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Abstract— We consider the reconstruction of brain activ-
ity from electroencephalography (EEG). This inverse prob-
lem can be formulated as a linear regression with indepen-
dent Gaussian scale mixture priors for both the source and
noise components. Crucial factors influencing accuracy of
source estimation are not only the noise level but also
its correlation structure, but existing approaches have not
addressed estimation of noise covariance matrices with
full structure. To address this shortcoming, we develop
hierarchical Bayesian (type-II maximum likelihood) models
for observations with latent variables for source and noise,
which are estimated jointly from data. As an extension to
classical sparse Bayesian learning (SBL), where across-
sensor observations are assumed to be independent and
identically distributed, we consider Gaussian noise with full
covariance structure. Using the majorization-maximization
framework and Riemannian geometry, we derive an effi-
cient algorithm for updating the noise covariance along
the manifold of positive definite matrices. We demonstrate
that our algorithm has guaranteed and fast convergence
and validate it in simulations and with real MEG data. Our
results demonstrate that the novel framework significantly
improves upon state-of-the-art techniques in the real-world
scenario where the noise is indeed non-diagonal and fully-
structured. Our method has applications in many domains
beyond biomagnetic inverse problems.

Index Terms— EEG/MEG Brain Source Imaging, Hier-
archical Bayesian Learning, Majorization Minimization,
Sparse Bayesian Learning, Type-II Maximum-Likelihood.

I. INTRODUCTION

HAVING precise knowledge of the noise distribution
is a fundamental requirement for obtaining accurate

solutions in many regression problems [1], particularly for
biomedical imaging applications such as neural encoding
models for task-based fMRI analyses [2]–[4] or magneto-
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or electroetoencephalography (M/EEG) inverse problems [5]–
[7]. In these biomedical imaging applications, however, it is
impossible to separately estimate this noise distribution, as
distinct ”noise-only” (baseline) measurements are not feasible.
An alternative, therefore, is to design estimators that jointly
optimize over the regression coefficients as well as over pa-
rameters of the noise distribution. This has been pursued both
in a (penalized) maximum-likelihood settings (here referred to
as Type-I approaches) [5], [8], [9] as well as in hierarchical
Bayesian settings (referred to as Type-II) [6], [7], [10], [11].
Most contributions in the literature are, however, limited to the
estimation of only a scalar noise level (homoscedastic noise)
or a diagonal noise covariance (i.e., independent between
different measurements, heteroscedastic noise) [12]–[14]. Con-
sidering scalar or diagonal noise covariance is a limiting
assumption in practice as the noise interference in many
realistic scenarios are highly correlated across measurements;
and thus, have non-trivial off-diagonal elements.

In this paper, we consider the problem of electromagnetic
brain source imaging (BSI) as our main application. The
goal of BSI is to reconstruct brain activity from magneto- or
electroencephalography (M/EEG), which can be formulated as
a sparse Bayesian learning (SBL) problem. Specifically, it can
be cast as a linear Bayesian regression model with independent
Gaussian scale mixture priors on the parameters and noise.
Extending classical SBL approaches, we here consider Gaus-
sian noise with full covariance structure. Prominent source of
correlated noise in this context are, for example, eye blinks,
heart beats, muscular artifacts and line noise. Other realistic
examples for the need for such full-structure noise can be
found in the areas of array processing [15] or direction of
arrival (DOA) estimation [16]. Algorithms that can accurately
estimate noise with full covariance structure are expected to
achieve more accurate regression models and predictions in
this setting. Therefore, our contribution in this paper consists
in developing an efficient optimization algorithm for jointly
estimating the posterior of regression parameters as well as
the noise distribution. More specifically, we consider linear
regression with Gaussian scale mixture priors on the parame-
ters and a full-structure multivariate Gaussian noise. We cast
the problem as a hierarchical Bayesian (Type-II maximum-
likelihood) regression problem, in which the source variance
hyperparameters and a full-structural noise covariance matrix
are jointly estimated by maximizing the Bayesian evidence
of the model. We derive an efficient algorithm for jointly
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estimating the source variances and noise covariance, along
a Riemannian manifold of positive definite (P.D.) matrices.

The paper is organized as follows: In Section II, after
reviewing the necessary background on Type-II Bayesian
learning, we introduce our proposed algorithm. Simulation
studies demonstrating significant improvement in source lo-
calization for EEG/MEG brain source imaging are presented
in Section IV. Finally, Section VI concludes the paper.

II. TYPE-II BAYESIAN REGRESSION

We consider the linear model Y = LX + E, in which
a forward or design matrix, L ∈ RM×N , is mapped to
the measurements, Y, by a set of coefficients or source
components, X. Depending on the setting, the problem of
estimating X given L and Y is called an inverse problem in
physics, a multi-task regression problem in machine learning,
or a multiple measurement vector (MMV) recovery problem in
signal processing [17]. Adopting a signal processing terminol-
ogy, the measurement matrix Y ∈ RM×T captures the activity
of M sensors at T time instants, y(t) ∈ RM×1, t = 1, . . . , T ,
while the source matrix, X ∈ RN×T , consists of the unknown
activity of N sources at the same time instants, x(t) ∈
RN×1, t = 1, . . . , T . The matrix E = [e(1), . . . , e(T )] ∈
RM×T represents T time instances of zero-mean Gaussian
noise with full covariance Λ, e(t) ∈ RM×1 ∼ N (0,Λ), t =
1, . . . , T , which is assumed to be independent of the source
activations.

In this paper, we focus on M/EEG based brain source
imaging (BSI). However, the proposed algorithm can be used
in general regression settings, in particular for sparse signal
recovery [18], [19] with a wide range of applications [20].
The goal of BSI is to infer the underlying brain activity X
from the EEG/MEG measurement Y given a known forward
operator, called lead field matrix L. In practice, L can be
computed using discretization methods such as the finite
element method (FEM) for a given head geometry and known
electrical conductivities using the quasi-static approximation
of Maxwell’s equations [21], [22]. As the number of sensors is
typically much smaller than the number of locations of poten-
tial brain sources, this inverse problem is highly ill-posed. This
problem is addressed by imposing prior distributions on the
model parameters and adopting a Bayesian treatment. This can
be performed either through Maximum-a-Posteriori (MAP)
estimation (Type-I Bayesian learning) [23]–[27] or, when
the model has unknown hyperparameters, through Type-II
Maximum-Likelihood estimation (Type-II Bayesian learning)
[28]–[32]. In this paper, we focus on Type-II Bayesian learn-
ing, which assumes a family of prior distributions p(X|Θ)
parameterized by a set of hyperparameters Θ. These hyper-
parameters can be learned from the data along with the model
parameters using a hierarchical Bayesian approach [29], [33]
through the maximum-likelihood principle:

ΘII := arg max
Θ

p(Y|Θ) = arg max
Θ

∫
p(Y|X,Θ)p(X|Θ)dX .

Here we assume a zero-mean Gaussian prior with diagonal
covariance Γ = diag(γ) for the underlying source distri-
bution. That is, x(t) ∈ RN×1 ∼ N (0,Γ), t = 1, . . . , T ,

where γ = [γ1, . . . , γN ]> contains N distinct unknown vari-
ances associated to N modeled brain sources. In the Type-II
Bayesian learning framework, modeling independent sources
through a diagonal covariance matrix leads to sparsity of the
resulting source distributions, i.e., at the optimum, many of the
estimated source variances are zero. This mechanism is known
as sparse Bayesian learning (SBL) and is also closely related
to the concept of automatic relevance determination (ARD)
[29] and kernel Fisher discriminant (KFD) [28]. Just as most
other approaches, SBL makes the simplifying assumption of
statistical independence between time samples. This leads to
the following expression for the distribution of the sources and
measurements:

p(X|Γ) =
T∏
t=1

p(x(t)|Γ) =
T∏
t=1

N (0,Γ) (1)

p(Y|X) =
T∏
t=1

p(y(t)|x(t)) =
T∏
t=1

N (Lx(t),Λ) . (2)

The parameters of the Type-II model, Θ, are the unknown
source variances and the noise covariance, i.e., Θ = {Γ,Λ}.
The unknown parameters Γ and Λ are optimized based on the
current estimates of the source variances and noise covariance
in an alternating iterative process. Given initial estimates of Γ
and Λ, the posterior distribution of the sources is a Gaussian
of the form [34]

p(X|Y,Γ,Λ) =

T∏
t=1

N (x̄(t),Σx) ,where (3)

x̄(t) = ΓL>(Σy)−1y(t) (4)

Σx = Γ− ΓL>(Σy)−1LΓ (5)

Σy = LΓL> + Λ . (6)

The estimated posterior parameters x̄(t) and Σx are then in
turn used to update Γ and Λ as the minimizers of the negative
log of the marginal likelihood p(Y|Γ,Λ), − log p(Y|Γ,Λ),
which is given by [35]:

LII(Γ,Λ) = log|Σy|+
1

T

T∑
t=1

y(t)>Σ−1y y(t)

= log|Λ + LΓL>|+ 1

T

T∑
t=1

y(t)>
(
LΓL> + Λ

)−1
y(t) ,

(7)

where | · | denotes the determinant of a matrix. This process
is repeated until convergence. Given the final solution of
the hyperparameters ΘII = {ΓII,ΛII}, the posterior source
distribution is obtained by plugging these estimates into (2)–
(5).

III. PROPOSED METHOD: FULL-STRUCTURE NOISE
(FUN) LEARNING

Here we propose a novel and efficient algorithm, full-
structure noise (FUN) learning, which is able to learn the full
covariance structure of the noise jointly within the Bayesian
Type-II regression framework. We adopt the SBL assumption
for the sources, leading to Γ-updates previously described
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in the BSI literature under the name Champagne [30]. As
a novelty and main focus of this paper, we here equip the
SBL framework with the capability to jointly learn full noise
covariances by invoking efficient methods from Riemannian
geometry, in particular the geometric mean.

Note that the Type-II cost function in (7) is non-convex and
thus non-trivial to optimize. A number of iterative algorithms
such as majorization-minimization (MM) [36] have been pro-
posed to address this challenge. Following the MM scheme,
we first construct convex surrogate functions that majorizes
LII(Γ,Λ) in each iteration of the optimization algorithm.
Then, we show the minimization equivalence between the
constructed majoring functions and (7). This result is presented
in the following theorem:

Theorem 1. Let Λk and Σk
y be fixed values obtained in

the (k)-th iteration of the optimization algorithm minimizing
LII(Γ,Λ). Then, optimizing the non-convex Type-II ML cost
function in (7), LII(Γ,Λ), with respect to Γ is equivalent to
optimizing the following convex function, which majorizes (7):

Lconv
source(Γ,Λ

k) = tr
(
L>
(
Σk

y

)−1
LΓ
)

+ tr(Mk
SΓ−1) , (8)

where Mk
S is defined as:

Mk
S :=

1

T

T∑
t=1

x̄k(t)x̄k(t)> . (9)

Similarly, optimizing LII(Γ,Λ) with respect to Λ is equivalent
to optimizing the following convex majorizing function:

Lconv
noise(Γ

k,Λ) = tr
[(

Σk
y

)−1
Λ
]

+ tr(Mk
NΛ−1) , (10)

where Mk
N is defined as:

Mk
N :=

1

T

T∑
t=1

(y(t)− Lx̄k(t))(y(t)− Lx̄k(t))> . (11)

Proof: The proof is presented in Appendix D.
We continue by considering the optimization of the cost

functions Lconv
noise(Γ

k,Λ) and Lconv
source(Γ,Λ

k) with respect to
Λ and Γ, respectively. Note that in case of noise covariances
with full structure, the solution of Lconv

noise(Γ
k,Λ) with respect

to Λ lies in the (M2 −M)/2 Riemannian manifold of P.D.
matrices. This consideration enables us to invoke efficient
methods from Riemannian geometry (see [37]), which ensures
that the solution at each step of the optimization is contained
within the lower-dimensional solution space. Specifically, in
order to optimize for the noise covariance, the algorithm
calculates the geometric mean between the previously obtained
statistical model covariance, Σk

y, and the empirical sensor-
space residuals, Mk

N, in each iteration. Regarding the solution
of Lconv

source(Γ,Λ
k), note that we adopt the SBL assumption for

the sources by imposing a diagonal structure on the source
covariance matrix, Γ = diag(γ), where γ = [γ1, . . . , γN ]>.
The update rules obtained from this algorithm are presented
in the following theorems:

Theorem 2. The cost function Lconv
noise(Γ

k,Λ) is strictly
geodesically convex with respect to the P.D. manifold, and

its minimum with respect to Λ can be attained according to
the following update rule:

Λk+1 ← (Σk
y)

1
2

(
(Σk

y)
−1/2Mk

N(Σk
y)

−1/2
) 1

2

(Σk
y)

1
2 . (12)

Proof: A detailed proof can be found in Appendix E.
Moreover, a geometric representation of the geodesic path
between the pair of matrices {Σk

y,M
k
N} on the P.D. manifold

and the geometric mean between them, representing the update
for Λk+1, is provided in Fig. 7 in Appendix E.

Theorem 3. Constraining Γ in (8) to the set of diagonal
matrices with nonnegative elements S, i.e., S = {Γ | Γ =
diag(γ) = diag([γ1, . . . , γN ]>), γn ≥ 0, for n = 1, . . . , N},

Γk+1 = arg min
Γ∈S, Λ=Λk

tr
(
L>
(
Σk

y

)−1
LΓ
)

+ tr(Mk
SΓ−1) ,

(13)

leads to the following update rule for the source variances:

Γk+1 = diag(γk+1), where,

γk+1
n ←

√√√√√
[
Mk

S

]
n,n[

L>
(
Σk

y

)−1
L
]
n,n

=

√√√√ 1
T

∑T
t=1(x̄kn(t))2

L>.n
(
Σk

y

)−1
L.n

for n = 1, . . . , N , (14)

where L.n denotes the n-th column of the lead field matrix.

Proof: A detailed proof can be found in Appendix F.
Convergence of the resulting algorithm is shown in the fol-
lowing theorem:

Theorem 4. Optimizing the non-convex Type-II ML cost
function in (7), LII(Γ,Λ) with alternating update rules for
Λ and Γ in (12) and (14) leads to an MM algorithm with
convergence guarantees.

Proof: A detailed proof can be found in Appendix G.

Remark 1. Note that (14) is identical to the update rule of
the Champagne algorithm [30]. Besides, various recent Type-
II schemes for learning diagonal noise covariance matrices
that are rooted in the concept of SBL [6], [7] can also
be derived as special cases of FUN learning. Specifically,
imposing diagonal structure on the noise covariance matrix for
the FUN algorithm, i.e., Λ ∈ S, results in the noise variance
update rules derived in [7] for heteroscedastic, and in [6]
for homoscedastic noise. Here, heteroscedasticity refers to the
common situation that measurements are contaminated with
non-uniform noise levels across channels, while homoscedas-
ticity only accounts for uniform noise levels. We explicitly
demonstrate the noted connection in Appendix H.

Remark 2. Note that, although FUN is limited to estimate
a diagonal source covariance matrix, e.g. Γ = diag(γ), this
assumption can be relaxed for special cases. One particular
such setting is when the inverse of

[
L>
(
Σk

y

)−1
L
]

is well-
defined. This condition is fulfilled whenever the rank of the
lead field matrix L is less than the number of sensors. In
the context of BSI, this scenario, for example, occurs when a
region-level lead field – instead of a voxel-level lead field – is
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used. Under this condition, an update rule similar to (12) can
be obtained for the full-structural source covariance matrix:

Γk+1 ← (Ck
S)

1
2

(
(Ck

S)
−1/2Mk

S(Ck
S)

−1/2
) 1

2

(Ck
S)

1
2 , (15)

where Ck
S is defined as Ck

S :=
(
L>
(
Σk

y

)−1
L
)−1

. For
additional extensions to other scenarios, please see discussion.

Remark 3. The theoretical results presented in Section III
have been obtained for the scalar setting, where the ori-
entations of the dipolar brain source are assumed to be
perpendicular to the surface of the cortex and, hence, only
the scalar deflection of each source along the fixed orientation
needs to be estimated. In real data, surface normals are hard
to estimate or even undefined in case of volumetric recon-
structions. Consequently, we model each source here as a full
3-dimensional current vector. This is achieved by introducing
three variance parameters for each source within the source
covariance matrix, Γ3D = [γx1 , γ

y
1 , γ

z
1 , . . . , γ

x
N , γ

y
N , γ

z
N ]>.

Further details is provided in Appendix C.

Summarizing, the FUN learning approach, just like Cham-
pagne and other SBL algorithms, assumes independent Gaus-
sian sources with individual variances (thus, diagonal source
covariances), which are updated through (14). Extending the
classical SBL setting, which assumes the noise distribution to
be known, FUN models noise with full covariance structure,
which is updated using (12). Algorithm 1 in Appendix A
summarizes the update rules used.

IV. NUMERICAL SIMULATIONS

In this section, we compare the performance of the pro-
posed algorithm to variants employing simpler (home- and
heteroscedastic) noise models through an extensive set of
simulations. Our simulation setting is an adoption of the EEG
inverse problem, where brain activity is to be reconstructed
from simulated pseudo-EEG data [38]. MATLAB code for
producing the results in the simulation study is also released
as an open source package in a publicly accessible GitHub
repository: https://github.com/AliHashemi-ai/FUN-Learning.

A. Pseudo-EEG Signal Generation
Forward Modeling: Populations of pyramidal neurons in

the cortical gray matter are known to be the main drivers of
the EEG signal [21], [22]. Here, we use a realistic volume
conductor model of the human head to model the linear
relationship between primary electrical source currents gen-
erated within these populations and the resulting scalp surface
potentials captured by EEG electrodes. The lead field matrix,
L ∈ R58×2004, was generated using the New York Head model
[39] taking into account the realistic anatomy and electrical
tissue conductivities of an average human head. In this model,
2004 dipolar current sources were placed evenly on the cortical
surface and 58 sensors were considered. The lead field matrix,
L ∈ R58×2004 was computed using the finite element method
[39]. Note that the orientation of all source currents was fixed
to be perpendicular to the cortical surface, so that only scalar
source amplitudes needed to be estimated.

Source and Noise Model: We simulated a sparse set of
N0 = 5 active sources that were placed at random positions on
the cortex. To simulate the electrical neural activity of these
sources, T = 200 identically and independently distributed
(i.i.d) points were sampled from a Gaussian distribution,
yielding sparse source activation vectors x(t). The resulting
source distribution, represented as X = [x(1), . . . ,x(T )], was
projected to the EEG sensors through application of lead field
matrix: Ysignal = LX. Gaussian additive noise was randomly
sampled from a zero-mean normal distribution with full co-
variance matrix Λ: e(t) ∈ RM×1 ∼ N (0,Λ), t = 1, . . . , T .
This setting is further referred to as full-structural noise. Note
that we also generated noise with diagonal covariance matrix,
referred to as heteroscedastic noise, in order to investigate the
effect of model violation on reconstruction performance. The
noise matrix E = [e(1), . . . , e(T )] ∈ RM×T is normalized by
it Frobenius norm and added to the signal matrix Ysignal as
follows:

Y = Ysignal +
(1− α)

∥∥Ysignal
∥∥
F

α ‖E‖F
E, (16)

where α determines the signal-to-noise ratio (SNR) in sen-
sor space. Precisely, SNR is defined as follows: SNR =
20log10 (α/1−α). In the subsequently described experiments
the following values of α were used: α={0.3, 0.35, 0.4, 0.45,
0.5, 0.55, 0.65, 0.7, 0.8}, which correspond to the following
SNRs: SNR={-12, -7.4, -5.4, -3.5, -1.7, 0, 1.7, 3.5, 5.4, 7.4,
12} (dB).

Evaluation Metrics and Simulation Setup: We applied
the full-structural noise learning approach on the synthetic
datasets described above to recover the locations and time
courses of the active brain sources. In addition to our proposed
approach, two further Type-II Bayesian learning schemes,
namely homoscedastic and heteroscedastic Champagne [6],
[7], were also included as benchmarks with respect to source
reconstruction performance and noise covariance estimation
accuracy.

Source reconstruction performance was evaluated according
to the following metrics. First, the earth mover’s distance
(EMD) [25], [40] was used to quantify the spatial localization
accuracy. The EMD measures the cost needed to transform two
probability distributions defined on the same metric domain
(in this case, distributions of the true and estimated sources
defined in 3D Euclidean brain space) into each other. EMD
scores were normalized to [0, 1]. Second, the error in the
reconstruction of the source time courses was measured. To
this end, Pearson correlation between all pairs of simulated
and reconstructed (i.e., those with non-zero activations) source
time courses was assessed as the mean of the absolute correla-
tions obtained for each source, after optimally matching sim-
ulated and reconstructed sources based on maximal absolute
correlation. We also report another metric for evaluating the
localization error as the average Euclidean distance (EUCL)
(in mm) between each simulated source and the best (in terms
of absolute correlations) matching reconstructed source. For
assessing the recovery of the true support, we also compute
F1-measure scores [41], [42]: F1 = 2×TP/P+TP+FP , where
P denotes the number of true active sources, while TP and FP
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are the numbers of true and false positive predictions. Note
that perfect support recovery, i.e., F1 = 1, is only achieved
when there is a perfect correspondence between ground-truth
and estimated support.

To evaluate the accuracy of the noise covariance matrix esti-
mation, the following two metrics were calculated: the Pearson
correlation measuring the structural similarity between original
and reconstructed noise covariance matrices, Λ and Λ̂, denoted
by Λsim, and the normalized mean squared error (NMSE)
between Λ and Λ̂, defined as NMSE = ||Λ̂ − Λ||2F /||Λ||2F .
Note that NMSE measures the reconstruction of the true scale
of the noise covariance matrix, while Λsim is scale-invariant
and hence only quantifies the overall structural similarity
between simulated and estimated noise covariance matrices.

Each simulation was carried out 100 times using different
instances of X and E, and the mean and standard error
of the mean (SEM) of each performance measure across
repetitions was calculated. Convergence of the optimization
programs for each run was defined if the relative change
of the Frobenius-norm of the reconstructed sources between
subsequent iterations was less than 10−8. A maximum of
1000 iterations was carried out if no convergence was reached
beforehand.

B. Results

Fig. 1 shows two simulated datasets with five active sources
in presence of full-structure noise (upper panel) as well as
heteroscedastic noise (lower panel) at 0 dB SNR. Topographic
maps depict the locations of the ground-truth active brain
sources (first column) along with the source reconstruction
result of three noise learning schemes assuming noise with
homoscedastic (second column), heteroscedastic (third col-
umn), and full (fourth column) structure. For each algorithm,
the estimated noise covariance matrix is also plotted above
the topographic map. Source reconstruction performance was
measured in terms of EMD and time course correlation (Corr),
and is summarized in the table next to each panel. Besides,
the accuracy of the noise covariance matrix reconstruction was
measured on terms of Λsim and NMSE. Results are included
in the same table.

Fig. 1 (upper panel) allows for a direct comparison of
the estimated noise covariance matrices obtained from the
three different noise learning schemes. It can be seen that
FUN learning can better capture the overall structure of
ground truth full-structure noise as evidenced by lower NMSE
and similarity errors compared to the heteroscedastic and
homoscedastic algorithm variants that are only able to recover
a diagonal matrix while enforcing the off-diagonal elements
to zero. This behaviour results in higher spatial and temporal
accuracy (lower EMD and time course error) for FUN learning
compared to competing algorithms assuming diagonal noise
covariance. This advantage is also visible in the topographic
maps.

The lower-panel of Fig. 1 presents analogous results for the
setting where the noise covariance is generated according to
a heteroscedastic model. Note that the superior spatial and
temporal reconstruction performance of the heteroscedastic

noise learning algorithm compared to the full-structure scheme
is expected here because the simulated ground truth noise
is indeed heteroscedastic. The full-structure noise learning
approach, however, provides fairly reasonable performance
in terms of EMD, time course correlation (corr), and Λsim,
although it is designed to estimate a full-structure noise
covariance matrix. The convergence behaviour of all three
noise learning variants is also illustrated in Fig. 1. Note that
the full-structure noise learning approach eventually reaches
lower negative log-likelihood values in both scenarios, namely
full-structure and heteroscedastic noise.

Fig. 2 shows the EMD, the time course reconstruction error,
the EUCL and the F1 measure score incurred by three different
noise learning approaches assuming homoscedastic (red), het-
eroscedastic (green) and full-structure (blue) noise covariances
for a range of SNR values. The upper panel represents the
evaluation metrics for the setting where the noise covariance
is full-structure model, while the lower-panel depicts the
same metric for simulated noise with heteroscedastic diagonal
covariance. Concerning the first setting, FUN learning con-
sistently outperforms its homoscedastic and heteroscedastic
counterparts according to all evaluation metrics in particular
in low-SNR settings. Consequently, as the SNR decreases,
the gap between FUN learning and the two other variants
increases. Conversely, heteroscedastic noise learning shows an
improvement over FUN learning according to all evaluation
metrics when the simulated noise is indeed heteroscedastic.
However, note that the magnitude of this improvement is not
as large as observed for the setting where the noise covariance
is generated according to a full-structure model and then is
estimated using the FUN approach.

Fig. 3 depicts the accuracy if the estimated noise covari-
ance matrix reconstructed by three different noise learning
approaches assuming noise with homoscedastic (red), het-
eroscedastic (green) and full (blue) structure. The ground
truth noise covariance matrix either had full (upper row)
or heteroscedastic (lower row) structure. Performance was
measured in terms of similarity and NMSE. To be consistent
with NMSE, we report “similarity error”, defined as 1−Λsim,
instead of similarity, Λsim. Similar to the trend observed
in Fig. 2, full-structure noise learning leads to better noise
covariance estimation accuracy (lower NMSE and similarity
error) for the full-structure noise model, while superior re-
construction performance is achieved for heteroscedastic noise
learning when true noise covariance is heteroscedastic.

V. ANALYSIS OF REAL MEG DATA

A. Auditory and Visual Evoked Fields

All MEG data used here were acquired in the Biomag-
netic Imaging Laboratory at the University of California San
Francisco (UCSF) with an Omega 2000 whole-head MEG
system from CTF Inc. (Coquitlam, BC, Canada) at a sampling
rate of 1200 Hz. All human participants provided informed
written consent prior to study participation and received
monetary compensation for their participation. The studies
were approved by the University of California, San Francisco
Committee on Human Research.
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Fig. 1: Two examples of the simulated data with five active sources in presence of full-structural noise (upper panel) as well as
heteroscedastic noise (lower panel) at 0 dB SNR. Topographic maps depict the locations of the ground-truth active brain sources
(first column) along with the source reconstruction results of three noise learning schemes assuming noise with homoscedastic
(second column), heteroscedastic (third column), or full structure (fourth column). For each algorithm, the estimated noise
covariance matrix is also plotted above the topographic maps. The source reconstruction performance of these examples in
terms of EMD and time course correlation (Corr) is summarized in the associated table next to each panel. Besides these two
source reconstruction metrics, we also report the accuracy with which the ground-truth noise covariance was estimated in terms
of the Λsim and NMSE metrics introduced above. The convergence behaviour of all three noise estimation approaches is also
shown. Note that the full-structural noise learning approach converges to better minima of the negative log-likelihood than
competing approaches regardless of whether the ground-truth noise covariance has full or heteroscedastic structure. However,
an advantage in terms of reconstruction is only observed in the former case.
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Fig. 2: Source reconstruction performance (mean ± SEM) of
the three different noise learning schemes for data generated
by a realistic lead field matrix. Generated sensor signals were
superimposed by either full-structure or heteroscedastic noise
covering a wide range of SNRs. Performance was measured
in terms of the earth mover’s distance (EMD), time-course
correlation error, F1-measure and Euclidean distance (EUCL)
in (mm) between each simulated source and the reconstructed
source with highest maximum absolute correlation.

Full-structure Noise Heteroscedastic Noise Heteroscedastic NoiseFull-structure Noise

Fig. 3: Accuracy of the noise covariance matrix reconstruction
incurred by three different noise learning approaches assuming
homoscedastic (red), heteroscedastic (green) and full-structural
(blue) noise covariances. The ground-truth noise covariance
matrix is either full-structure (upper row) or heteroscedastic
diagonal (lower row). Performance is assessed in terms of the
Pearson correlation between the entries of the original and
reconstructed noise covariance matrices, Λ and Λ̂, denoted
by Λsim (left column). Shown is the similarity error 1−Λsim.
Further, the normalized mean squared error (NMSE) between
Λ and Λ̂, defined as NMSE = ||Λ̂−Λ||2F /||Λ||2F is reported
(right column).
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Lead-fields for each subject were calculated using NUT-
MEG [43] assuming a single spherical shell volume conductor
model resulting in only two spherical orientations (dc = 2).
Lead-fields were constructed at a voxel resolution of 8 mm.
Each lead-field column was normalized to have a norm of
unity. Neural responses to auditory Evoked Fields (AEF) and
visual evoked fields (VEF) stimulus were localized using the
FUN algorithm and other benchmarks. The AEF response was
elicited during passive listening to binaural tones (600 ms
duration, carrier frequency of 1 kHz, 40 dB SL). The VEF
response was elicited while subjects were viewing pictures of
objects projected onto a screen and subjects were instructed
to overtly name the objects [44], [45]. Up to 120 AEF and
100 VEF trials were collected. For both AEF and VEF data,
trials with clear artifacts or visible noise in the MEG sensors
that exceeded 10 pT fluctuations were excluded prior to source
localization analysis.

Both AEF and VEF data were digitally filtered to a pass-
band of 1 to 70 Hz and time-aligned to the stimulus onset.
Averaging was then performed across sets of trials of increas-
ing size: {10, 20, 40, 60, 100} trials for AEF, and {10, 20, 40}
trials for VEF analyses. The pre-stimulus window was selected
to be 100 ms prior to stimulus onset. The post-stimulus time
window for AEF was selected to be +50 ms to +150 ms.
For VEF data, we focused on source reconstruction in two
time-windows – an early window ranging from +100 ms to
+150 ms around the traditional M100 response, and a later
time window ranging from +150 ms to +225 ms around the
traditional M170 responses [35], [46]–[48].

Fig. 4 shows the reconstruction of the Auditory Evoked
Fields (AEF) for different number of trial averages for a
representative subject using FUN learning along with different
Type-I and Type-II BSI benchmark methods. In addition to
heteroscedastic Champagne, two classical non-SBL source
reconstruction schemes were included for comparison. As
an example of a sparse Type-I method based on `1-norm
minimization, the minimum-current estimate (MCE) algorithm
[49] is shown. Additionally, eLORETA [50], representing a
smooth inverse solution based on `22-norm minimization, is
also shown.

Reconstruction performance of all algorithms for different
trial averaging with just 10, 20, 40, 60, and 100 trials are
shown. All trials were selected randomly prior to averag-
ing. As the subplots for different numbers of trial averages
demonstrate, FUN learning can accurately localize bilateral
auditory activity to Heschel’s gyrus, the characteristic location
of the primary auditory cortex, even with as few as 10
trials. In this challenging setting, all competing methods show
inferior performance. These results highlight the importance of
accurate noise covariance estimation on the fidelity of source
reconstructions.

Fig. 5 shows the localization and time series reconstruction
of visual evoked field (VEF) activity for a single subject
using FUN and heteroscedastic noise learning Champagne,
eLORETA and MCE. Reconstruction performance is again
shown for the number of trials used for averaging ranging
from 10, 20, and 40. Trials were randomly chosen from the
full dataset without replacement prior to averaging. Within

Fig. 4: Auditory evoked field (AEF) localization results from
one representative subject for different numbers of trial aver-
ages using FUN learning, heteroscedastic Champagne, MCE
and eLORETA. All reconstructions of FUN learning algorithm
show focal sources at the expected locations of the auditory
cortex. Even when limiting the number of trials to as few as
10 reconstruction result of FUN learning are accurate, while it
severely affects the reconstruction performance of competing
benchmark methods.

each panel, the top shows the source localization of the M100
(1st peak) and M170 (2nd peak) responses, respectively. The
time course of the source peak (indicated by the intersecting
green lines) across a +25 ms to +275 ms window is presented
below the source localization results. Blue lines represent
the voxel power with arbitrary units averaged across ten
independent experiments (that is, ten random selections of
trials for trial averaging). Blue shades represent the standard
error of the mean (SEM) across different trial averaging
experiments. We also included three additional benchmark
algorithms, sLORETA [51], S-FLEX [25] and the LCMV
beamformer [52] in the supplementary material. In comparison
with MCE and eLORETA benchmarks, FUN shows accurate
localization capability, while both benchmarks did not yield
reliable results for trial averaging as few as ten trials. Even
when the number of trials used for averaging was increased to
20, the benchmarks yielded neither good spatial localization
of the two visual cortical peaks, nor did they provide a
reasonable estimation of the time courses of these activations.
Furthermore, FUN detects two salient and clear peaks in
each time-window in contrast to other benchmarks where
the salience of the early and late peaks are less prominent.
Results obtained from FUN are also robust across different
SNRs/numbers of trial averages. For more benchmark results,
please see supplementary Fig. 8.

B. Resting-state data
Resting-state data are particularly suited for the FUN algo-

rithm because of the lack of baseline data on which the noise
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Fig. 5: Localization and time series results of visual evoked
field (VEF) activity for a single subject using FUN and
benchmarks. Comparing with MCE and eLORETA, FUN
shows accurate localization capability. Furthermore, FUN de-
tects sharper 2nd peaks when compared to the heteroscedastic
noise-learning Champagne, which is consistent with the sharp
response of the VEF. The results obtained by FUN are robust
across different SNRs/numbers of trial averages. For additional
benchmark results, please see supplementary Fig. 8.

distribution could be estimted. Here, we show that FUN is
able to learn the underlying noise distribution and consistently
recover brain activity. For this analysis, three subjects were
instructed simply to keep their eyes closed and remain awake.
We collected four trials per subject, where each trial was one
minute long. We randomly chose 30 seconds or equivalently
36000 time samples for brain source reconstruction from one
trial of each subject. These resting-state MEG data were
digitally filtered using a pass-band ranging from 8 to 12 Hz
(alpha band) to remove artifacts and DC offset.

Localization of resting state alpha band activity from the
three subjects are shown in Fig. 6. The first three columns
show the estimated source covariance patterns (with the ap-
plication of a threshold of 10% the peak value) for the three
noise learning variants of Champagne. Each row represents
one subject. The corresponding loss function values across
1000 iterations are shown in the last column. FUN consistently
localizes all subjects’ brain activity predominantly near the
midline occipital lobe or posterior cingulate gyrus consistent
with expected locations of alpha generators known to dominate
resting-state activity.

Fig. 6: Localization of resting-state brain activity for three sub-
jects using FUN and the heteroscedastic and homoscedastice
noise learning variants of Champagne. The source variance
patterns estimated by each algorithm are projected onto the
cortical surface. The convergence behaviour of all three noise
estimation approaches is also shown in terms of the negative
log-likelihood cost function. FUN converges to better minima
when compared to these benchmarks.

VI. DISCUSSION

In this paper, we focused on sparse regression within the
hierarchical Bayesian regression framework and its application
in EEG/MEG brain source imaging. We proposed an effi-
cient optimization algorithm for jointly estimating Gaussian
regression parameter distributions as well as Gaussian noise
distributions with full covariance structure within a hierarchi-
cal Bayesian framework. Using the Riemannian geometry of
positive definite matrices, we derived an efficient algorithm for
jointly estimating brain source variances and noise covariance.
The benefits of our proposed framework were evaluated within
an extensive set of experiments in the context of the electro-
magnetic brain source imaging inverse problem and showed
significant improvement upon state-of-the-art techniques in the
realistic scenario where the noise has full covariance structure.
The practical performance of our method is further assessed
through analyses of real auditory evoked fields (AEF), visual
evoked fields (VEF) and resting-state MEG data.

In the context of BSI, [53] proposed a method for selecting
a single regularization parameter based on cross-validation and
maximum-likelihood estimation, while [54]–[58] assume more
complex spatio-temporal noise covariance structures. A com-
mon limitation of these works is, however, that the noise level
is not estimated as part of the source reconstruction problem
on task-related data but from separate noise recordings. Our
proposed algorithm substantially differs in this respect, as it
learns the noise covariance jointly with the brain source distri-
bution from the same data. This joint estimation perspective is
opposed to a step-wise independent estimation process that can
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cause to error accumulation. The idea of joint estimation of
brain source activity and noise covariance has been previously
proposed for Type-I learning methods in [5], [9]. [5] proposed
a method to extend the group Lasso class of algorithms to
multi-task learning, where the noise covariance is estimated
using an eigenvalue fit to the empirical sensor space residuals
defined in (11). In contrast, FUN learning uses Riemannian
geometry principles, e.g., the geometric mean between the
sensor space residuals defined in (11) and the previously
obtained statistical model covariance, Σk

y. This enables us to
robustly estimate the noise covariance as part of the model,
in contrast to the method proposed in [5], which estimates
the noise covariance solely based on the eigenvalues of the
observed sensor space residuals. Furthermore, in contrast to
these Type-I likelihood estimation methods, FUN is a Type-
II method, which learns the prior source distribution as part
of the model fitting. Type-II methods have been reported to
yield results that are consistently superior to those of Type-I
methods [6], [7], [47], [48]. Our numerical results show that
the same holds also for FUN learning, which performs on
par or better than existing variants from the Type-II family
(including conventional Champagne) in this study.

Noise learning has also attracted attention in functional
magnetic resonance imaging (fMRI) [2]–[4], where various
models like matrix-normal (MN), factor analysis (FA), and
Gaussian-process (GP) regression have been proposed. The
majority of the noise learning algorithms in the fMRI literature
rely on the EM framework, which is quite slow in practice
[6] and has convergence guarantees only under certain restric-
tive conditions [36], [59]–[61]. In contrast to these existing
approaches, our proposed framework not only applies to the
models considered in these papers, but also benefits from the-
oretically proven convergence guarantees. To be more specific,
we showed in this paper that FUN learning is an instance of the
wider class of majorization-minimization (MM) framework,
for which provable fast convergence is guaranteed. It is worth
emphasizing our contribution within the MM optimization
context as well. Unlike many other MM implementations,
where surrogate functions are minimized using an iterative
approach, our proposed algorithm is more efficient because it
obtains a closed-form solution for the surrogate function in
each step.

While being broadly applicable (please see Appendix B for
a comprehensive list of potential applications), our approach
is nevertheless also limited by a number of factors. Although
Gaussian noise distributions are commonly justified, it would
be desirable to also include more robust (e.g., heavy-tailed)
non-Gaussian noise distributions in our framework. Another
limitation is that the superior performance of the full-structure
noise learning technique comes at the expense of higher
computational complexity compared to the variants assuming
homoscedastic or heteroscedastic structure. Besides, signals
in real-world scenarios often lie in a lower-dimensional space
compared to the original high-dimensional ambient space due
to the correlations that exist in the data. Therefore, imposing
physiologically plausible constraints on the noise model, e.g.,
low-rank, Toeplitz or Kronecker structure [62], [63], not
only provides side information that can be leveraged for the

reconstruction but also reduces the computational cost in two
ways: a) by reducing the number of parameters and b) by
taking advantage of efficient implementations using circular
embeddings and the fast Fourier transform [64], [65]. Explor-
ing efficient ways to incorporate these structural assumptions
within a Riemannian framework is another direction of our
future work.
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Supplementary Material
APPENDIX

A. Summary of the Full-structure noise (FUN) learning method

Algorithm 1: Full-structure noise (FUN) learning

Input: The lead field matrix L ∈ RM×N and the measurement vectors y(t) ∈ RM×1, t = 1, . . . , T .
Result: The estimated prior source variances [γ1, . . . , γN ]>, noise covariance Λ, the posterior mean x̄(t) and

covariance Σx of the sources.
1 Choose a random initial value for Λ as well as γ = [γ1, . . . , γN ]>, and construct Γ = diag(γ).
2 Calculate the statistical covariance Σy = Λ + LΓL>.
3 Initialize k ← 1

Repeat
4 Calculate the posterior mean as x̄(t) = ΓL>(Σy)−1y(t).
5 Calculate Mk

N based on (11), and update Λ based on (12).
6 Calculate Mk

S based on (9), and update Γ and γn for n = 1, . . . , N based on (14).
7 k ← k + 1

Until stopping condition is satisfied:
∥∥x̄k+1 − x̄k

∥∥2
2
≤ ε or k = kmax;

8 Calculate the posterior covariance as Σx = Γ− ΓL>(Σy)−1LΓ.

B. Broader Impact
Although this paper focuses on electromagnetic brain source imaging, our proposed algorithm is suitable for a wider range

of applications. The same concepts used here for full-structure noise learning could be employed in other contexts where
hyperparameters like kernel widths in Gaussian process regression [66] or dictionary elements in the dictionary learning problem
[67] need to be inferred from data. The FUN learning algorithm may also prove useful for practical scenarios in which model
residuals are expected to be correlated, e.g., probabilistic canonical correlation analysis (CCA) [68], spectral independent
component analysis (ICA) [69], direction of arrival (DoA) and channel estimation in massive Multiple Input Multiple Output
(MIMO) systems [70]–[72], robust portfolio optimization in finance [73], covariance matching and estimation [74]–[80], graph
learning [81], thermal field reconstruction [82]–[84], and brain functional imaging [85]. It is also straightforward to incorporate
our optimization procedure within more complex models with hierarchical priors. This includes problems that optimize the
evidence lower bound (ELBO) cost function in variational Bayesian inference [86] or variational autoencoders [87].

C. Recovering brain sources with free orientation
The theoretical results presented in Section III have been obtained for the scalar setting, where the orientations of the dipolar

brain source are assumed to be perpendicular to the surface of the cortex and, hence, only the scalar deflection of each source
along the fixed orientation needs to be estimated. In real data, surface normals are hard to estimate or even undefined in
case of volumetric reconstructions. Consequently, we model each source here as a full 3-dimensional current vector. This is
achieved by introducing three variance parameters for each source within the source covariance matrix, Γ3D = diag(γ3D) =
[γx1 , γ

y
1 , γ

z
1 , . . . , γ

x
N , γ

y
N , γ

z
N ]>. Correspondingly, a full 3D leadfield matrix, L3D ∈ RM×3N , is used. More specifically, we

define L3D = [L1, . . . ,LN ], where N is the number of voxels under consideration and Ln = [L1
n, · · · ,Ldcn ] ∈ RM×dc is the

leadfield matrix for n-th voxel with dc orientations. The k-th column of Ln, i.e. Lkn for k = 1, · · · , dc, represents the signal
vector that would be observed at the scalp given a unit current source or dipole at the n-th voxel with a fixed orientation in
the k-th direction. The voxel dimension dc is commonly set to 3 for EEG, and MEG with realistic volume conductor models,
and 2 for MEG with single spherical shell models.

In this scenario, xn(t) = [x1n(t), · · · , xdcn (t)]> ∈ Rdc×1 models the n-th voxel intensity at time t, which we assume it with
dc orientations. Then, the generative probabilistic model for the sensor data at time point t can be written as:

y(t) = L3Dx(t) + e(t) =
N∑
n=1

Lnxn(t) + e(t) ,

with prior distributions x(t) ∼ N (0,Γ3D), where Γ3D is defined as dcN × dcN block diagonal matrix expressed as

Γ3D =


γ1Idc×dc 0 · · · 0

0 γ2Idc×dc · · · 0
...

...
. . .

...
0 0 · · · γN Idc×dc

 , (17)
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in which γnIdc×dc is a prior variance dc × dc matrix of xn and Idc×dc is a dc × dc identity matrix.
The prior distribution p(X|Γ3D) is then defined as

p(X|Γ3D) =
∏T
t=1N (x(t)|0,Γ3D)) =

T∏
t=1

N∏
n=1
N (xn(t)|0, γnIdc×dc), (18)

As all Type-II algorithms considered here model the source covariance matrix Γ to be diagonal, the proposed extension to
3D sources with free orientation is applicable. The update rule in (14) can be reformulated as follows:

γk+1
n ←

√√√√ 1
T

∑T
t=1(x̄kn(t))>x̄kn(t)

tr
(
L>n
(
Σk

y

)−1
Ln

) for n = 1, . . . , N . (19)

In the simulations studies described in Section IV, we use the fixed-orientation variants of all methods. For real-data analyses
in Section V, the free-orientation variants are employed.

Remark 4. Note that the number of orientations for the lead field, dc, is not limited to 2 or 3. The case dc = 2, 3 is given
when voxel-level lead fields are considered. For lead fields defined for a region or cortical patch level, dc can be larger,
e.g. determined by the number principal components (PC) describing the voxel lead field within that specific region or path.
Interested readers can refer to [88] for more details for such lead field formulations.

D. Proof of Theorem 1
Proof: We start the proof by recalling (7):

LII(Γ,Λ) = − log p(Y|Γ,Λ) = log|Σy|+
1

T

T∑
t=1

y(t)>Σ−1y y(t) . (20)

The upper bound on the log |Σy| term can be directly inferred from the concavity of the log-determinant function and its
first-order Taylor expansion around the value from the previous iteration, Σk

y, which provides the following inequality [36,
Example 2]:

log |Σy| ≤ log
∣∣Σk

y

∣∣+ tr
[(

Σk
y

)−1 (
Σy −Σk

y

)]
= log

∣∣Σk
y

∣∣+ tr
[(

Σk
y

)−1
Σy

]
− tr

[(
Σk

y

)−1
Σk

y

]
. (21)

Note that the first and last terms in (21) do not depend on Γ; hence, they can be ignored in the optimization procedure. Now,
we decompose Σy into two terms, each of which only contains either the noise or source covariances:

tr
[(

Σk
y

)−1
Σy

]
= tr

[(
Σk

y

)−1 (
LΓL> + Λ

)]
= tr

[(
Σk

y

)−1
LΓL>

]
+ tr

[(
Σk

y

)−1
Λ
]
. (22)

In next step, we decompose the second term in (7), 1
T

∑T
t=1 y(t)>Σ−1y y(t), into two terms, each of which is a function of

either only the noise or only the source covariances. To this end, we exploit the following relationship between sensor and
source space covariances:

1

T

T∑
t=1

y(t)>Σ−1y y(t) =
1

T

T∑
t=1

x̄k(t)>Γ−1x̄k(t) +
1

T

T∑
t=1

(y(t)− Lx̄k(t))>Λ−1(y(t)− Lx̄k(t)) . (23)

By combining (22) and (23), rearranging the terms, and ignoring all terms that do not depend on Γ, we have:

LII(Γ) ≤ tr
[(

Σk
y

)−1
LΓL>

]
+

1

T

T∑
t=1

x̄k(t)>Γ−1x̄k(t) + const

= tr
(
L>
(
Σk

y

)−1
LΓ
)

+ tr(Mk
SΓ−1) + const = Lconv

source(Γ,Λ
k) + const , (24)

where Mk
S := 1

T

∑T
t=1 x̄k(t)x̄k(t)>.

Note that constant values in (24) do not depend on Γ; hence, they can be ignored in the optimization procedure. This proves
the equivalence of (7) and (8) when the optimization is performed with respect to Γ.

The equivalence of (7) and (10) can be shown analogously, with the difference that we only focus on noise-related terms in
(22) and (23):

LII(Λ) ≤ tr
[(

Σk
y

)−1
Λ
]

+
1

T

T∑
t=1

(y(t)− Lx̄k(t))>Λ−1(y(t)− Lx̄k(t)) + const

= tr
[(

Σk
y

)−1
Λ
]

+ tr(Mk
NΛ−1) + const = Lconv

noise(Γ
k,Λ) + const , (25)
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Fig. 7: Geometric representation of the geodesic path between the pair of matrices {Σk
y,M

k
N} on the P.D. manifold and the

geometric mean between them, which is used to update Λk+1.

where Mk
N := 1

T

∑T
t=1(y(t)− Lx̄k(t))(y(t)− Lx̄k(t))>.

Constant values in (25) do not depend on Λ; hence, they can again be ignored in the optimization procedure. Summarizing,
we have shown that optimizing (7) is equivalent to optimizing Lconv

noise(Γ
k,Λ) and Lconv

source(Γ,Λ
k), which concludes the proof.

E. Proof of Theorem 2
Before presenting the proof, the subsequent definitions and propositions are required:

Definition 1 (Geodesic path). LetM be a Riemannian manifold, i.e., a differentiable manifold whose tangent space is endowed
with an inner product that defines local Euclidean structures. Then, a geodesic between two points onM, denoted by p0,p1 ∈
M, is defined as the shortest connecting path between those two points along the manifold, ζl(p0,p1) ∈ M for l ∈ [0, 1],
where l = 0 and l = 1 defines the starting and end points of the path, respectively.

In the current context, ζl(p0,p1) defines a geodesic curve on the P.D. manifold joining two P.D. matrices, P0,P1 > 0. The
specific pair of matrices we will deal with is {Σk

y,M
k
N}.

Definition 2 (Geodesic on the P.D. manifold). Geodesics on the manifold of P.D. matrices can be shown to form a cone within
the embedding space. We denote this manifold by S++. Assume two P.D. matrices P0,P1 ∈ S++. Then, for l ∈ [0, 1], the
geodesic curve joining P0 to P1 is defined as [89, Chapter. 6]:

ξl(P0,P1) = (P0)
1
2

(
(P0)

−1/2P1(P0)
−1/2
)l

(P0)
1
2 l ∈ [0, 1] . (26)

Note that P0 and P1 are obtained as the starting and end points of the geodesic path by choosing l = 0 and l = 1,
respectively. The midpoint of the geodesic, obtained by setting l = 1

2 , is called the geometric mean. Note that, according to
Definition 2, the following equality holds :

ξl(Λ0,Λ1)−1 =

(
(Λ0)

1/2
(

(Λ0)
−1/2Λ1(Λ0)

−1/2
)l

(Λ0)
1/2

)−1
=

(
(Λ0)

−1/2
(

(Λ0)
1/2(Λ1)−1(Λ0)

1/2
)l

(Λ0)
−1/2

)
= ξl(Λ

−1
0 ,Λ−11 ) . (27)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2021. ; https://doi.org/10.1101/2021.11.28.470264doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.470264
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021

Definition 3 (Geodesic convexity). Let p0 and p1 be two arbitrary points on a subset A of a Riemannian manifold M. Then
a real-valued function f with domain A ⊂M with f : A → R is called geodesic convex (g-convex) if the following relation
holds:

f (ζl(p0,p1)) ≤ lf(p0) + (1− l)f(p1) , (28)

where l ∈ [0, 1] and ζ(p0,p1) denotes the geodesic path connecting two points p0 and p1 as defined in Definition 1. Thus,
in analogy to classical convexity, the function f is g-convex if every geodesic ζ(p0,p1) of M between p0,p1 ∈ A, lies in
the g-convex set A. Note that the set A ⊂ M is called g-convex, if any geodesics joining an arbitrary pair of points lies
completely in A.

Remark 5. Note that g-convexity is a generalization of classical (linear) convexity to non-Euclidean (non-linear) geometry
and metric spaces. Therefore, it is straightforward to show that all convex functions in Euclidean geometry are also g-convex,
where the geodesics between pairs of matrices are simply line segments:

ζl(p0,p1) = lp0 + (1− l)p1 . (29)

For the sake of brevity, we omit a detailed theoretical introduction of g-convexity, and only borrow a result from [90].
Interested readers are referred to [91, Chapter 1] for a gentle introduction to this topic, and [92, Chapter. 2]; [85], [93]–[101]
for more in-depth technical details. Now we are ready to state the proof, which parallels the one provided in [90, Theorem. 3].

Proof: We proceed in two steps. First, we consider P.D. manifolds and express (28) in terms of geodesic paths and
functions that lie on this particular space. We then show that Lconv

noise(Γ
k,Λ) is strictly g-convex on this specific domain. In the

second step, we then derive the update rule proposed in (12).
1) Part I: G-convexity of the Majorizing Cost Function: We consider geodesics along the P.D. manifold by setting ζl(p0,p1)

to ξl(Λ0,Λ1) as presented in Definition 2, and define f(.) to be f(Λ) = tr
[(

Σk
y

)−1
Λ
]

+ tr(Mk
NΛ−1), representing the cost

function Lconv
noise(Γ

k,Λ).
We now show that f(Λ) is strictly g-convex on this specific domain. For continuous functions as considered in this paper,

fulfilling (28) for f(Λ) and ξl(Λ0,Λ1) with l = 1/2 is sufficient for strict g-convexity according to mid-point convexity [102]:

tr
((

Σk
y

)−1
ξ1/2(Λ0,Λ1)

)
+ tr

(
Mk

Nξ1/2(Λ0,Λ1)
−1
)

<
1

2
tr
((

Σk
y

)−1
Λ0

)
+

1

2
tr
(
Mk

NΛ0
−1)

+
1

2
tr
((

Σk
y

)−1
Λ1

)
+

1

2
tr
(
Mk

NΛ1
−1) . (30)

Given
(
Σk

y

)−1 ∈ S++, i.e.,
(
Σk

y

)−1
> 0 and the operator inequality [89, Chapter. 4]

ξ1/2(Λ0,Λ1) ≺ 1

2
Λ0 +

1

2
Λ1 , (31)

we have:

tr
((

Σk
y

)−1
ξ1/2(Λ0,Λ1)

)
<

1

2
tr
((

Σk
y

)−1
Λ0

)
+

1

2
tr
((

Σk
y

)−1
Λ1

)
, (32)

which is derived by multiplying both sides of (31) with
(
Σk

y

)−1
followed by taking the trace on both sides.

Similarly, we can write the operator inequality for {Λ−10 ,Λ−11 } using (27) as:

ξ1/2(Λ0,Λ1)−1 = ξ1/2(Λ
−1
0 ,Λ−11 ) ≺ 1

2
Λ−10 +

1

2
Λ−11 . (33)

Multiplying both sides of (33) by Mk
N ∈ S++ and applying the trace operator on both sides leads to:

tr
(
Mk

Nξ1/2(Λ0,Λ1)
−1
)
<

1

2
tr
(
Mk

NΛ0
−1)+

1

2
tr
(
Mk

NΛ1
−1) . (34)

Summing up (32) and (34) proves inequality (30) and concludes the first part of the proof.
2) Part II: Derivation of the Update Rule in (12): We now present the second part of the proof by deriving the update rule

in (12). Since the cost function Lconv
noise(Γ

k,Λ) is strictly g-convex, its optimal solution in the k-th iteration is unique. More
concretely, the optimum can be analytically derived by taking the derivative of (10) and setting the result to zero as follows:

∇Lconv
noise(Γ

k,Λ) =
(
Σk

y

)−1 −Λ−1Mk
NΛ−1 = 0 , (35)

which results in

Λ
(
Σk

y

)−1
Λ = Mk

N . (36)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2021. ; https://doi.org/10.1101/2021.11.28.470264doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.470264
http://creativecommons.org/licenses/by-nc-nd/4.0/


HASHEMI et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 15

This solution is known as the Riccati equation, and is the geometric mean between Σk
y and Mk

N [103], [104]:

Λk+1 ← (Σk
y)

1
2

(
(Σk

y)
−1/2Mk

N(Σk
y)

−1/2
) 1

2

(Σk
y)

1
2 .

A geometric representation of the geodesic path between the pair of matrices {Σk
y,M

k
N} on the P.D. manifold and the geometric

mean between them, representing the update for Λk+1, is provided in Fig. 7.

Remark 6. Note that the obtained update rule is a closed-form solution for the surrogate cost function, (10), which stands
in contrast to conventional majorization minimization algorithms (see section G in the appendix), which require iterative
procedures in each step of the optimization.

Deriving the update rule in (12) concludes the second part of the proof of Theorem 2.

F. Proof of Theorem 3

We start the derivation of update rule (14) by constraining Γ to the set of diagonal matrices with non-negative entries S,
i.e.,

S = {Γ | Γ = diag(γ) = diag([γ1, . . . , γN ]>), γn ≥ 0, for n = 1, . . . , N} .

We continue by reformulating the constrained optimization with respect to the source covariance matrix,

Γk+1 = arg min
Γ∈S, Λ=Λk

tr
(
L>
(
Σk

y

)−1
LΓ
)

+ tr(Mk
SΓ−1) , (37)

as follows:

γk+1 = arg min
γ≥0, Λ=Λk

diag
[
L>
(
Σk

y

)−1
L
]
γ + diag

[
Mk

S

]
γ−1︸ ︷︷ ︸

Ldiag
source(γ|γk)

, (38)

where γ−1 = [γ−11 , . . . , γ−1N ]> is defined as the element-wise inversion of γ. Note that the set of diagonal matrices with all
non-negative entries are positive semidefinite (PSD) by construction [105, Appendix A]. Thus, by constraining the space of
solutions of optimization problem (37) to the set S, the PSD requirement for Γ reduces to the requirement that the diagonal
elements of Γ, i.e., γn, for n = 1, · · · , N , must be non-negative. The optimization with respect to the scalar source variances
is then carried out by taking the derivative of (38) with respect to γn, for n = 1, . . . , N , and setting it to zero,

∂

∂γn

([
L>
(
Σk

y

)−1
L
]
γn +

[
Mk

S

]
γ−1n

)
=
[
L>
(
Σk

y

)−1
L
]
n,n
− 1

(γn)2
[
Mk

S

]
n,n

= 0 for n = 1, . . . , N ,

where Ln denotes the n-th column of the lead field matrix. This yields the following update rule:

Γk+1 = diag(γk+1), where, γk+1
n ←

√√√√√
[
Mk

S

]
n,n[

L>
(
Σk

y

)−1
L
]
n,n

=

√√√√ 1
T

∑T
t=1(x̄kn(t))2

L>n
(
Σk

y

)−1
Ln

for n = 1, . . . , N ,

which is identical to the update rule of Champagne [30].

G. Proof of Theorem 4

We prove Theorem 4 by showing that the alternating update rules for Λ and Γ, (12) and (14), are guaranteed to converge
to a local minimum of the Bayesian Type-II likelihood (7). More generally, we prove that FUN learning is an instance of the
general class of majorization-minimization (MM) algorithms, for which this property follows by construction. To this end, we
first briefly review theoretical concepts behind the majorization-minimization (MM) algorithmic framework [60], [61] [59],
[106].
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1) Required Conditions for Majorization-Minimization Algorithms: MM encompasses a family of iterative algorithms for
optimizing general non-linear cost functions. The main idea behind MM is to replace the original cost function in each
iteration by an upper bound, also known as majorizing function, whose minimum is easy to find. The MM class covers
a broad range of common optimization algorithms such as convex-concave procedures (CCCP) and proximal methods [36,
Section IV], [108]–[110]. Such algorithms have been applied in various domains such as brain source imaging [111], [112] [6],
[7], wireless communication systems with massive MIMO technology [72], [113], [114], and non-negative matrix factorization
[115]. Interested readers are referred to [36] for an extensive list of applications on MM.

The problem of minimizing a continuous function f(u) within a closed convex set U ⊂ Rn:

min
u

f(u) subject to u ∈ U , (39)

within the MM framework can be summarized as follows. First, construct a continuous surrogate function g(u|uk) that
majorizes, or upper-bounds, the original function f(u) and coincides with f(u) at a given point uk:

[A1] g(uk|uk) = f(uk) ∀ uk ∈ U
[A2] g(u|uk) ≥ f(u) ∀ u,uk ∈ U .

Second, starting from an initial value u0, generate a sequence of feasible points u1,u2, . . . ,uk,uk+1 as solutions of a series
of successive simple optimization problems, where

[A3] uk+1 := arg min
u∈U

g(u|uk) .

If a surrogate function fulfills conditions [A1]–[A3], then the value of the cost function f decreases in each iteration: f(uk+1) ≤
f(uk). For the smooth functions considered in this paper, we further require that the derivatives of the original and surrogate
functions coincide at uk:

[A4] ∇g(uk|uk) = ∇f(uk) ∀ uk ∈ U .

We can then formulate the following theorem:

Theorem 5. Assume that an MM algorithm fulfills conditions [A1]–[A4]. Then, every limit point of the sequence of minimizers
generated in [A3], is a stationary point of the original optimization problem in (39).

Proof: A detailed proof is provided in [61, Theorem 1].
2) Detail Derivation of the Proof of Theorem 4: We now show that FUN learning is an instance of majorization-minimization

as defined above, which fulfills Theorem 5.
Proof: We need to prove that conditions [A1]–[A4] are fulfilled for FUN learning. To this end, we recall the upper

bound on log |Σy| in (21), which fulfills condition [A2] since it majorizes log |Σy| by virtue of the concavity of the log-
determinant function and its first-order Taylor expansion around Σk

y. Besides, it automatically satisfies conditions [A1] and
[A4] by construction, because the majorizing function in (21) is obtained through a Taylor expansion around Σk

y. Concretely,
[A1] is satisfied because the equality in (21) holds for Σy = Σk

y. Similarly, [A4] is satisfied because the gradient of log |Σy| at

point Σk
y,
(
Σk

y

)−1
defines the linear Taylor approximation log

∣∣Σk
y

∣∣+tr
[(

Σk
y

)−1 (
Σy −Σk

y

)]
. Thus, both gradients coincide

in Σk
y by construction. We can further prove that [A3] can be satisfied by showing that Lconv

noise(Γ
k,Λ) reaches its global

minimum in each MM iteration. This is guaranteed if Lconv
noise(Γ

k,Λ) can be shown to be convex or g-convex with respect to
Λ. To this end, we first require the subsequent proposition:

Proposition 1. Any local minimum of a g-convex function over a g-convex set is a global minimum.

Proof: A detailed proof is presented in [93, Theorem 2.1].
Given the proof presented in appendix E.1, we can conclude that Lconv

noise(Γ
k,Λ) is g-convex; hence, any local minimum of

Lconv
noise(Γ

k,Λ) is a global minimum according to Proposition 1. This proves that condition [A3] is fulfilled and completes the
proof that the optimization of (7) with respect to Λ using the convex surrogate cost function (10) leads to an MM algorithm.

We omit the proof of conditions [A1], [A2] and [A4] for the optimization with respect to Γ based on the convex surrogate
function in (8), Lconv

source(Γ,Λ
k), as it can be presented analogously. We here only show that [A3] is satisfied if Ldiag

source(γ|γk)
in (38) is a convex function with respect to γ. Note that the g-convexity of Lconv

source(Γ,Λ
k) can also be proven using arguments

analogous to those presented in appendix E.1. However, we instead prove a stronger condition, i.e., convexity, for simplifying
the proof. To this end, we rewrite (38) as follows:

Ldiag
source(γ|γk) = diag

[
Vk
]
γ + diag

[
Mk

S

]
γ−1 ,

where Vk := L>
(
Σk

y

)−1
L is defined as a parameter that does not depend on γ. The convexity of Ldiag

source(γ|γk) can be
directly inferred from the convexity of diag

[
Vk
]
γ and diag

[
Mk

S

]
γ−1 with respect to γ [116, Chapter. 3]. The convexity of

Ldiag
source(γ|γk), which ensures that condition [A3] can be satisfied using standard optimization, along with the fulfillment of
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conditions [A1], [A2] and [A4], ensure that Theorem 5 holds for Lconv
source(Γ,Λ

k). This completes the proof that the optimization
of (7) with respect to Γ using the convex surrogate cost function (8) leads to an MM algorithm with convergence guarantees.

H. Derivation of Champagne with Heteroscedastic Noise Learning as a Special Case of FUN Learning
Similar to Appendix F, we start by constraining Λ to the set of diagonal matrices with non-negative entries S, i.e.,

S = {Λ | Λ = diag(λ) = diag([λ1, . . . , λM ]>), λm ≥ 0, for m = 1, . . . ,M} .

We continue by reformulating the constrained optimization with respect to the noise covariance matrix,

Λk+1 = arg min
Λ∈S, Γ=Γk

tr
((

Σk
y

)−1
Λ
)

+ tr(Mk
NΛ−1) , (40)

as follows:

λk+1 = arg min
λ≥0, Γ=Γk

diag
[(

Σk
y

)−1]
λ + diag

[
Mk

N

]
λ−1︸ ︷︷ ︸

Ldiag
noise(λ|λk)

, (41)

where λ−1 = [λ−11 , . . . , λ−1M ]> is defined as the element-wise inversion of λ. Taking the derivative of (41) with respect to
λm, for m = 1, . . . ,M , and setting it to zero,

∂

∂λm

([(
Σk

y

)−1]
λm +

[
Mk

N

]
λ−1m

)
=
[(

Σk
y

)−1]
m,m
− 1

(λm)2
[
Mk

N

]
m,m

= 0 for m = 1, . . . ,M ,

yields the following update rule:

λk+1
m ←

√√√√√
[
Mk

N

]
m,m[(

Σk
y

)−1]
m,m

=

√√√√√√
[
1
T

∑T
t=1(y(t)− Lx̄k(t))(y(t)− Lx̄k(t))>

]
m,m[(

Σk
y

)−1]
m,m

for m = 1, . . . ,M , (42)

which is identical to the update rule of the Champagne with heteroscedastic noise learning as presented in [7].
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SUPPLEMENTARY FIGURE

Fig. 8: Localization and time series results of visual evoked field (VEF) activity for a single subject using another four
benchmark algorithms. As is shown, FUN outperforms LCMV beamformer and sLORETA in terms of localization. Moreover,
the activation time courses derived from homoscedastic noise learning Champagne and S-FLEX do not exhibit sharp responses
as observed for FUN. The noise level used for S-FLEX reconstructions was set to values learnt from classical Champagne
algorithm with noise learning.
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MAIN FIGURES OF THE PAPER WITH HIGHER RESOLUTION
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Fig. 9: Source reconstruction performance (mean ± SEM) of the three different noise learning schemes for data generated by a
realistic lead field matrix. Generated sensor signals were superimposed by either full-structure or heteroscedastic noise covering
a wide range of SNRs. Performance was measured in terms of the earth mover’s distance (EMD), time-course correlation error,
F1-measure and Euclidean distance (EUCL) in (mm) between each simulated source and the reconstructed source with highest
maximum absolute correlation.
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Fig. 10: Accuracy of the noise covariance matrix
reconstruction incurred by three different noise
learning approaches assuming homoscedastic (red),
heteroscedastic (green) and full-structural (blue)
noise covariances. The ground-truth noise covari-
ance matrix is either full-structure (upper row)
or heteroscedastic diagonal (lower row). Perfor-
mance is assessed in terms of the Pearson cor-
relation between the entries of the original and
reconstructed noise covariance matrices, Λ and
Λ̂, denoted by Λsim (left column). Shown is the
similarity error 1 − Λsim. Further, the normalized
mean squared error (NMSE) between Λ and Λ̂,
defined as NMSE = ||Λ̂−Λ||2F /||Λ||2F is reported
(right column).
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Fig. 11: Auditory evoked field (AEF) localization results from one representative subject for different numbers of trial averages
using FUN learning, heteroscedastic Champagne, MCE and eLORETA. All reconstructions of FUN learning algorithm show
focal sources at the expected locations of the auditory cortex. Even when limiting the number of trials to as few as 10
reconstruction result of FUN learning are accurate, while it severely affects the reconstruction performance of competing
benchmark methods.
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Fig. 12: Localization and time series results of visual evoked field (VEF) activity for a single subject using FUN and
benchmarks. Comparing with MCE and eLORETA, FUN shows accurate localization capability. Furthermore, FUN detects
sharper 2nd peaks when compared to the heteroscedastic noise-learning Champagne, which is consistent with the sharp response
of the VEF. The results obtained by FUN are robust across different SNRs/numbers of trial averages. For additional benchmark
results, please see supplementary Fig. 8.
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Fig. 13: Localization of resting-state brain activity for three subjects using FUN and the heteroscedastic and homoscedastice
noise learning variants of Champagne. The source variance patterns estimated by each algorithm are projected onto the cortical
surface. The convergence behaviour of all three noise estimation approaches is also shown in terms of the negative log-likelihood
cost function. FUN converges to better minima when compared to these benchmarks.
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