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Abstract 
Motivation: New antiviral drugs are urgently needed because of emerging viral pathogens' 

increasing severity and drug resistance. Antiviral peptides (AVPs) have multiple antiviral 

properties and are appealing candidates for antiviral drug development. We developed a 

sequence-based binary classifier to identify whether an unknown short peptide has AVP activity. 

We collected AVP sequence data from six existing databases. We used a generative adversarial 

network to augment the number of AVPs in the positive training dataset and allow our deep 

convolutional neural network model to train on more data. 

Results: Our classifier achieved outstanding performance on the testing dataset compared with 

other state-of-the-art classifiers. We deployed our trained classifier on a user-friendly web server. 

Availability and implementation: AI4AVP is freely accessible at 

http://axp.iis.sinica.edu.tw/AI4AVP/ 

Contact: cylin@iis.sinica.edu.tw 

Supplementary information: Supplementary data is also available. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470292doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470292
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 
Recently, viral pathogens have become more prevalent and diverse; they pose increasingly severe 

threats to people. Treating viral diseases clinically with existing antiviral drugs and interferons is 

inefficient because of side effects and increasing cases of drug resistance (1). Antiviral peptides 

(AVPs) are characterized by their high specificity and effectiveness against reemerging and drug-

resistant viruses, such as coronaviruses (2), through blocking the virus from entering the host cell 

or inhibiting virus replication. Additionally, natural AVPs have low toxicity and peptidase 

biodegradability compared with available antiviral drugs (3). Therefore, AVPs are potential 

candidates for antiviral drug development.  

Although several AVP predictors already exist (Supplementary Table 1), they were trained 

using datasets from AVPpred collected in 2012. Recently, many AVPs have been discovered or 

synthesized, and added to databases. We collected data from these databases and used them to 

train a prediction model. To increase the size and balance between the positive and negative 

datasets, we utilized a generative adversarial network (GAN) in the data augmentation process, 

generating positive data based on real AVPs. We detailed the process of using GAN to generate 

peptides in a previous study (4) (Supplementary Figure 1). 

We used PC6 encoding(5), a protein-encoding method based on six physicochemical properties, 

to transform sequential data into matrices (Supplementary Figure 2). Finally, we constructed 

our prediction model using a convolutional neural network (CNN; Supplementary Figure 3).  

Materials and methods 
Data collection and preprocessing 

We collected positive AVP data from six existing AVP databases: APD3, DRAMP, YADAMP, 

DBAASP, CAMP, and AVPdb (Supplementary Table 2). We excluded duplicate data and 

peptides with unusual amino acids ("B," "Z," "U," "J," "O," "X," "i," "n," and "−") and selected 

AVPs with a length of 10 to 50. We obtained data on 2,934 AVPs from six databases. We used 

90% of the data (2,641 AVPs) for training and 10% of the data (293 AVPs) for testing. To ensure 

that the evaluation of the model's performance compared with other predictors was fair, we 

excluded data from the training datasets of those predictors (2012 dataset) in our testing dataset. 

We combined peptides collected from the Swiss-Prot database and randomly generated 

sequences to form the negative set. Specifically, we obtained 8,592 peptides from Swiss-Prot 

with a length between 10 and 50 without AMP-related keywords, such as "antimicrobial," 
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"antibiotic," "amphibian defense peptide," or "antiviral protein." Subsequently, we randomly 

arranged 20 amino acids to generate 8,592 sequences to construct a negative dataset with 17,184 

data points. Similar to constructing the positive dataset, we randomly selected 293 data points 

for testing to balance the positive and negative testing datasets.  

 

Table 1. Results of our model and other predictors. *2012 datasets were collected by the authors of 

the AVPpred study with 506 positive and negative data points. **Our dataset without GAN 

data augmentation (2,641 positive 2,641negative data points). ***Our dataset with GAN 

data augmentation (16,995 positive and 16,995 negative data points). 

 

Data augmentation by GAN 

Balancing the amount of data is essential for training the classification model to avoid biases caused by 

imbalance between positive and negative labels. In our case, the most direct method of balancing the 

datasets was to select only 2,641 data points from the negative dataset to fit the positive dataset. 

However, this would have made the remaining negative data useless for model training. To fully utilize 

all the negative data, we augmented the amount of positive data using a GAN. The GAN was trained 

using all AVP data as the input; it then generated much AVP-like data. We added the generated AVP-

like data to the original AVP data to achieve parity between the positive and negative datasets. Therefore, 

we eventually obtained 16,995 positive and 16,995 negative data points for classifier training. 

 

Protein-encoding method 
We used PC6 encoding, a protein-encoding method developed in our previous study, to transform 

peptide sequence data into matrices. PC6 encoding can consider peptides' order and the 

physicochemical properties of amino acids and extract essential features for model training. 

Training dataset   Predictors  Accuracy Precision Sensitivity Specificity MCC 

2012 datasets* AVPpred 0.55 0.61 0.29 0.82 0.12 

2012 datasets* AntiVPP1.0 0.56 0.58 0.44 0.68 0.13 

2012 datasets* Meta-iAVP 0.55 0.56 0.49 0.61 -0.04 

2012 datasets* FIRM-AVP 0.48 0.48 0.47 0.49 0.10 

2012 datasets* AI4AVP 0.55 0.56 0.46 0.64 0.11 

new datasets** AI4AVP 0.80 0.84 0.75 0.86 0.63 

new datasets+ 

GAN dataset*** 

AI4AVP 0.84 0.84 0.85 0.86 0.68 
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Model construction 
We implemented Keras, a high-level API from Tensorflow, to construct and train our deep learning 

model. The model architecture was based on three CNN blocks. Each CNN block concluded a 

convolutional layer [filters: (64,32,16), kernel_size: (8,8,8)] with a rectified linear activation function 

(ReLU), a batch normalization layer, and a dropout layer [rate: (0.5,0.5,0.5)] (Supplementary Figure 3). 

Finally, a fully connected layer (unit: 1) with a sigmoid activation function produced output values 

between 0 and 1. We set the batch size of the validation dataset we had produced to 1000. We focused 

on the validation loss every epoch during model training, and we then stopped training when the training 

process was stable and the validation loss was no longer decreasing. The model with the lowest 

validation loss was saved as the best model. 

Results 
We used our testing dataset to compare the performance of our model with the following state-of-the-

art predictors: AVPpred, AntiVPP1.0, Meta-iAVP, and FIRM-AVP. Table 1  

lists the results of this comparison. All the predictors, including that of our model, performed poorly 

(all accuracy levels at approximately 0.5) after training on the 2012 dataset. Many AVPs have been 

discovered or synthesized in recent years, so the 2012 dataset is no longer sufficient to represent all 

AVP features. This caused the classifiers to be trained on incomplete positive data, which resulted in 

poor performance on the testing dataset. The last two models trained by the datasets we collected 

performed better, particularly in identifying AVPs (accuracy > 0.8). Our final model (AI4AVP) trained 

on GAN augmentation data exhibited better performance than the model trained only with real AVP 

data. GAN augmentation allowed all negative data to be applied to model training, improving the 

robustness of the classifier for peptide identification. 

In conclusion, this study developed an AVP predictor, AI4AVP, trained by a more extensive dataset than 

that used in previous studies. The AI4AVP pipeline is shown in Supplementary Figure 4. Using PC6 

encoding and a peptide GAN developed in our previous studies, we achieved data augmentation. This 

approach allowed all our training data to be utilized and maintained balance between the datasets during 

model training. 
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