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cTe Pūnaha Matatini, New Zealand Centre of Research Excellence in Complex Systems and Data Analytics, New
Zealand.

dThe University of Queensland Diamantina Institute, Translational Research Institute, The University of
Queensland, Brisbane, Australia.

Abstract

In vitro tumour spheroid experiments have been used to study avascular tumour growth and drug

design for the last 50 years. Unlike simpler two-dimensional cell cultures, tumour spheroids ex-

hibit heterogeneity within the growing population of cells that is thought to be related to spatial

and temporal differences in nutrient availability. The recent development of real-time fluorescent

cell cycle imaging allows us to identify the position and cell cycle status of individual cells within

the growing population, giving rise to the notion of a four-dimensional (4D) tumour spheroid. In

this work we develop the first stochastic individual-based model (IBM) of a 4D tumour spheroid

and show that IBM simulation data qualitatively and quantitatively compare very well with exper-

imental data from a suite of 4D tumour spheroid experiments performed with a primary human

melanoma cell line. The IBM provides quantitative information about nutrient availability within

the spheroid, which is important because it is very difficult to measure these data in standard

tumour spheroid experiments. Software required to implement the IBM is available on GitHub,

https://github.com/ProfMJSimpson/4DFUCCI.
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1. Introduction1

In vitro tumour spheroid experiments are widely-adopted to study avascular tumour growth and2

anti-cancer drug design [1–3]. Unlike simpler two-dimensional assays, tumour spheroid experiments3

exhibit heterogeneity within the growing population of cells, and this heterogeneity is thought to4

be partly driven by spatial and temporal differences in the availability of diffusible nutrients, such5

as oxygen [3, 4]. Historically, tumour spheroids have been analysed experimentally using bright6

field imaging to measure the size of the growing spheroid [5, 6], however this approach does not7

reveal information about the internal structure of the growing population. Since 2008, fluorescent8

ubiquitination-based cell cycle indicator (FUCCI) has enabled real-time identification of the cell cycle9

for individual cells within growing populations [4, 7, 8]. Using FUCCI, nuclei of cells in G1 phase10

fluoresce red, nuclei of cells in S/G2/M phase fluoresce green, and nuclei of cells in early S (eS) phase11

appear yellow as a result of both red and green fluorescence being active [7] (Figure 1a). FUCCI12

simultaneously provides information about spheroid size and heterogeneity of the cell cycle status13

(Figure 1c-e). In particular, at early times the entire spheroid is composed of freely cycling cells, with14

a relatively even distribution of FUCCI colours, whereas at intermediate times cells in the central15

region become predominantly red, indicating G1-arrest [4]. Late time growth is characterised by16

the formation of a central necrotic region, indicated by a complete absence of fluorescence. FUCCI17

allows us to identify both the position of individual cells within the growing spheroid in three spatial18

dimensions, as well as identifying cell cycle status, giving rise to the notion of a four-dimensional19

(4D) tumour spheroid [9]. Assuming spherical symmetry, we can characterise the geometry of 4D20

spheroids by three radii: ro(t) > 0 is the outer radius, ra(t) ≥ 0 is the arrested radius, and rn(t) ≥ 021

is the necrotic radius, with ro(t) > ra(t) ≥ rn(t). In Figure 1e, we see that rn(t) = 0 for t ≤ 3, with22

the necrotic core forming sometime between t = 3 and t = 6 days.23

Continuum mathematical models of tumour spheroids have been developed, analysed, and de-24

ployed for over 50 years [10–18], and these developments have included very recent adaptations of25

classical models so that they can be used to study tumour spheroids with FUCCI [9]. However,26

continuum modelling approaches lack the ability to track individual cells within the growing popu-27

lation, and typically neglect heterogeneity and stochasticity within the population. In comparison,28
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Figure 1: Motivation. (a) A schematic of the cell cycle, indicating the transition between different cell cycle phases,
and their associated FUCCI fluorescence. Red, yellow, and green colouring indicates cells in G1, eS, and S/G2/M
phase, respectively. (b) Locations of the upper cross section, equator and lower cross section. (c)–(e) Experimental
images of a tumour spheroid using the human melanoma cell line WM793B at days 0, 3, 6, and 10 (after formation)
showing: (c) full spheroids, viewed from above; (d) spheroid hemispheres; and, (e) spheroid slices, where the cross
section is taken at the equator. White dashed lines in (e) denote the boundaries of different regions, where the
outermost region is the proliferative zone, the next region inward is the G1-arrested region, and the innermost region
at days 6 and 10 is the necrotic core. In (a) and (d) we use cyan colouring for dead cells, which assist in identifying
the necrotic core in (d). Spheroid outer radii are labelled alongside their corresponding time points, and scale bars
represent 200 µm.
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individual-based models (IBMs) allow us to study population dynamics in detail by keeping track29

of all individuals within the population, as well as explicitly including effects of heterogeneity and30

stochasticity [19–23]. While some previous IBMs have been developed to describe classical tumour31

spheroid experiments without FUCCI [24, 25], no IBMs have been developed with the specific goal32

of simulating 4D tumour spheroid experiments with FUCCI.33

In this work, we develop a continuous-space, continuous-time IBM of 4D tumour spheroid growth34

with FUCCI. The IBM explicitly describes how individual cells migrate, die, and progress through35

the cell cycle to mimic FUCCI. Certain mechanisms in the IBM are coupled to the local availability36

of a diffusible nutrient. We demonstrate the biological fidelity of the IBM by qualitatively comparing37

simulation results with detailed experimental images at several cross sections (Figure 1b), with38

the aim of providing more comprehensive detail about the internal structure. Quantitative data39

from the model are then used to assess the spheroid population distribution, nutrient concentration,40

and the role variability plays in the spheroid. We extract and quantitatively compare simulation41

radius estimates with measurements from a series of 4D tumour spheroid experiments using a human42

primary melanoma cell line (Figure 1). Using a careful choice of parameter values, we also show that43

the IBM quantitatively replicates key features of 4D tumour spheroids.44

2. Methods45

2.1. Experimental methods46

Spheroid growth and staining : Human melanoma cells from the WM793B cell line were geno-47

typically characterised [26–28], grown as described in [3], and authenticated by short tandem repeat48

fingerprinting (QIMR Berghofer Medical Research Institute, Herston, Australia). The WM793B49

cells were transduced with FUCCI constructs [4]. Spheroid seeding, growth, and staining were per-50

formed as described in [3], with 1% penicillin-streptomycin (ThermoFisher, Massachusetts, USA).51

Three 96-well plates of spheroids, seeded with a density of 10,000 cells per well, were grown and52

harvested over 14 days. One 96-well plate was placed in an IncuCyte S3 (Sartorius, Göttingen, Ger-53

many) and imaged at 6 hour intervals over 14 days. Harvested spheroids were stained with either54

DRAQ7 (ThermoFisher, Massachusetts, USA) for necrosis or pimonidazole for hypoxia, fixed in 4%55

paraformaldehyde solution, and stained with DAPI as per [29].56

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 29, 2021. ; https://doi.org/10.1101/2021.11.28.470300doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.28.470300


To reveal the hypoxic region, spheroids stained with pimonidazole were permeabilised with 0.5%57

triton X-100 in phosphate buffered solution (PBS) for one hour, then blocked in antibody dilution58

buffer (Abdil) [30] for 24 hours. Spheroids were stained with a 1:50 anti-pimonidazole mouse IgG159

monoclonal antibody (Hypoxyprobe-1 MAb1) in Abdil for 48 hours, before washing in PBS with60

0.1% tween-20 for six hours. These spheroids were then placed in a 1:100 solution of Alexa Fluor61

647 in Abdil for 48 hours. Following this, the spheroids were washed for six hours in PBS.62

Confocal imaging : Harvested spheroids were mounted in 2% low melting agarose in PBS solution63

and cleared in clearing reagent 2 with matching refractive index [29], on #1.5 glass bottom plates.64

For collecting 2D cross sections, images were taken at the equator and upper and lower cross sections65

(Figure 1b), which we define as the Z coordinate halfway between the equator and the top or bottom66

of the spheroid. If the necrotic core exists, the upper and lower cross sections are at the top or67

bottom of the necrotic core, respectively. 3D spheroid images were collected by imaging over the68

entire Z range of the spheroid.69

Computational image analysis : The image processing algorithm [31] was used to estimate ro(t),70

ra(t), and rn(t).71

2.2. Individual-based mathematical model72

We simulate 4D spheroid growth inside a cubic domain, Ω, of side length L, where L is chosen to73

be large enough so that agents do not reach the boundary of the domain during the simulation, but74

not so large as to incur significant computational overhead (Supplementary S3.3). Biological cells are75

represented as discrete agents located at xn(t) = (xn(t), yn(t), zn(t)) for n = 1, 2, 3, . . . , N(t), where76

N(t) is the total number of agents at time t.77

Gillespie algorithm78

The IBM describes key cellular-level behaviours; namely cell cycle progression and mitosis, cell79

motility, and cell death, as discrete events simulated using the Gillespie algorithm [32]. Each agent80

has an allocated rate of cell cycle progression, dependent on its cell cycle status and the local nutrient81

concentration (Figure 2a). Agents in each phase of the cell cycle are coloured according to FUCCI,82

with G1 agents coloured red, eS agents coloured yellow, and S/G2/M agents coloured green.83
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Figure 2: IBM schematic. (a) Nutrient-dependent rates (Equations (1)–(5)). (b) Random directions for migration
and mitosis are obtained by sampling the polar angle θ, and the azimuthal angle ϕ separately [33]. (c)–(e) Schematics
showing agent-level events; death, mitosis, and migration, across a time interval of duration τ . (c) Any living agent
may die, removing it from the simulation. (d) An agent located at xn undergoes mitosis to produce two daughter
agents in G1 phase and dispersed a distance of σ/2 from xn in opposite, randomly chosen directions. (e) Any living
agent can migrate in a random direction with step length µ.

We make the natural assumption that biological cells require access to sufficient nutrients to84

commit to entering the cell cycle. Therefore, the red-to-yellow transition rate, Rr(c), depends on the85

local nutrient concentration, c(x, t) (Figure 2a). Once an agent has committed to entering the cell86

cycle, we assume the yellow-to-green transition takes place at a constant rate Ry, and the green-to-red87

transition, which involves mitosis, occurs at a constant rate Rg (Figure 2a).88

The rate of agent death is assumed to depend on the local nutrient concentration, d(c). When89

an agent dies, it is removed from the simulation and we record the location at which the death event90

occurs (Figure 2c). When an agent moves or undergoes mitosis (Figure 2d-e), a random direction91

in which the agent will migrate, or its daughter agents will disperse, is chosen (Figure 2b). For92

an agent undergoing mitosis, the first daughter agent is placed a distance σ/2 along the randomly93
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chosen direction, and the second daughter agent is placed at a distance σ/2 in the opposite direction,94

leaving the two daughter agents dispersed a distance of σ apart, where we set σ to be equal to a95

typical cell diameter [34] (Figure 2d, Table 1). When migrating, agents are displaced a distance µ96

along the randomly chosen direction (Figure 2e). Similar to the dispersal, we simulate migration by97

taking the step length µ to be a typical cell diameter.98

We specify the agent cycle progression rates,99

Rr(c) = Rr
cη1

cη1a + cη1
, (1)

Ry(c) = Ry, (2)

Rg(c) = Rg, (3)

m(c) = (mmax −mmin)
cη2

cη2m + cη2
+mmin, (4)

d(c) = (dmax − dmin)

(
1− cη3

cη3d + cη3

)
+ dmin, (5)

where c(xn, t) ∈ [0, 1] is the non-dimensional nutrient concentration at the location of the nth agent;100

Rr > 0 is the the maximum red-to-yellow transition rate; mmax > mmin ≥ 0 are the maximum and101

minimum migration rates, respectively; dmax > dmin ≥ 0 are the maximum and minimum death rates,102

respectively; η1 > 0, η2 > 0, and η3 > 0 are Hill function indices; and ca > 0, cm > 0, and cd > 0 are103

the inflection points of Rr(c), m(c), and d(c) respectively (Figure 2a).104

Nutrient dynamics105

We make the simplifying assumption that cell migration, death, and progression through the106

cell cycle are regulated by a single diffusible nutrient, such as oxygen [4, 10, 12]. The spatial and107

temporal distribution of nutrient concentration, C(x, t), is assumed to be governed by a reaction-108

diffusion equation109

∂C

∂t
= D∇2C − κCv, in Ω, (6)

with diffusivity D > 0 [µm2/h], and consumption rate κ > 0 [µm3/(h cells)], and where v(x, t) ≥110

0 [cells/µm3] is the density of agents at position x and time t. The source term in Equation (6)111

describes the consumption of nutrient at a rate of κ [µm3/(h cells)]. To solve this reaction-diffusion112
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equation we set v(xi,j,k, t) = Ni,j,k/h
3, where Ni,j,k is the number of agents within the control volume113

surrounding the node located at (xi, yj, zk) and h3 is the volume of the control volume. On the114

boundary, ∂Ω, we impose C = Cb, where Cb is some maximum far-field concentration.115

Our experiments lead to spheroids of diameter 500–600 µm over a period of 10 days after spheroid116

formation (Figure 1) (14 days after seeding). Since these length and time scales are clear, we leave117

the independent variables x and t in Equation (6) as dimensional quantities. In contrast, spatial118

and temporal variations of C(x, t) are very difficult to measure during spheroid growth, so we non-119

dimensionalise the independent variable c(x, t) = C(x, t)/Cb, giving120

∂c

∂t
= D∇2c− κcv, in Ω. (7)

with c = 1 on ∂Ω, and c(x, t) ∈ [0, 1].121

Typically, the time scale of nutrient diffusion is much faster than the time scale of spheroid growth122

[10]. Consequently, we approximate Equation (7) by123

0 = ∇2c− αcv, in Ω, (8)

where α = κ/D > 0 [µm/cells]. Therefore, we describe the spatial and temporal distribution of124

nutrients by solving Equation (8) repeatedly during the simulation. This quasi-steady approximation125

is computationally convenient, as we describe later. We solve Equation (8) with a finite volume126

method on a uniform structured mesh (Supplementary S3).127

2.3. Simulation algorithm128

We simulate spheroid growth by supposing the spheroid initially contains N(0) agents distributed129

uniformly within a sphere of radius ro(0) > 0 [µm]. While it is experimentally relevant to assume130

the population is spherically symmetric at t = 0, this assumption is not necessary, and we will131

discuss this point later. The proportion of agents chosen to be red, yellow, or green at t = 0 can be132

selected arbitrarily, but we choose these proportions so that the internal structure and composition133

of the in silico spheroids are consistent with our in vitro measurements. We achieve this by choosing134

the initial red, yellow, and green population, Nr(0), Ny(0), and Ng(0), respectively, noting that135
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N(0) = Nr(0) +Ny(0) +Ng(0) (Supplementary S7). The most appropriate time scale for individual136

cell-level behaviour is hours, however spheroid development takes place over 10 days, so we will use a137

mixture of time scales to describe different features of the experiments and simulations as appropriate.138

We simulate spheroid growth from t = 0 to t = T h, updating the nutrient concentration at M139

equally-spaced points in time. This means that the nutrient concentration is updated at intervals140

of duration t∗ = T/M [h]. The accuracy of our algorithm increases by choosing larger M (smaller141

t∗), but larger M decreases the computational efficiency. We explore this tradeoff and find that142

setting t∗ = 1 h is appropriate (Supplementary S3.4). When Equation (8) is solved for c(x, t),143

the value of c(xn, t) at each agent is calculated using linear interpolation. These local nutrient144

concentrations are held constant for each agent while resolving all the various agent-level events145

(cycling and proliferation, migration, death) from time t to time t+t∗. After resolving the appropriate146

agent-level events, we update the agent density before updating the nutrient profile again. Pseudo-147

algorithms for the IBM are provided (Supplementary S8), and code to reproduce key results is148

available on GitHub.149

2.4. IBM image processing150

To estimate ro(t), ra(t), and rn(t), we apply methods described in [18, 31, 35] to the IBM output.151

Briefly, we import the agent locations from a particular cross section, and map these locations to an152

(L+ 1)× (L+ 1) pixel image, increase the size of the agents to 12 pixels in diameter, and use edge153

detection to identify and estimate ro(t), ra(t), and rn(t) (Supplementary S1). This procedure adapts154

the image processing approach for the experimental images so that it is applicable to the synthetic155

results from the IBM.156

3. Results and Discussion157

We now compare and analyse images and measurements from a range of in vitro experiments158

and in silico simulations. All experiments use the WM793B melanoma cell line, which takes approx-159

imately four days to form spheroids after the initial seeding in the experiments [36]. This means160

that t = 0 days corresponds to four days after seeding to give the experimental spheroids sufficient161

time to form. Snapshots from the IBM correspond to a single realisation, however time-series data162
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from the IBM are reported by simulating 10 realisations of the IBM and then averaging appropriate163

measurements across the 10 simulations.164

3.1. Parameter values165

Table 1 summarises the parameter values used in this study. While some parameters are based166

on separate, independent two-dimensional experimental measurements (Supplementary S4 – S5) or167

measurements directly from the spheroids where possible (Supplementary S6), other parameters are168

chosen based on a series of numerical screening tests (Supplementary S3). We will return to discuss169

other options for parameter choices later.170
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Table 1: IBM parameter values.

Parameter Name Symbol Value Source

Numerical Parameters

Initial number of agents N(0) 30 000 Experimental measurement
(Supplementary S6)

Initial number of red agents Nr(0) 20,911 Assumption
(Supplementary S7)

Initial number of yellow agents Ny(0) 995 Assumption
(Supplementary S7)

Initial number of green agents Ng(0) 8,094 Assumption
(Supplementary S7)

Domain length L 4000 µm Numerical experiments
(Supplementary S3.3)

Initial spheroid radius ro(0) 245 µm Experimental measurement
Dispersal distance σ 12 µm Assumption

(Supplementary S4)
Migration distance µ 12 µm Assumption

(Supplementary S4)
Simulation termination time T 240 h Experimental measurement

Per Capita Agent Rates

Maximum G1-eS transition rate Rr 0.047 /h Experimental measurement
(Supplementary S5)

Constant eS-S/G2/M transition rate Ry 0.50 /h Experimental measurement
(Supplementary S5)

Constant S/G2/M-G1 transition rate (mito-
sis)

Rg 0.062 /h Experimental measurement
(Supplementary S5)

Maximum death rate dmax 2 /h Assumption
Minimum death rate dmin 0.0005 /h Assumption
Maximum migration rate mmax 0.12 /h Assumption
Minimum migration rate mmin 0.06 /h Assumption
Hill function index for arrest η1 5 Assumption
Hill function index for migration η2 5 Assumption
Hill function index for death η3 15 Assumption

Nutrient Parameters

Number of nodes I3 2013 Assumption
(Supplementary S3.4)

Steady-state solution interval t∗ 1 h Assumption
(Supplementary S3.4)

Consumption-diffusion ratio α 0.15
µm/cells

Assumption

Critical arrest concentration ca 0.4 Assumption
Critical migration concentration cm 0.5 Assumption
Critical death concentration cd 0.1 Assumption
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3.2. Qualitative comparison of experiments and simulations171

We now qualitatively compare images of in vitro (Figure 3a,c,e) and in silico (Figure 3b,d,f)172

spheroids by imaging various cross sections at different locations, including the equator (Figure 3a-173

b), the lower cross section (Figure 3c-d), and the upper cross section (Figure 3e-f). We use the174

definitions in Section 2.1 (Confocal imaging) to identify the lower and upper cross sections in the175

analysis of both the experimental images and the simulation images. While previous studies have176

often compared model predictions with experimental observations at a single cross section [25, 36],177

we aim to provide more comprehensive information about the internal structure of the spheroid by178

making comparisons at multiple locations.179

At the beginning of the experiment, in all cross sections (in vitro and in silico) we see the180

population is relatively uniform, with an even distribution of colours, suggesting the entire spheroid181

is composed of freely-cycling cells. At t = 2 and t = 4 days, however, we begin to see the development182

of heterogeneity within the growing in vitro and in silico populations, with those cells and agents at183

the centre of the growing spheroid predominantly red, indicating G1-arrest. By t = 4 days we see the184

value of comparing different cross sections, since the G1-arrest is clear in the centre of the equatorial185

cross section, but there is no obvious heterogeneity present across either the upper or lower cross186

section at that time. Similarly, by t = 6 days we see the formation of a necrotic core in the equatorial187

cross section, but this is not present at either cross section. By t = 8 and t = 10 days the spheroid188

has developed into a relatively complicated heterogeneous structure where the outer spherical shell189

contains freely cycling cells, the intermediate spherical shell contains living G1-arrested cells, and190

the internal region does not contain any fluorescent cells.191

Overall, the qualitative match between the IBM and the experiment confirms that the IBM192

captures both the macroscopic growth of the entire spheroid, as well as the emergent spatial and193

temporal heterogeneity. We now build on this preliminary qualitative information by extracting194

quantitative measurements of the spheroid growth and exploring the performance of the IBM.195
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 = 0 days
m0  = 232

 = 10 days
m10  = 300

 = 2 days
m2  = 243

 = 4 days
m4  = 261

 = 6 days
m6  = 269

 = 8 days
m8  = 288

Figure 3: Comparison of in vitro and in silico 4D spheroids. Experimental results (a,c,e) are compared with simulation results (b,d,f) by examining 2D
slices at the equator, lower and upper cross section, respectively. Agent colour (red, yellow, green) corresponds to FUCCI labelling (G1, eS, S/G2/M).
Schematics in the left-most column indicate the location of the 2D cross section. The images are taken at (a)–(b) the equator, (c)–(d) the lower cross section,
and (e)–(f) the upper cross section. Experimental spheroid radii at the equator are labelled at each time point, and scale bars represent 200 µm.
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3.3. Spheroid structure and nutrient profiles196

Given the ability of the IBM to capture key spatial and temporal patterns of spheroid growth,197

cell cycle arrest, and cell death throughout the spheroid, we now demonstrate how to take these198

preliminary simulations and extract detailed quantitative data that would be difficult to obtain199

experimentally. Figure 4a shows a typical IBM simulation during the interval where we observe the200

development of internal structure. For clarity, we plot the locations of all living agents as in Figure 3,201

but we now also plot the locations at which agents die, which is difficult to estimate experimentally,202

but is straightforward with the IBM. Each spheroid in Figure 4a is shown with an octant removed to203

highlight the development of the internal structure, and for further clarity we show equatorial cross204

sections in Figure 4b.205

To quantify the internal spheroid structure we simulate 10 identically prepared realisations of206

the IBM and extract averaged quantitative data that are summarised in Figure 4c (Supplemen-207

tary S9). These data include plotting the nondimensional nutrient concentration, c(x, t), and var-208

ious normalised agent densities, %(p(t), t), as a function of distance from the spheroid periphery,209

p(t) = ro(t) − r, where r is the distance from the spheroid centre. Hence, p(t) = 0 at the spheroid210

periphery, and p(t) = ro(t) at the spheroid centre. This representation of internal spheroid structure211

is made by assuming that the growing population remains spherically symmetric, which is a rea-212

sonable assumption since our initial condition and spheroid growth is spherically symmetric (Figure213

4a). Each density profile is normalised relative to the maximum value of all agent densities across214

all time points, so that we can compare how the density of the various subpopulations of agents and215

nutrient are distributed (Supplementary S9). Using the IBM we are able to describe the spatial and216

temporal densities of living agents in various phases of the cell cycle (G1, eS and S/G2/M) as well217

as G1-arrested agents. We plot each density profile as a function of the distance from the periphery218

as this allows us to compare various profiles as the size of the spheroid increases [9, 37].219

Averaged relative agent density profiles from the IBM provide quantitative information that220

cannot be easily obtained from experimental observations. Initially we see the relatively evenly221

distributed G1, eS and S/G2/M populations become rapidly dominated by agents in G1 phase,222

which then form an obvious inner-most arrested region by about t = 2 days. During the interval223
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Figure 4: Typical IBM simulation, showing: (a) visualisations of in silico spheroids including dead agents (cyan)
and (b) cross sections through the spheroid equator with dead agents. (c) Relative concentrations %(p, t) of nutrient
(black) and cycling red, yellow, and green agents (coloured appropriately), based on distance from the periphery
p(t) = ro(t)− r, averaged over 10 identically-prepared simulations. The dashed red line shows the relative density of
arrested red agents, also averaged over 10 simulations with identical initial conditions. For nutrient, %(p, t) = c. For
agents, %(p, t) is the relative agent density (Supplementary S9). Shaded areas represent plus or minus one standard
deviation about the mean, and are non-zero as a consequence of stochasticity in the model, even though the 10
simulations start with identical populations and radii.

3 < t < 6 days we see rapid growth in the arrested population, and the eventual formation of a clear224

necrotic core in the interval 6 < t < 10 days. These results indicate the spatial and temporal role225

of stochasticity, with the variability most evident in the G1 and arrested G1 populations at early226

times. Plotting the relative agent densities in this way provides a simple approach to interpret the227

spatial and temporal organisation of cell cycle status within the growing spheroid, and visualising the228

agent densities together with the nondimensional nutrient concentration is particularly useful when229

this kind of information cannot be easily obtained experimentally. In particular, it is technically230

challenging to measure absolute concentrations of nutrient profiles during these experiments [17, 38,231

39] and so we now focus on visualising the nutrient concentration profile that drives this heterogeneity.232

Results in Figure 5 show spatial and temporal patterns in the nutrient profile, c(x, t), for a233

typical IBM simulation from Figure 4. Figure 5a shows the three-dimensional evolution of c(x, t),234
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Figure 5: Nutrient concentration profiles (a) in three spatial dimensions, (b) at the equator z = 0, with the arrest
critical level ca shown in red, and the size of the necrotic region in white. (c) Nutrient profiles along the midline
y = z = 0, where the shaded region represents the size of the spheroid, and the red and cyan lines are the critical
levels for arrest and death, ca and cd respectively. The colourbar corresponds to the profiles in (a)–(b), and denotes
the values ca (red) and cd (cyan).

with the colourbar highlighting the death and arrest thresholds, cd and ca, respectively. These three-235

dimensional plots show the depletion of nutrient over time in the central region of the spheroid, leading236

to strong spatial gradients of nutrient concentration near the edge of the growing spheroid. Profiles in237

Figure 5b show the nutrient profile at the equatorial plane with the c(x, y, 0) = ca contour (red) and238

the approximate size of the necrotic core (cyan) superimposed. Simplified one-dimensional profiles239

of c(x, t), along x = (x, 0, 0), are shown in Figure 5c, where the diameter of the growing spheroid240

(−ro(t) < x < ro(t)) is shaded in yellow. Again, these simplified cross sections illustrate how nutrient241
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consumption leads to the formation of spatial nutrient gradients near the outer radius of the growing242

spheroid. Overall, a key strength of the IBM is the ability to extract agent-level information (Figure243

4) as well as information about the nutrient distribution (Figure 5), whereas experimental studies244

typically report cell-level data without explicitly showing nutrient-level information [4, 6].245

While it is very difficult to measure the spatial and temporal distribution of diffusible nutrient246

experimentally in the growing spheroid, it is possible to indirectly examine our assumption that247

spatial and temporal differences in cell cycle status are partly driven by the availability of oxygen.248

Figure 6 shows a series of spheroids stained with pimonidazole and pimonidazole-detecting antibodies,249

which indicate hypoxia [40]. In this series of images, we see evidence of hypoxia staining in the250

central region of the spheroid at t = 0, with persistent hypoxia staining adjacent to the necrotic251

core at later times. These results support our hypothesis that spatial and temporal differences in252

nutrient availability correspond with spatial and temporal differences in cell cycle status, and in this253

case the pimonidazole staining suggests that oxygen availability plays a role in the development of254

heterogeneity within the growing population. While this observation is consistent with our IBM, it255

does not rule out the possibility of multiple diffusible signals acting in unison, and we will discuss256

this possibility later.257

3.4. Role of variability258

Experimental images (Figure 1, Figure 3, Figure 6) suggest that spheroid development is quite259

variable, as we see spheroids of slightly different diameters at the same time points. One of the260

limitations of relying on experimentation alone is that it can be difficult to quantify the importance261

of different sources of variability, whereas this can be assessed very simply with the IBM. For example,262

we can simulate multiple spheroids that start from precisely the same initial condition to quantify263

the variability that arises due to the stochastic growth process, or we can deliberately introduce264

variability into the initial composition of the spheroid to explore how this variability evolves during265

spheroid growth for a suite of simulated spheroids.266
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 = 0 days
m0  = 274

 = 3 days
m3  = 302

 = 6 days
m6  = 333

 = 10 days
m10  = 363

Figure 6: Spheroids stained for hypoxia at 0, 3, 6, and 10 days after spheroid formation, imaged at the spheroid
equator. Hypoxia-positive staining fluoresces magenta, and white dashed lines denote ro(t) and rn(t), detected with
image processing, to contextualise the regions of hypoxia. For clear visualisation, we label the outer radii of the
spheroid with the corresponding days. Image intensity was adjusted for visual purposes, and scale bar corresponds to
200 µm.

Simulation data in Figure 7a show the temporal evolution of various agent subpopulations, includ-267

ing the total number of living agents, dead agents, G1, eS, S/G2/M, and G1-arrested agents. Each268

profile shows the mean number of agents obtained by simulating 10 identically initialised spheroids269

with ro(0) = 245µm, which matches the average spheroid diameter at t = 0 days in the suite of in270

vitro experiments. The variability in these profiles is quantified by calculating the sample mean and271

sample standard deviation and shading the region corresponding to the sample mean plus or minus272

one sample standard deviation, and we see that, at this scale, the variability is barely noticeable.273

In contrast, results in Figure 7b show equivalent data from a suite of simulations where the initial274

density of agents in the spheroid is held constant, but the initial radius of the 10 simulated spheroids275

is deliberately varied to mimic the observed variability in our experiments. The initial radius in each276

simulation corresponds to one of 10 particular experimental measurements (Figure 7), with a sample277

mean of r̄o(0) = 245µm. Comparing results in Figure 7a-b shows that the average population profiles278

are very similar, but the variability is strikingly different. This simple exercise shows that quantifying279

the variability in spheroid size at the beginning of the experiment is the key to understanding and280

predicting the variability in spheroid composition and size at the end of the experiment. We also see281

that 10 simulations is sufficient to observe the difference in variability between both test cases, where282

the spheroids start from identical initialisations or with induced variability. These simulation results283

are also consistent with our previous observations. For example, the in vitro spheroids in Figure 3284
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Figure 7: Modelling results for the population growth of different spheroid populations, averaged over 10
simulations with (a) identical initial conditions for each realisation and (b) introduced experimental variabil-
ity in initial spheroid radius and population, with the agent density held constant and initial radius ro(t) ∈
[232.75, 235.47, 238.97, 242.19, 244.89, 247.76, 247.93, 251.23, 251.48, 260.13]µm. In each row, left: living (black) and
dead (cyan dashed) populations, N(t) and Nd(t), respectively, centre: arrested red (dashed), cycling red (solid), and
total red (dotted) populations, Na(t), Nc(t), and Nr(t), respectively, and right: yellow and green populations, Ny(t)
and Ng(t), respectively. Shaded areas represent plus or minus one standard deviation. Initial subpopulations in each
simulation in both (a) and (b) are variable, as initial cell cycle status is assigned randomly (Supplementary S7), and
so the initial subpopulations in (b) also naturally vary with the overall initial population, N(0).

have ro(0) = 232µm and we see that it takes until t = 6 days for a clear necrotic core to form in285

the equatorial cross section. In contrast, the spheroid in Figure 6 is larger with ro(0) = 274µm and286

we see a clear necrotic core at t = 3 days. This highlights the importance of taking great care with287

measurements at the beginning of the experiment [36].288

3.5. Quantitatively matching experimental and mathematical spheroids289

Results in Figure 8 compare the temporal evolution of ro(t), ra(t), and rn(t), from our suite of290

experiments and simulations. The data in Figure 8 show the value in working with a stochastic291

model since the experimental measurements are quite variable, with estimates of ra(t) and rn(t)292

more variable than estimates of ro(t). This difference in variability is because we measure ro(t)293

automatically with an IncuCyte S3 every 6 hours. In contrast, measurements of ra(t) and rn(t)294

require manual harvesting, fixing, and imaging, and accordingly we report these measurements daily.295

Similarly to Section 3.4, we compare experimental results of average data in simulations with296

and without induced variability in the initial condition. The experiment-IBM comparison in Figure297
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Figure 8: Comparison of computational estimates of ro(t) (black), ra(t) (red), and rn(t) (cyan) with experimental
data. The experimental data (dots) are compared with (a) simulations with each run starting with an identical
parameter set and (b) simulations with variations of the initial spheroid radius and population, with each initial
radius selected from experimentally measured radii at t = 0 days and agent density kept constant. Computational
results are the average of 10 simulations, and error regions represent plus or minus one standard deviation. The initial
subpopulations vary in both (a) and (b), due to randomly assigning cell cycle status (Supplementary S7). In (b),
we also naturally see higher variations in each subpopulation initially, due to explicitly including initial population
variability, which in turn induces variability in ra(0).

8a corresponds to the case where we simulate 10 identically-prepared realisations of the IBM, where298

each simulated spheroid has the same initial radius ro(0) = 245µm, and we see that the average299

simulation results capture the average trends in the experimental measurements well, but the IBM300

simulations do not capture observed variability in the evolution of ra(t) or rn(t). In contrast, the301

experiment-IBM comparison in Figure 8b, where we deliberately mimic the experimental variability302

at t = 0, captures both the average experimental trends and variability in the experimental data quite303

well. Again, the difference between Figure 8a-b suggests that incorporating the initial variability in304

the experimental data is critical if we wish to capture the observed variability in the experiments.305

Interestingly, our experimental data in Figure 8 suggest that we have an approximately linear306

increase in ro(t) over time, whereas the development of the internal structure is more complicated.307

The initial arrested radius decreases for the first day before growing rapidly, and we do not see308

the formation of a necrotic core until approximately t = 4 days. While our IBM-experimental309

comparison in Figure 8 suggests that the IBM can quantitatively capture experimental trends, we310

have obtained this match with a careful choice of parameters without undertaking a more rigorous311

parameter estimation exercise [41].312
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4. Conclusions and Future Work313

In this work we develop a novel IBM that can simulate 4D tumour spheroid experiments with314

explicit cell cycle labels. IBM simulations reveal that we can successfully reproduce qualitative and315

quantitative patterns of spatial and temporal differences in cell cycle status that we observe in in vitro316

experiments. This heterogeneity is driven by spatial and temporal variations in nutrient availability,317

which we model using a reaction-diffusion equation coupled to the IBM.318

An important advantage of the IBM is our ability to extract and describe measurements that319

are difficult to obtain in vitro. In particular, we show how to visualise both the growing populations320

within the spheroid together with the spatial patterns of nutrient concentration over time within321

the growing spheroid. Furthermore, the IBM makes it very simple to explore how various features322

contribute to the overall variability in spheroid development, and we find that relatively small varia-323

tions in the initial size of the spheroid lead to relatively pronounced differences in spheroid size and324

composition at later times [36]. We conclude our investigation by showing that we can quantitatively325

match the spatial and temporal development of a series of in vitro 4D spheroids using the WM793B326

human primary melanoma cell line with a careful choice of parameters. We anticipate that tumour327

spheroids formed with different cell lines will be able to be simulated with our IBM, but will require328

different parameter values.329

Overall, our modelling philosophy is always to work with the simplest possible mechanisms re-330

quired to capture our experimental observations. Naturally, this means that there are many ways331

that the IBM can be extended. For example, here we make the simple assumption that spheroid332

growth is regulated by a single diffusible nutrient, which seems appropriate for our data. If, however,333

experiments show that it is important to consider multiple nutrients in unison, our IBM framework334

can be extended to deal with this. Similarly, we have focused on spheroid growth commencing with335

a spherically symmetric initial condition which is consistent with our experiments. This assumption336

can be relaxed in the present model simply by specifying a different arrangement of agents at t = 0.337

Another point that could be revisited is that we implement the simplest possible cell migration338

mechanism where the direction of motion is random. While this assumption appears reasonable for339

our data, it is possible to bias the migration in response to either the nutrient concentration, the340
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gradient of the nutrient concentration, or the density of agents. Each of these potential extensions341

could be incorporated into our IBM framework and increase the biological fidelity of the model.342

However, here we caution against this approach since these mechanisms also increase the number of343

parameters required for simulation. To minimise issues with parameter identifiability, we prefer to344

work with a minimal model [41]. If, however, future experimental measurements indicate that our345

minimal assumptions need to be revised, our IBM framework is sufficiently flexible to incorporate346

such extensions, if warranted. Another option for future refinement is to conduct a more thorough347

parameter estimation exercise. Here we carefully chose parameters that appear to match our data,348

but future analysis could include a more rigorous assessment of parameter estimation, and we leave349

this for future consideration.350
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