A human monoclonal antibody potently pan-neutralizes SARS-CoV-2 VOCs by targeting RBD invariant sites
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of novel corona virus disease (COVID-19). The neutralizing monoclonal antibodies (mAbs) targeting the receptor binding domain (RBD) of SARS-CoV-2 are among the most promising strategies to prevent and treat COVID-19. However, SARS-CoV-2 variants of concern (VOCs) profoundly reduced the efficacies of most of mAbs and vaccines approved for clinical use. Herein, we demonstrated mAb 35B5 efficiently neutralizes both wild-type (WT) SARS-CoV-2 and VOCs, including B.1.617.2 (delta) variant, in vitro and in vivo. Cryo-electron microscopy (cryo-EM) revealed that 35B5 neutralizes SARS-CoV-2 by targeting a unique epitope that avoids the prevailing mutation sites on RBD identified in circulating VOCs, providing the molecular basis for its pan-neutralizing efficacy. The 35B5-binding epitope could also be exploited for the rational design of a universal SARS-CoV-2 vaccine.
Competing Interest Statement
The authors have declared no competing interest.
Subject Area
- Biochemistry (13371)
- Bioengineering (10182)
- Bioinformatics (32560)
- Biophysics (16756)
- Cancer Biology (13849)
- Cell Biology (19670)
- Clinical Trials (138)
- Developmental Biology (10626)
- Ecology (15729)
- Epidemiology (2067)
- Evolutionary Biology (20037)
- Genetics (13231)
- Genomics (18362)
- Immunology (13470)
- Microbiology (31528)
- Molecular Biology (13148)
- Neuroscience (68675)
- Paleontology (509)
- Pathology (2129)
- Pharmacology and Toxicology (3675)
- Physiology (5735)
- Plant Biology (11784)
- Synthetic Biology (3307)
- Systems Biology (8038)
- Zoology (1814)