Itahashi et al., 2014; Rudie et al., 2013). 

Region-specific changes in functional connectivity networks 

Given the significant differences in FRC and ORC of the entire brain between the ASD group 

and the TD group, we evaluated node-level curvature differences in the FCNs, and determined how 

these differences are distributed across the 7 resting state networks (RSNs) in the brain. For this 

purpose, we first computed node FRC and node ORC for all the 200 nodes, across the 49 FCNs with 

graph densities 2% - 50% for each subject. Second, to identify the set of nodes that show significant 

differences between the ASD and TD groups, we compared the area under the curve (AUC) of the 

node FRC and the node ORC for each node using a two-tailed two-sample t-test followed by FDR 

correction (see STAR methods). 

In Figure 3 and Supplementary Figure S2, we show the nodes or regions that exhibit 
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significant differences (p < 0.05, FDR-corrected) in FRC and ORC, respectively, between the ASD 

and TD groups. We identify 83 regions that show significant between-group differences in FRC and 14 

regions that show significant between-group differences in ORC. For FRC, the significant regions are 

spread across the 7 RSNs. However, they are mainly concentrated within 3 RSNs namely, default 

network  (26 significant regions), somatomotor network (30 significant regions) and salient ventral 

attention network (13 significant regions). In the default network, RH_Default_pCunPCC_2 (7, -49, 

31), RH_Default_PFCdPFCm_6 (28, 30, 43) and LH_Default_pCunPCC_2 (-5, -55, 27) showed the 

lowest FDR corrected p-values. In the somatomotor network, LH_SomMot_7 (-47, -9, 46), 

RH_SomMot_7 (58, -5, 30) and LH_SomMot_10 (-39, -24, 58) showed the lowest FDR corrected p-

values. In the salient ventral attention network, RH_SalVentAttn_TempOccPar_2 (60, -38, 17), 

RH_SalVentAttn_Med_3 (9, 4, 65) and RH_SalVentAttn_PrC_1 (51, 4, 40) showed the lowest FDR 

corrected p-values. For ORC, the significant regions are concentrated within the 2 RSNs namely, 

default network and somatomotor network. In the default network, regions LH_Default_Temp_3 (-56, 

-6, -12), LH_Default_PFC_4 (-13, 63, -6), and RH_Default_Temp_5 (52, -31, 2) exhibited the lowest 

FDR corrected p-values. In the somatomotor network, the region LH_SomMot_3 (-37, -21, 15) 

exhibits the lowest FDR corrected p-value. Detailed information about the abbreviations of region 

names can be found at: 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018

_LocalGlobal (Schaefer et al., 2018). Thus, our node-level results for FRC and ORC suggest that the 

nodes or brain regions showing significant differences were not distributed evenly across the 7 RSNs, 

but concentrated within the default network, somatomotor network and salient ventral attention 

network. 

After applying both FRC and ORC to resting state FCNs in ASD and TD groups, we find that 

the between-group differences in FRC of the FCNs are more pronounced compared to ORC, both at 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.11.28.470231doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.470231


11 

the global-level and the node-level. Therefore, we mainly focus on the nodes identified using FRC in 

further analyses. We reiterate that the two discrete Ricci curvatures capture different aspects of the 

classical Ricci curvature, and thus, neither of the two measures can be treated as an alternative to the 

other. 

Agreement of results from node-level network analysis to fMRI literature 

We assessed the agreement of our results on ASD-related region-specific differences in FRC to 

relevant previous neuroimaging literature. One form of validation we performed was to determine if 

those regions showing significant ASD-related differences in FRC were also associated in the fMRI 

literature, to cognitive domains impaired in ASD, e.g. social cognition. To do this, we first partitioned 

the set of significant brain regions according to their respective RSNs and determined the cognitive 

domains associated to the significant regions in each RSN using Neurosynth meta-analysis (see STAR 

methods). The Neurosynth analysis enables identifying the cognitive domains associated to the 

significant regions in an RSN more rigorously than just assuming it as the putative functional role of 

that RSN. The first step in the Neurosynth analysis involves identifying terms relating to cognition, 

perception and behavior for each significant brain region in a given RSN. The second step involves 

calculating the frequency counts for all the terms in an RSN. The third step involves thresholding the 

frequency counts of these terms with respect to the frequency counts associated with equivalent null 

models (see STAR methods). 

We limited the Neurosynth analysis only to default network, somatomotor network and salient 

ventral attention network, since a considerable number of regions are detected in these RSNs. The high 

number of regions with significantly different FRC in these RSNs makes the interpretation of results 

from these RSNs more robust to the occurrence of false positives. Another reason for considering the 

above-mentioned RSNs is that the regions identified in these RSNs are nearly bilaterally symmetrical. 

Figure 4 shows the significant brain regions separately for each of the three RSNs and the associated 
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word clouds highlighting the behavioral relevance of the significant regions in each RSN. 

Supplementary Table S3 lists the significant brain regions and the terms associated with all seven 

RSNs. 

The word cloud for the default network shows terms associated with social cognition (Figure 

4a), such as ‘theory-of-mind’, ‘social’, ‘social recognition’, ‘social cognition’, ‘person’, ‘personal ’and 

‘personality traits’. Impairments in social cognition are known to be characteristic of individuals with 

ASD (Kasari and Patterson, 2012; Kristen et al., 2014; Senju, 2012). In the default network, we can 

also find terms associated with memory (Figure 4a) such as ‘memory’, ‘memories’, ‘memory retrieval’, 

‘retrieval‘ ’recollection’, ‘remember’, ‘autobiographical memory’, ‘episodic memory ’and ‘subsequent 

memory’. Just as with social cognition, memory impairments are often a feature of ASD (Griffin et al., 

2021; Habib et al., 2019; Kristen et al., 2014; Solomon et al., 2016), though memory impairments are 

not part of the standard diagnostic criteria for ASD. For the somatomotor network, we find terms 

associated with movement (Figure 4b), such as ‘motor’, ‘motor tasks’, ‘motor performance’, 

‘movements’, ‘coordination’, ‘limb’, ‘arm’, ‘hand movements’, ‘handed’, ‘finger’, ‘finger movements’, 

‘finger tapping’, ‘tapping’, ‘index finger’, and ‘force’. For the salient ventral attention network also, we 

find terms associated with movement (Figure 4c), such as ‘motor’, ‘motor function’, ‘motor control’, 

‘eye movement’, ‘tapping’, ‘mental imagery’, ‘imagery ’and ‘mirror’. Notably, the literature reports 

movement impairments to characterize individuals with ASD (Bhat, 2021; Grace et al., 2018; Ming et 

al., 2007; Zampella et al., 2021). For the salient ventral attention network, we also find terms 

associated with language (Figure 4c), such as ‘phonological', ‘speech’, ‘production’, ‘speech 

production’, ‘orthographic’, ‘articulatory’, ‘pseudo-words ’and ‘listened’. In line with this, individuals 

with ASD often present with speech and communication difficulties (Davidson and Ellis Weismer, 
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2017; Ellis Weismer et al., 2010; Pickles et al., 2009). Hence, we find that those regions exhibiting 

ASD-related curvature differences are also associated to those cognitive domains known to be 

impaired in ASD. These results serve as a form of validation, based on the fMRI literature, that FRC 

identifies clinically relevant brain regions underlying ASD. 

We also evaluated the node-level differences in two standard network measures namely, 

clustering coefficient and node betweenness centrality. Notably, ORC is related to clustering in 

networks (Samal et al., 2018). We identify 78 brain regions that show significant differences (p < 0.05, 

FDR-corrected) in clustering coefficient, and 4 brain regions that show significant differences (p < 

0.05, FDR-corrected) in node betweenness centrality (Supplementary Table S4). The brain regions 

identified by clustering coefficient are concentrated in three RSNs namely, default network, 

somatomotor network and salient ventral attention network (Supplementary Figure S3). Further, we 

computed the overlap between sets of significant brain regions identified by each of the four node-

level network measures used in our study. First, we found 8 brain regions that are commonly identified 

by both FRC and ORC, namely, LH_SomMot_1 (-51, -5, -2), LH_SomMot_3 (-37, -21, 15), 

LH_Default_PFC_4 (-13, 63, -6), RH_SomMot_3 (38, -13, 14), RH_DorsAttn_Post_2 (52, -60, 9), 

RH_SalVentAttn_FrOperIns_2 (46, -3, -4), RH_SalVentAttn_TempOccPar_2 (60, -38, 17) and 

RH_Default_Temp_2 (61, -13, -21). Second, we found 71 brain regions that are commonly identified 

by FRC and clustering coefficient. Third, we found 5 brain regions that are commonly identified by 

ORC and clustering coefficient. Fourth, we found that 1 brain region is commonly identified by FRC 

and node betweenness centrality. Fifth, we found 2 brain regions that are commonly identified by ORC 

and node betweenness centrality. We do not find any brain regions that are commonly identified by 

clustering coefficient and node betweenness centrality. 

Subsequently, we determined if there is a relationship between the FRC of brain regions that 

showed significant differences and clinical scores for symptom severity in ASD. To do this, we related 
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the FRC of just the brain regions which showed significant differences in each RSN with the 

behavioral function associated with that RSN, as determined by the Neurosynth meta-analysis 

decoding. We performed this analysis with the FRC values and symptom severity only for individuals 

with ASD, not the TD individuals. First, we used ADI-R social score as a measure of social cognition 

and related this score with the FRC of regions in the default network. Second, we used ADI-R verbal 

score as a measure of language and related this score with the FRC of regions in the salient ventral 

attention network. To test the relationship between FRC values and clinical scores, we computed 

partial correlations with age and gender as covariates, followed by FDR correction to control the 

occurrence of false positives (see STAR methods). We chose the ADI-R scores among all the possible 

clinical scores because they are available for the most number of participants (n = 275) in the ASD 

group and the ADI-R social and ADI-R verbal scores are appropriate means to capture symptom 

severity in autism compared to other clinical scores (Lefort-Besnard et al., 2020). Note that we also 

found memory-related terms in default network (Figure 4a), and movement-related terms in 

somatomotor network (Figure 4b) and salient ventral attention network (Figure 4c). However, there 

was no suitable memory-related score in the ABIDE-I dataset, as memory impairments are not part of 

the standard diagnostic criteria for ASD. We did not include any movement-related scores in our 

analysis since such scores were only available for a few participants in the ASD group. 

We did not find any nodes that showed significant correlations between FRC and clinical 

scores after FDR correction. Prior to FDR correction, FRC for the node LH_Default_Temp_1 (-47, 8, -

32) in the default network was positively correlated with ADI-R social score (r = 0.122, p = 0.044), 

FRC for the node LH_SalVentAttn_ParOper_1 (-56, -40, 20) in the salient ventral attention network 

was positively correlated with ADI-R verbal score. 

We also repeated the analysis for the brain regions with significantly different clustering 

coefficient values in the 2 RSNs namely, default network and salient ventral attention network. Similar 
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to FRC, these brain regions show behavioral relevance and are associated to social cognition and 

memory in default network, and movement and language in salient ventral attention network 

(Supplementary Figure S4). Thus, we correlated the clustering coefficient values of significant brain 

regions in default network with the ADI-R social score and the clustering coefficient values of 

significant brain regions in salient ventral attention network with the ADI-R verbal score. In this 

analysis for clustering coefficient, we did not find any significant correlations with both ADI-R social 

scores and ADI-R verbal scores after FDR correction. To sum up, neither FRC nor clustering 

coefficient show evidence for a relationship with symptom severity in individuals with ASD. 

Agreement of results from node-level network analysis to TMS/tDCS literature 

In addition to the meta-analysis decoding, we performed one more analysis to determine the 

agreement of our results with relevant previous neuroimaging literature. Specifically, we determined 

the overlap between those brain regions showing FRC differences and those whose non-invasive 

stimulation using TMS or tDCS, resulted in improvement of ASD-related symptoms. To do this, we 

performed a literature search on PubMed to identify the set of brain regions whose non-invasive 

stimulation using TMS or tDCS yielded positive effects on ASD symptoms. The exact details of the 

PubMed search query are provided in Table 2. Then, we compared this set of brain regions to those 

with altered FRC values in resting-state fMRI FCNs of individuals with ASD. Figure 5 summarizes 

the workflow we employed to collect and classify the eligible articles from the literature survey. 

The studies employing TMS have reported positive effects in ASD-related symptoms after 

stimulating 4 target regions, namely, premotor cortex, dorsolateral prefrontal cortex (DLPFC), pars 

triangularis, and pars opercularis. The studies employing tDCS have reported positive effects in ASD 

symptoms after stimulating 2 target regions, namely, DLPFC and left primary motor cortex. 

Supplementary Tables S5 and S6 provide a detailed summary of the TMS and tDCS studies, 

respectively.  
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Note that the target regions in these experiments are cortical regions that are defined differently 

from the ROIs (or nodes) defined in our study that are a part of the Schaefer 200 parcels atlas 

(Schaefer et al., 2018). Therefore, in order to compare the results of our node-level analysis with the 

effects of stimulating the target regions, we mapped the Brodmann areas that correspond to target 

regions (Cieslik et al., 2013; Strotzer, 2009) to the 200 Schaefer ROIs (see STAR methods and 

Supplementary Table S7). 

Based on the data collected from previous NIBS experiments (Supplementary Tables S5 and 

S6), we identified five target regions that show evidence for improvement in behavioral or cognitive 

symptoms associated with ASD following TMS or tDCS, namely, premotor cortex, pars triangularis, 

pars opercularis, DLPFC and left primary motor cortex. These five target regions correspond to 

Brodmann areas 6, 45, 44, 9, 46 and 4, respectively. Note that DLPFC comprises two Broadman areas, 

9 and 46 (Cieslik et al., 2013). We found these Brodmann areas to encompass 31 ROIs (or nodes) in 

the Schaefer 200 parcels atlas. Out of these 31 ROIs, 18 ROIs also show significant ASD-related 

differences in FRC and 13 ROIs show significant ASD-related differences in clustering coefficient.  

None of these 31 ROIs show significant ASD-related differences in ORC or node betweenness 

centrality. A visual representation of these ROIs is provided in Figure 6. Notably, the 18 ROIs with 

significant ASD-related differences in FRC are a superset of the 13 ROIs with significant between-

group differences in clustering coefficient. These results serve as a form of validation, based on the 

literature on outcomes from TMS and tDCS experiments, that FRC identifies clinically relevant brain 

regions underlying ASD. Further, FRC identifies some regions that might be clinically relevant in 

ASD, but are not identified by other node-based network measures, e.g. clustering coefficient. Table 3 

lists the target regions that show improvement in clinical symptoms associated with ASD following 

TMS or tDCS, the corresponding ROIs in the Schaefer atlas that show significant between-group 

differences in node-level network measures, the network measure that captured the differences, and the 
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experimental studies that report the effects. 

DISCUSSION 

Graph Ricci curvatures have not been previously applied to study atypical resting-state 

functional connectivity in ASD. In the present work, we used two notions of graph Ricci curvature, 

namely Forman-Ricci curvature (FRC) and Ollivier-Ricci curvature (ORC) to compare the resting-

state FCNs of individuals with ASD relative to TD individuals. We found that average edge curvature 

can effectively distinguish the whole-brain functional connectivity of individuals in the ASD and TD 

groups. Additionally, we studied the differences in node curvature between the two groups and 

identified specific regions in the brain with atypical functional connectivity in ASD. Notably, we 

found that brain regions with altered FRC in functional connectivity networks of individuals with 

ASD, were also associated in the fMRI literature to those cognitive domains known to be affected in 

ASD. Further, we observed an overlap between the set of regions with altered FRC in functional 

connectivity networks of individuals with ASD, and those brain regions whose non-invasive 

stimulation in TMS/tDCS experiments resulted in improvement of ASD-related symptoms.  

We acquired rs-fMRI scans of 1112 participants as provided by the ABIDE-I project (Di 

Martino et al., 2014). The large sample size of the ABIDE-I dataset offers substantial statistical power, 

thereby increasing the reliability of the reported results (Di Martino et al., 2014; Hull et al., 2017; Lord 

et al., 2020). We preprocessed each scan using the CONN functional connectivity toolbox (Whitfield-

Gabrieli and Nieto-Castanon, 2012), implementing thorough quality assessment (QA) checks both 

before and after preprocessing. For each participant, we generated a 200 × 200 functional connectivity 

(FC) matrix using Schaefer atlas (Schaefer et al., 2018) and constructed FCNs with a broad range of 

edge densities using a maximum spanning tree (MST) followed by sparsity-based thresholding. MST-

based network construction is particularly useful for network analyses since it ensures the resulting 

network is always connected. Similar network construction approaches involving spanning trees have 
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previously been used for financial networks (Samal et al., 2021; Sandhu et al., 2016) and brain FCNs 

(Achard et al., 2012). 

After comparing the average edge curvatures of the FCNs in the ASD and TD groups, we 

found reduced average FRC and average ORC in individuals with ASD. Similar analysis using 

standard network measures revealed reduced average clustering coefficient, reduced modularity, 

reduced average path length, reduced average node betweenness centrality, increased global efficiency 

and reduced average local efficiency. All the standard network measures except node betweenness 

centrality have previously been used to study brain-wide changes in functional connectivity in ASD 

(Harlalka et al., 2018; Itahashi et al., 2014; Rudie et al., 2013), and our results are in agreement with 

previous findings. However, the changes in graph Ricci curvatures have not previously been studied 

for FCNs in ASD.  Our results illustrate the sensitivity of graph Ricci curvatures, especially FRC, in 

discriminating the resting state FCNs of individuals with ASD compared to TD. 

After comparing the node curvatures of the FCNs in the ASD and TD groups, we identified 83 

brain regions that are significantly different in FRC and 14 brain regions that are significantly different 

in ORC between the two groups. FRC and ORC identify 5 common regions. Moreover, we found that 

these regions are bilaterally symmetrical and mainly concentrated in 3 RSNs namely, default network, 

somatomotor network and salient ventral attention network. Previously, Farooq et al. (Farooq et al., 

2019) have used ORC to compare structural connectivity networks of individuals with ASD relative to 

TD, and showed that regions with significant difference in ORC are present in visual, dorsal attention, 

ventral attention areas and temporal lobe. Our results from comparing ORC of resting state FCNs in 

ASD reveal regions in visual network, dorsal attention network, salient ventral attention network, and 

additional regions in default network, somatomotor network and limbic network. 

We undertook two analyses to assess the agreement of our results with relevant neuroimaging 

literature on ASD. First, we performed meta-analysis decoding, based on the fMRI literature, to 
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determine if those brain regions with altered FRC in individuals with ASD, were also associated to 

those cognitive domains that are known to be affected in ASD. We found that brain regions with 

altered FRC were associated to the cognitive domains of social cognition, memory, movement and 

language. Farooq et al. (Farooq et al., 2019) used ORC to compare structural connectivity networks of 

individuals with ASD relative to TD, and showed that regions with significant difference in ORC are 

related to semantic memory, socially relevant memories, emotions and visual perception. Since these 

results were obtained with structural connectivity networks, it is difficult to compare our results to 

these. However, each of the cognitive domains suggested by the meta-analysis decoding are known to 

be affected in ASD (Bhat, 2021; Davidson and Ellis Weismer, 2017; Ellis Weismer et al., 2010; Grace 

et al., 2018; Griffin et al., 2021; Habib et al., 2019; Kasari and Patterson, 2012; Kristen et al., 2014; 

Ming et al., 2007; Pickles et al., 2009; Senju, 2012; Solomon et al., 2016; Zampella et al., 2021). 

Hence, these results suggest that FRC captures atypical connectivity of clinically relevant brain regions 

underlying ASD. To our knowledge, this is also the first instance of using a meta-analysis decoding 

approach as a form of validation of results from a graph-theoretic analysis of brain functional 

connectivity networks. 

In addition to meta-analysis decoding based on the fMRI literature, we assessed the agreement 

of our results with those of TMS/tDCS experiments involving individuals with ASD. We found that 

brain regions with altered FRC in individuals with ASD overlap with those brain regions whose non-

invasive stimulation with TMS/tDCS have been reported to result in improvement of ASD-related 

symptoms. We further note that the set of regions with altered values of other node-based network 

measures, e.g. clustering coefficient, which overlap with those regions identified by non-invasive 

stimulation, are a subset of the set of regions identified by FRC. To our knowledge, this is the first 

instance of using results from TMS/tDCS experiments as a form of validation of results from a graph-

theoretic analysis of brain functional connectivity networks. Just as with the comparison of our node-
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level FRC results against the fMRI literature, the comparison to results from these TMS/tDCS 

experiments also suggest that FRC captures atypical connectivity of clinically relevant brain regions 

underlying ASD. Further, FRC might capture atypical connectivity not captured by other node-level 

network measures such as clustering coefficient. These results commend the use of graph Ricci 

curvatures as a source of hypotheses about clinically relevant brain regions underlying ASD, which 

can then be tested by stimulating these regions with non-invasive technologies, e.g. TMS (Downar et 

al., 2016; Lynch et al., 2018; Sale et al., 2015).  

To sum up, we find that geometric notions of graph Ricci curvature can be effectively used to 

determine global and node-level changes in functional connectivity networks of individuals with ASD. 

Importantly, we present two forms of validation, respectively based on the fMRI and TMS/tDCS 

literature, to suggest that graph Ricci curvatures, particularly FRC, are sensitive to atypical functional 

connectivity of clinically relevant brain regions underlying ASD. The methods used in the present 

work could further be applied to study functional connectivity networks in other atypical populations. 

Additionally, since graph Ricci curvatures are fundamentally defined on edges, future studies could be 

aimed at devising edge-based methods to analyze brain functional or structural connectivity. 

Limitations of this study 

There was a significant difference in the IQ scores between the ASD and TD groups, which 

introduces a potential confound to our analysis. Previous studies involving graph-theoretic analysis of 

rs-fMRI scans in the ABIDE dataset have matched the groups on IQ scores (Harlalka et al., 2018; 

Keown et al., 2017; Lee et al., 2017). However, we choose to include all subjects in our analysis rather 

than sub-selecting ASD subjects according to IQ, since sub-selecting would make ASD cohort less 

representative and the results of our analyses would be less generalizable to the typical ASD 

population (Dennis et al., 2009). Confining the analysis to IQ-matched ASD subjects would include 

only high-functioning ASD subjects in the analyses, hence, our results would not be generalizable to 
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ASD subjects whose cognitive functioning is more severely affected. In addition, we have not included 

IQ as a covariate while comparing the global and local network measures across groups. However, 

Dennis et al. (Dennis et al., 2009) have shown that using IQ as a matching variable or covariate during 

studies of neurodevelopmental disorders could lead to anomalous findings about neurocognitive 

function. 

STAR METHODS 

Resource Availability 

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by the 

lead contact. 

Materials availability 

This study did not generate new unique materials. 

Method details 

In this section, we describe the methodology used to construct the resting-state functional 

connectivity networks (FCNs) of individuals with autism spectrum disorder (ASD) and typically 

developing (TD) individuals, from raw resting-state functional MRI (rs-fMRI) images acquired from 

the Autism Brain Imaging Data Exchange I (ABIDE-I) project (Di Martino et al., 2014). Note that TD 

individuals are the healthy subjects. First, raw rs-fMRI data were spatially and temporally 

preprocessed using the CONN functional connectivity toolbox (Whitfield-Gabrieli and Nieto-

Castanon, 2012). Second, we parcellated the brain into 200 distinct regions of interest (ROIs) or nodes 

using the Schaefer atlas (Schaefer et al., 2018) and a 200 × 200 functional connectivity (FC) matrix 

was generated for each subject. Third, we filtered the FC matrix using a maximum spanning tree 

(MST) based approach followed by sparsity-based thresholding to construct FCNs for each subject.  

Participants and imaging dataset 
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From the ABIDE-I project (Di Martino et al., 2014), we obtained raw rs-fMRI and anatomical 

data for 1112 participants (age range = 7-64 years, median = 14.7 years), comprising 539 individuals 

with ASD and 573 age-matched TD individuals. ABIDE-I project is an international effort by 17 

imaging sites that have collectively shared rs-fMRI, anatomical and phenotypic data. Further details 

such as MRI modalities and scan parameters are available on the ABIDE website. 

Quality assessment and exclusion criteria before preprocessing 

We used the following criteria to exclude subjects in ABIDE-I from this study. First, the 

subjects with missing anatomical or functional files were excluded. Second, all subjects from the 

imaging site Stanford were excluded as it is the only site with spiral image acquisition protocol. Third, 

all subjects from the imaging site Leuven-1 were excluded due to unknown repetition times for the 

functional scans. Fourth, to assess the quality of the raw images in ABIDE-I, we have used the 

information on raters’ decisions available from the Preprocessed Connectome Project (PCP) (Cameron 

et al., 2013), and the subjects whose raw image quality was described as ‘fail’ by both the raters were 

excluded. Note that we did not exclude the subjects based on IQ or match the cohorts for IQ in order to 

ensure that the results of our analyses are generalizable to the typical ASD population (Dennis et al., 

2009; Di Martino et al., 2014). After removing subjects based on the quality assessment (QA) checks 

and exclusion criteria described above, we were left with 494 subjects in the ASD group and 520 

subjects in the TD group (Supplementary Table S1). 

Raw fMRI data preprocessing 

We used the CONN functional connectivity toolbox (Whitfield-Gabrieli and Nieto-Castanon, 

2012) to process the rs-fMRI data from ABIDE-I. Figure 1 is a schematic summarizing the processing 

pipeline for rs-fMRI data used in this study. We have created a protocol video providing a visual guide 

to rs-fMRI preprocessing using CONN toolbox which is available at: https://youtu.be/ch7-dOA-Vlo.  

Spatial preprocessing: We performed motion correction, slice-timing correction, outlier 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.11.28.470231doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.470231


23 

detection, and structural and functional segmentation and normalization. First, the functional images 

were co-registered to the first scan of the first session. The SPM12 realign and unwarp procedure 

(Andersson et al., 2001) was used to realign and motion correct the images using six rigid body 

transformation parameters: three translations in x, y and z directions, and three rotations namely pitch, 

yaw and roll. Second, the SPM12 slice-timing correction procedure (Sladky et al., 2011) was used to 

temporally align the functional images. Third, Artifact Detection Tools (ART)-based outlier detection 

was performed where acquisitions with framewise displacement greater than 0.5 mm or global BOLD 

signal changes greater than 3 standard deviations were marked as outliers. Fourth, segmentation and 

normalization (Ashburner and Friston, 2005) was carried out to normalize the images into the standard 

Montreal Neurological Institute (MNI) space, and then, segment the brain into grey matter, white 

matter and cerebrospinal fluid (CSF) areas. Raw T1-weighted volume of the anatomical image and 

mean BOLD signal of the functional images were used as reference in this step. Subjects with bad 

image quality and signal dropouts in their scans or subjects with registration or normalization errors 

were excluded from further analysis. 

Denoising: After the spatial preprocessing of the raw rs-fMRI scans, the BOLD time-series 

associated with each voxel was extracted using the CONN toolbox. Next, we performed temporal 

preprocessing or denoising using the CONN toolbox to further reduce physiological or motion effects 

from the BOLD time-series. First, we implemented anatomical component-based noise correction 

procedure (aCompCor), to simultaneously remove 5 potential noise components (Chai et al., 2012) 

each from white matter and CSF areas, 12 potential noise components from estimated subject motion 

parameters and their associated first-order derivatives (Friston et al., 1996), and 1 noise component 

from each of the identified outlier scans (scrubbing) (Power et al., 2014) in a single linear regression 

step. Second, a high-pass filtering was performed to remove temporal frequencies below 0.008 Hz 

from the BOLD time-series. 
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Quality assessment and exclusion criteria after preprocessing 

After preprocessing the raw fMRI data, we applied the following criteria to exclude participants 

from the analysis. Subjects were excluded if the FC distribution deviated significantly from normal 

distribution, or if the FC distribution showed noticeable distance dependence (Ciric et al., 2017). We 

additionally excluded subjects that showed a noticeable correlation between quality control (QC) 

variables and FC values, or if the QC-FC correlations showed a noticeable distance dependence (Ciric 

et al., 2017). After removing subjects based on these exclusion criteria, we were left with 395 subjects 

in the ASD group and 425 subjects in the TD group (Supplementary Table S1). The FC matrices of 

these remaining 820 subjects were used for network analysis. The demographic and clinical 

information for these subjects from ABIDE-I included in our study is summarized in Table 1. 

Atlas-based definition of nodes and functional connectivity  

A widely-used approach for defining nodes in functional connectivity networks (FCNs) is to 

group closely related neighboring voxels into cortical parcels, in order to obtain nodes with 

interpretable neurobiological meaning (Luppi and Stamatakis, 2021). Furthermore, the use of brain 

parcellations also reduces the computational load of further analyses. In this study, we used a 

predefined cortical parcellation atlas by Schaefer et al., (2018), which is based on a gradient-weighted 

Markov random field approach. While the Schaefer atlas is available at multiple resolutions, we 

considered the resolution that parcellates the brain into 200 distinct regions of interests (ROIs) wherein 

each hemisphere comprises 100 ROIs. In this parcellation, each ROI belongs to one of seven resting 

state networks (RSNs), namely, ‘visual', ‘somatomotor’, ‘dorsal attention’, ‘salient ventral attention’, 

‘limbic’, ‘control’, and ‘default’. Using the CONN toolbox, the time series of each ROI was computed 

as the average of the time series of all the voxels that it contains. Subsequently, Pearson correlation 

coefficient between the time series of every pair of ROIs was calculated in the CONN toolbox, which 

resulted in a 200 × 200 FC matrix for each subject. 
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Construction of Sparsity-based functional connectivity networks 

In the preceding subsection, we described the FC matrix which is a correlation matrix that can 

be represented as a complete, weighted and undirected graph wherein the ROIs correspond to the 

nodes and the weights of edges are given by the correlation values between ROIs. The construction of 

the FCN from the FC matrix of a subject includes two steps, namely maximum spanning tree (MST) 

construction and sparsity-based thresholding. First, to extract the most important edges from the FC 

matrix, we constructed its MST using Kruskal's algorithm (Kruskal, 1956). The MST is a spanning tree 

of the weighted graph with maximum edge weight. Note that the MST for a weighted graph with n 

nodes is an acyclic graph (more precisely, a tree) with (n-1) edges which is always connected. Second, 

we used sparsity-based thresholding, wherein edges are iteratively added to the MST in decreasing 

order of their correlation values, until a resulting network with the desired sparsity was obtained. 

Further, the resulting network with desired sparsity was binarized by ignoring the edge weights before 

proceeding to compute the network properties (Achard and Bullmore, 2007; Rudie et al., 2013). 

Evidently, this choice of MST construction followed by sparsity-based thresholding to generate 

the FCNs ensures that the constructed networks for different subjects are connected and have the same 

number of edges. Such networks enable direct mathematical comparison of global and local network 

properties across subjects (Bassett et al., 2012; Rudie et al., 2013; Xu et al., 2016). We remark that this 

choice of MST followed by sparsity-based thresholding to construct FCNs from rs-fMRI images has 

been used earlier by Achard et al., (2012).  

As there is no rationale for using a specific graph density, previous studies (Rudie et al., 2013; 

Itahashi et al., 2014; Harlalka et al., 2018) have explored network properties across a range of graph 

densities. In this work, we have studied the network properties over a wide range of graph densities 

between 0.02 or 2% edges and 0.5 or 50% edges, with an increment of 0.01 or 1% edges. Thus, for 

each of the 820 subjects from ABIDE-I considered in this study, we have constructed 49 unweighted 
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and undirected networks. In other words, we have generated 820 × 49 FCNs for 820 subjects across 49 

graph densities or thresholds for this study, and the constructed networks are made publically available 

via a GitHub repository.  

Network based analysis and post-hoc analyses 

In this section we describe the methodology used to analyze and compare the resting-state 

FCNs of individuals with ASD and TD individuals constructed as mentioned in the preceding section. 

First, we performed global and node-level network analysis to compare the FCNs in the ASD group 

and the TD group. Second, we used Neurosynth-based meta-analysis decoding (Yarkoni et al., 2011; 

Williams et al., 2021) to assess the agreement of the results of our node-level network analysis against 

results reported in a large database of fMRI studies, and studied the relationship between node-level 

network measures and relevant scores of symptom severity in ASD. Third, we assessed the agreement 

of the results of our node-level network analysis against results reported in non-invasive brain 

stimulation (NIBS) studies with Transcranial Magnetic Stimulation (TMS) and transcranial Direct 

Current Stimulation (tDCS). 

Global and node-level network analysis 

As mentioned in preceding subsection, we constructed 49 unweighted and undirected networks 

with varying sparsity from the FC matrix corresponding to each subject, and thereafter, each of the 49 

networks for a subject was characterized by computing discrete Ricci curvatures and other network 

properties. Specifically, we have focused here on two discrete Ricci curvatures, namely Forman-Ricci 

curvature (FRC) (Forman, 2003; Sreejith et al., 2016; Samal et al., 2018) and Ollivier-Ricci curvature 

(ORC) (Ollivier, 2007). Notably, the two discrete Ricci curvatures are naturally defined for edges in a 

network and capture different aspects of the classical Ricci curvature (Samal et al., 2018). Moreover, 

we have also explored here several standard global network measures including average clustering 

coefficient, modularity (Blondel et al., 2008), average shortest path length, average node betweenness 
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centrality, global efficiency (Latora and Marchiori, 2001) and average local efficiency (Latora and 

Marchiori, 2001). In Supplementary Information, we describe the different global and local network 

measures employed here to characterize the FCNs. 

To compare the global properties of the FCNs across the two groups (ASD versus TD), we first 

computed the average FRC of edges, average ORC of edges and seven other global network measures 

(including average clustering coefficient, modularity, average shortest path length, average node 

betweenness centrality, global efficiency and average local efficiency), for each of the 820 × 49 

networks corresponding to the FC matrices of 820 subjects across 49 graph densities. To compare the 

node-level properties of the FCNs across the two groups (ASD versus TD), we computed the node 

FRC and node ORC for each of the 200 nodes in each of the 820 × 49 networks corresponding to the 

FC matrices of 820 subjects across 49 graph densities. Note that the node Ricci curvature is defined as 

the sum of edge Ricci curvatures for the edges incident on that node (Samal et al., 2018) (see 

Supplementary Information). Additionally, we computed two standard network measures, namely 

node clustering coefficient and node betweenness centrality. 

The computer codes for FRC and ORC are made publically accessible via a GitHub repository. 

The other global network measures mentioned above for FCNs were computed using the Python 

package NetworkX (Hagberg, Schult and Swart, 2008). Furthermore, the statistical tests were 

performed in Python packages SciPy (Yirtanen et al., 2020) and statsmodels (Seabold and Perktold, 

2010). 

Neurosynth meta-analysis decoding  

We used Neurosynth meta-analysis decoding (Yarkoni et al., 2011, Williams et al., 2021) to 

determine if the brain regions showing significant between-group differences in node-level network 

measures have been found in previous fMRI studies to be associated to cognitive domains impaired in 

ASD, e.g. social cognition. Corresponding to each node-level network measure studied here, we 
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identified a set of nodes (ROIs) that showed significant differences between the ASD and TD groups. 

For a set of nodes with significant between-group differences for a network measure, we used 

Neurosynth meta-analysis tool to find terms related to cognition, perception and behavior 

corresponding to the centroid coordinates of each ROI in the set. Further, we partitioned the set of 

identified ROIs which show significant between-group differences, by the 7 RSNs in the Schaefer 

atlas, and thereafter, the frequency counts of the terms associated with the subset of identified ROIs in 

a particular RSN were calculated and the statistical significance of these frequency counts was 

determined. This was done for each RSN separately, to identify those terms selectively associated with 

each of the 7 RSNs. 

After identifying those cognitive domains associated to the brain regions with significant 

between-group differences in node-based network measures, we performed a post-hoc correlation 

analysis to measure the strength of the linear relationship between the values of the node-based 

network measure for each of the brain regions, and clinical scores related to symptom severity of the 

identified cognitive domains. We performed this analysis just for the ASD group. Specifically, we 

chose two clinical scores based on the Autism Diagnostic Interview-Revised (ADI-R) scoring (Lord, 

Rutter and Le Couteur, 1994), which are: (i) ADI-R verbal and (ii) ADI-R social.  

Literature search for non-invasive brain stimulation studies in ASD 

We performed a literature search to identify brain regions whose non-invasive stimulation were 

reported to result in improvement of ASD-related symptoms. We first performed the literature search, 

to identify scientific papers reporting the effect of non-invasive brain stimulation (NIBS) on core 

symptoms of ASD, and then used results reported in these papers to identify those brain regions whose 

stimulation resulted in positive behavioral and cognitive outcomes. Figure 5 summarizes the workflow 

we employed to collect and classify the eligible articles. We used PubMed to perform the literature 

search. The search query to PubMed reflected diagnosis of interest including ‘autism spectrum 
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disorder’, ‘Asperger’s syndrome’, ‘autism’ and three major brain stimulation methodologies including 

‘Transcranial magnetic stimulation’, ‘TMS’, ‘transcranial direct current stimulation’, ‘tDCS’, 

‘transcranial alternating current stimulation’, ‘tACS’. The search was performed in October 2021 and 

the exact details regarding the search query are provided in Table 2. The PubMed search returned 235 

articles. 

We followed a three-stage procedure to further refine the list of 235 articles returned by the 

PubMed search. First, we checked for papers missing from the corpus generated by the PubMed 

search, by scanning review articles on the use of NIBS methods to study ASD. We also searched these 

review articles for potential databases of NIBS experiments on ASD. Second, we filtered the articles 

based on title and abstract, based on relevance. We defined relevance according to the following 

criteria. The inclusion criteria were: (1) studies on ASD populations, (2) studies that have used NIBS 

techniques namely, TMS (and its variants such as rTMS), tDCS and tACS, (3) studies that have 

investigated the effect of NIBS on the core behavioral and cognitive symptoms of ASD, and (4) studies 

that are peer-reviewed. The exclusion criteria were: (1) review articles, (2) articles presented in 

languages other than English, (3) studies that did not perform NIBS, (4) studies that investigate new 

protocols for NIBS, (5) studies that report no positive effects in ASD symptoms post NIBS, (6) studies 

whose target areas for NIBS were not clearly reported, and (7) articles without access to full-text. 

Third, we classified the articles based on their stimulation technique (TMS/ tDCS/ tACS) and checked 

the full text of the articles for relevance, according to the same criteria as above. This process yielded 

19 eligible articles for TMS, 12 eligible articles for tDCS and zero articles for tACS. 

We identified Barahona-Corrêa et al. (Barahona-Corrêa et al., 2018) as a database of TMS 

studies in ASD published before 2018, with data collection guided by preferred reporting items for 

systematic reviews and meta-analysis (PRISMA) (Moher et al., 2009). Similarly, we identified García-

González et al. (García-González et al., 2021) as a database of tDCS studies in ASD published before 
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August 2019, also guided by PRISMA data collection. We utilized the data presented in these two 

databases along with the data that we extracted from the eligible articles in our corpus, such as author, 

publication year, DOI, number of participants, gender distribution, mean age, intellectual abilities, 

stimulation methodology and parameters, target areas, stimulation schedule, behavioral and cognitive 

outcome measures, behavioral and cognitive results, and any adverse reactions for the experiment 

group and the control group (if applicable). All the data collected are provided as Supplementary 

Tables S5 and S6. From these data, we identified the set of brain regions whose stimulation using 

these NIBS methods on individuals with ASD resulted in positive cognitive and behavioral outcomes. 

Estimating overlap between regions identified in NIBS studies and node-level network analysis 

We estimated the overlap between the sets of regions identified from literature search of NIBS 

studies and the sets of regions revealing ASD-related differences in node-level network measures. The 

target areas described in the NIBS studies were cortical regions in the brain that are specified by their 

respective Brodmann areas (Strotzer, 2009) while we identified node-level differences in areas of the 

Schaefer 200 atlas. We used the MRIcron tool (Rorden, Karnath and Bonilha, 2007) to map each of the 

Brodmann areas to Schaefer ROIs, by identifying the Brodmann area encompassing the MNI centroid 

coordinates of each Schaefer ROI (Lynch et al., 2018). The mapping from Schaefer ROIs to the 

Brodmann areas is presented in Supplementary Table S7. Next, we compiled the set of Brodmann 

areas that serve as target areas from the eligible NIBS experiments and have shown a positive 

outcome, either behavioral or cognitive, as a result of stimulating that region. We then identified the 

set of Schaefer ROIs that were mapped to these Brodmann areas. From this set of Schaefer ROIs, we 

found the subset that yielded significant ASD-related differences according to the graph Ricci 

curvatures namely, FRC and ORC, as well as for clustering coefficient and node betweenness 

centrality. 

Quantification and statistical analysis 
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For the global measures, we evaluated the differences between the two groups across the 49 

graph densities in the range 2 - 50% considered in this study by using a two-tailed two-sample t-test. 

For the node-level measures, we first computed the area under the curve (AUC) for a given node 

measure across the 49 graph densities considered in this study (Achard and Bullmore, 2007; Itahashi et 

al., 2014). Thereafter, we used a two-tailed two-sample t-test to evaluate the differences between the 

two groups via AUCs of the node measures for each of the 200 nodes in the network. Further, we 

measured the relationship between the values of the node-based network measure and the ADI-R 

scores by computing the partial correlations, with age and gender as covariates. For the Neurosynth 

meta-analysis decoding, to determine statistical significance of these frequency counts, we calculated 

the frequency counts of the same terms associated with an equal size set of randomly selected 

surrogate ROIs, and thereafter, the z-score for the frequency counts of each term associated with the 

subset of original ROIs was calculated. Subsequently, the z-scores were converted into p-values 

assuming a normal distribution.  

After each of the above-mentioned tests or computations, we used a false discovery rate (FDR) 

correction (Benjamini and Hochberg, 1995) to correct for multiple comparisons and control the 

occurrence of false positives. Note that the alpha for these FDR corrections was set to 0.05. 

DATA AND CODE AVAILABILITY 

• Functional connectivity matrices and networks generated in our study are deposited on GitHub 

and are publically available as of the date of publication. URL: 

https://github.com/asamallab/Curvature-FCN-ASD  

• All original code to compute the curvature measures is deposited on GitHub and is publically 

available as of the date of publication. URL: https://github.com/asamallab/Curvature-FCN-

ASD  

• Any additional information required to reproduce this work is available from the lead contact 
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upon request. 
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FIGURE CAPTIONS 

Figure 1: Schematic diagram summarizing the rs-fMRI processing pipeline employed in this 

study. The raw fMRI scans undergo four steps in spatial preprocessing, namely, motion correction, 

slice-timing correction, outlier detection, and direct segmentation and normalization. The raw 

structural MRI scans are normalized to the Montreal Neurological Institute (MNI) space, and 

segmented into grey matter, white matter and cerebrospinal fluid (CSF) areas. In the temporal 

preprocessing or denoising step, the BOLD time series of each voxel is extracted and the remaining 

physiological and motion confounds are removed using linear regression. The confounds include white 

matter and CSF masks, subject-motion parameters and outlier scans. The residual BOLD time series of 

each voxel undergoes a high-pass filtering at 0.008 Hz. The Schaefer atlas is used to parcellate the 

brain into 200 regions of interest (ROIs) and the mean time series for each ROI is computed. Finally, 

Pearson correlation coefficient is computed between all pairs of ROIs, resulting in a 200 × 200 

functional connectivity (FC) matrix. Thorough quality assessment (QA) checks were implemented 

both before and after preprocessing. In this figure, the head icon under denoising section is made by 

Freepik from flaticon.com (https://www.flaticon.com/authors/freepik). 

Figure 2: Brain-wide changes in functional connectivity networks. Comparison plots of global 

changes in functional connectivity networks (FCNs) as captured by network measures between 395 

subjects with autism spectrum disorder (ASD) and 425 age-matched typically developing individuals 

(TD). Each network measure was compared over a wide range of graph densities between 0.02 (i.e., 

2% edges) and 0.5 (i.e., 50% edges), with an increment of 0.01 (i.e., 1% edges). The shaded regions in 

each plot indicate statistically significant differences (p < 0.05, FDR-corrected) between the two 

groups at the corresponding graph densities on the x-axis. Even though the differences are not explicit 

from the plots (e) and (f), the directionalities are programmatically verified. (a) Average Forman-Ricci 

curvature (FRC) of edges is significantly reduced in the ASD group across graph densities 5% - 50%. 
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It is evidently the most visually observable difference among all the other network measures studied. 

(b) Average Ollivier-Ricci curvature (ORC) of edges is significantly reduced in the ASD group across 

graph densities 6% - 23% and 34% - 50%. (c) Average clustering coefficient is significantly reduced in 

the ASD group across all graph densities (2% - 50%). (d) Modularity is significantly reduced in the 

ASD group across all graph densities (2% - 50%). (e) Average shortest path length is significantly 

reduced in the ASD group across graph densities 5% - 31%. (f) Average node betweenness centrality is 

significantly reduced in the ASD group across graph densities 5% - 31%. 

Figure 3: Region-specific changes in functional connectivity networks. Visual representation of 83 

nodes or regions in the brain that are significantly different (p < 0.05, FDR-corrected) between 

individuals with autism spectrum disorder (ASD) and typically developing individuals (TD), as 

captured by Forman-Ricci curvature (FRC) of the nodes in the functional connectivity networks 

(FCNs) of the subjects. The nodes are defined using the Schaefer atlas and each node belongs to one 

of 7 resting state networks (RSNs) as listed in the figure legend. We find that identified nodes are 

mainly concentrated within the default network, somatomotor network, and salient ventral attention 

network. This figure was created using BrainNet Viewer (Xia et al., 2013). 

Figure 4: Agreement of results from node-level network analysis to fMRI literature. Visual 

representations of nodes or regions in different resting state networks (RSNs) that are significantly 

different (p < 0.05, FDR-corrected) between individuals with  autism spectrum disorder (ASD) and 

typically developing individuals (TD) as captured by Forman-Ricci curvature (FRC) of the nodes, and 

the corresponding word clouds depicting the behavioral relevance of the nodes identified in each RSN. 

The size of the terms in each word cloud indicates their frequency count. Note that size of the terms in 

each word cloud are scaled separately and thus the frequency counts cannot be compared across word 

clouds. (a) Nodes in the default network that show significant differences in FRC, and the 

corresponding word cloud. The nodes identified in the default network are associated with tasks related 
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to social cognition and memory. (b) Nodes in the somatomotor network that show significant 

differences in FRC, and the corresponding word cloud. The nodes identified in the somatomotor 

network are associated with tasks related to movement. (c) Nodes in the salient ventral attention 

network that show significant differences in FRC, and the corresponding word cloud. The nodes 

identified in the salient ventral attention network are associated with tasks related to movement and 

language. In this figure, the visualizations of brain regions are created using BrainNet Viewer (Xia et 

al., 2013) and the word clouds are generated using wordclouds.com (https://www.wordclouds.com). 

Figure 5: Summary of the workflow employed to compile data from non-invasive brain 

stimulation (NIBS) experiments. The workflow is presented according to PRISMA statement (Moher 

et al., 2009). First, we identified 235 potential records from PubMed. Second, we filtered the articles 

based on title and abstract. Third, we scanned review articles for more records and looked for existing 

databases for additional data. After performing the above steps, we were left with 84 potential NIBS 

studies. Finally, we classified the studies based on the stimulation technique (TMS/tDCS/tACS) and 

screened the studies individually for eligibility. We were left with 19 TMS studies and 12 tDCS 

studies, which were used to extract experimental data. 

Figure 6: Agreement of results from node-level network analysis to TMS/tDCS literature. Visual 

representation of nodes or regions with significant between-group differences in node-level network 

measures that exhibit improvements in clinical symptoms of ASD when stimulated, based on evidence 

from published NIBS experiments on subjects with ASD. (a) We found 31 nodes with experimental 

evidence out of which 13 nodes are identified by both FRC and clustering coefficient and 5 nodes are 

identified only by FRC. (b) 83 nodes identified by FRC out of which 18 nodes have experimental 

evidence. (c) 78 nodes identified by clustering coefficient out of which 13 nodes have experimental 

evidence. The visualizations of the brain regions are created using BrainNet Viewer (Xia et al., 2013). 
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TABLES 

Table 1 | Summary of demographic and clinical information for the 820 subjects from ABIDE-I 

project that fulfil the inclusion criteria and were selected for network analysis in this study. 395 

subjects belong to the autism spectrum disorder (ASD) group and 425 subjects belong to the typically 

developing (TD) group. The subjects in both groups are age-matched (� � 0.835). Handedness data 

were missing for 137 ASD and 148 TD subjects. ADI-R social data were missing for 120 ASD 

participants. ADI-R verbal data were missing for 119 ASD participants. 

 

Characteristics ASD Group TD Group 

number of subjects 395 (44 female) 425 (78 female) 

age (in years)   

  mean ± s.d. 15.6 ± 7.1 15.51  ±  6.23 

  range 7 - 58 6 - 57 

handedness (n)   

  left 29 27 

  right 225 247 

  mixed 3 3 

  ambidextrous 1 0 

ADI-R Social   

  mean ± s.d. 19.72 ± 5.25 - 

  range 7 - 30 - 

ADI-R Verbal   

  mean ± s.d. 15.95 ± 4.25 - 

  range 2 - 26 - 
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Table 2 | Literature search for non-invasive brain stimulation studies in ASD. Detailed summary 

of the electronic search query on PubMed that we used to obtain our original corpus of articles that 

perform non-invasive brain stimulation on individuals with ASD. 

Search date Search query Search filters Source 

October 18, 
2021 

((transcranial magnetic stimulation) AND (autism)) OR 
((transcranial magnetic stimulation) AND (Asperger)) OR 
((transcranial magnetic stimulation) AND (PDD NOS)) OR 
((transcranial direct current stimulation) AND (autism)) OR 
((transcranial direct current stimulation) AND (Asperger)) 
OR ((transcranial direct current stimulation) AND (PDD 
NOS)) OR ((transcra- nial alternating current stimulation) 
AND (autism)) OR ((transcranial alternating current 
stimulation) AND (As- perger)) OR ((transcranial alternating 
current stimulation) AND (PDD NOS)) OR ((TMS) AND 
(autism)) OR ((TMS) AND (Asperger)) OR ((TDCS) AND 
(autism)) OR   ((TDCS)   AND   (Asperger))   OR ((TACS)   
AND (autism)) OR ((TACS) AND (Asperger)) 

year : no filter, 
article attribute : no filter, 
language : no filter, 
age : no filter,  
sex : no filter, 
publication date: no filter 

PubMed 
(n = 235) 
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Table 3 | Agreement of results from node-level network analysis to TMS/tDCS literature. The list 

of the target brain regions that show improvement in clinical symptoms associated with ASD 

following TMS or tDCS procedure, the corresponding ROIs in the Schaefer atlas that show significant 

between-group differences in node-level network measures and the network measures that capture the 

differences (Forman-Ricci curvature (FRC), clustering coefficient (CC)). 

Target region Schaefer ROI Network 
measure 

 
 
 
Premotor cortex (BA 6) 

RH_SalVentAttn_PrC_1 FRC 

LH_SomMot_7 

 
 
 
FRC, CC 

LH_SomMot_12 

LH_SalVentAttn_Med_3 

RH_SomMot_10 

RH_SomMot_11 

RH_SalVentAttn_Med_3 

RH_SomMot_14 

Pars Triangularis (Part of Broca’s area) (BA 45) 
RH_Cont_PFCl_3 

FRC 
RH_Cont_PFCl_6 

Pars Opercularis (Part of Broca’s area) (BA 44) RH_DorsAttn_PrCv_1 FRC, CC 

 
Dorsolateral prefrontal cortex (BA 9 and BA 46) 

LH_Default_PFC_11 
FRC 

RH_Default_PFCdPFCm_5 

LH_Default_PFC_9 
FRC, CC 

RH_Default_PFCdPFCm_6 

 
Left primary motor cortex (left M1) (BA 4) 

LH_SomMot_6 
 
FRC, CC LH_SomMot_10 

LH_SomMot_15 
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